1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
| /*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
* Copyright 2016 INRIA Paris
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
* and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
* CS 42112, 75589 Paris Cedex 12, France
*/
#include <isl_ctx_private.h>
#include "isl_map_private.h"
#include <isl_seq.h>
#include <isl/options.h>
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_local_space_private.h>
#include <isl_val_private.h>
#include <isl_vec_private.h>
#include <isl_aff_private.h>
#include <isl_equalities.h>
#include <isl_constraint_private.h>
#include <set_to_map.c>
#include <set_from_map.c>
#define STATUS_ERROR -1
#define STATUS_REDUNDANT 1
#define STATUS_VALID 2
#define STATUS_SEPARATE 3
#define STATUS_CUT 4
#define STATUS_ADJ_EQ 5
#define STATUS_ADJ_INEQ 6
static int status_in(isl_int *ineq, struct isl_tab *tab)
{
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
switch (type) {
default:
case isl_ineq_error: return STATUS_ERROR;
case isl_ineq_redundant: return STATUS_VALID;
case isl_ineq_separate: return STATUS_SEPARATE;
case isl_ineq_cut: return STATUS_CUT;
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
}
}
/* Compute the position of the equalities of basic map "bmap_i"
* with respect to the basic map represented by "tab_j".
* The resulting array has twice as many entries as the number
* of equalities corresponding to the two inequalities to which
* each equality corresponds.
*/
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_j)
{
int k, l;
int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
unsigned dim;
if (!eq)
return NULL;
dim = isl_basic_map_total_dim(bmap_i);
for (k = 0; k < bmap_i->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
if (eq[2 * k + l] == STATUS_ERROR)
goto error;
}
}
return eq;
error:
free(eq);
return NULL;
}
/* Compute the position of the inequalities of basic map "bmap_i"
* (also represented by "tab_i", if not NULL) with respect to the basic map
* represented by "tab_j".
*/
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
struct isl_tab *tab_i, struct isl_tab *tab_j)
{
int k;
unsigned n_eq = bmap_i->n_eq;
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
if (!ineq)
return NULL;
for (k = 0; k < bmap_i->n_ineq; ++k) {
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
ineq[k] = STATUS_REDUNDANT;
continue;
}
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
if (ineq[k] == STATUS_ERROR)
goto error;
if (ineq[k] == STATUS_SEPARATE)
break;
}
return ineq;
error:
free(ineq);
return NULL;
}
static int any(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i)
if (con[i] == status)
return 1;
return 0;
}
/* Return the first position of "status" in the list "con" of length "len".
* Return -1 if there is no such entry.
*/
static int find(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i)
if (con[i] == status)
return i;
return -1;
}
static int count(int *con, unsigned len, int status)
{
int i;
int c = 0;
for (i = 0; i < len ; ++i)
if (con[i] == status)
c++;
return c;
}
static int all(int *con, unsigned len, int status)
{
int i;
for (i = 0; i < len ; ++i) {
if (con[i] == STATUS_REDUNDANT)
continue;
if (con[i] != status)
return 0;
}
return 1;
}
/* Internal information associated to a basic map in a map
* that is to be coalesced by isl_map_coalesce.
*
* "bmap" is the basic map itself (or NULL if "removed" is set)
* "tab" is the corresponding tableau (or NULL if "removed" is set)
* "hull_hash" identifies the affine space in which "bmap" lives.
* "removed" is set if this basic map has been removed from the map
* "simplify" is set if this basic map may have some unknown integer
* divisions that were not present in the input basic maps. The basic
* map should then be simplified such that we may be able to find
* a definition among the constraints.
*
* "eq" and "ineq" are only set if we are currently trying to coalesce
* this basic map with another basic map, in which case they represent
* the position of the inequalities of this basic map with respect to
* the other basic map. The number of elements in the "eq" array
* is twice the number of equalities in the "bmap", corresponding
* to the two inequalities that make up each equality.
*/
struct isl_coalesce_info {
isl_basic_map *bmap;
struct isl_tab *tab;
uint32_t hull_hash;
int removed;
int simplify;
int *eq;
int *ineq;
};
/* Is there any (half of an) equality constraint in the description
* of the basic map represented by "info" that
* has position "status" with respect to the other basic map?
*/
static int any_eq(struct isl_coalesce_info *info, int status)
{
unsigned n_eq;
n_eq = isl_basic_map_n_equality(info->bmap);
return any(info->eq, 2 * n_eq, status);
}
/* Is there any inequality constraint in the description
* of the basic map represented by "info" that
* has position "status" with respect to the other basic map?
*/
static int any_ineq(struct isl_coalesce_info *info, int status)
{
unsigned n_ineq;
n_ineq = isl_basic_map_n_inequality(info->bmap);
return any(info->ineq, n_ineq, status);
}
/* Return the position of the first half on an equality constraint
* in the description of the basic map represented by "info" that
* has position "status" with respect to the other basic map.
* The returned value is twice the position of the equality constraint
* plus zero for the negative half and plus one for the positive half.
* Return -1 if there is no such entry.
*/
static int find_eq(struct isl_coalesce_info *info, int status)
{
unsigned n_eq;
n_eq = isl_basic_map_n_equality(info->bmap);
return find(info->eq, 2 * n_eq, status);
}
/* Return the position of the first inequality constraint in the description
* of the basic map represented by "info" that
* has position "status" with respect to the other basic map.
* Return -1 if there is no such entry.
*/
static int find_ineq(struct isl_coalesce_info *info, int status)
{
unsigned n_ineq;
n_ineq = isl_basic_map_n_inequality(info->bmap);
return find(info->ineq, n_ineq, status);
}
/* Return the number of (halves of) equality constraints in the description
* of the basic map represented by "info" that
* have position "status" with respect to the other basic map.
*/
static int count_eq(struct isl_coalesce_info *info, int status)
{
unsigned n_eq;
n_eq = isl_basic_map_n_equality(info->bmap);
return count(info->eq, 2 * n_eq, status);
}
/* Return the number of inequality constraints in the description
* of the basic map represented by "info" that
* have position "status" with respect to the other basic map.
*/
static int count_ineq(struct isl_coalesce_info *info, int status)
{
unsigned n_ineq;
n_ineq = isl_basic_map_n_inequality(info->bmap);
return count(info->ineq, n_ineq, status);
}
/* Are all non-redundant constraints of the basic map represented by "info"
* either valid or cut constraints with respect to the other basic map?
*/
static int all_valid_or_cut(struct isl_coalesce_info *info)
{
int i;
for (i = 0; i < 2 * info->bmap->n_eq; ++i) {
if (info->eq[i] == STATUS_REDUNDANT)
continue;
if (info->eq[i] == STATUS_VALID)
continue;
if (info->eq[i] == STATUS_CUT)
continue;
return 0;
}
for (i = 0; i < info->bmap->n_ineq; ++i) {
if (info->ineq[i] == STATUS_REDUNDANT)
continue;
if (info->ineq[i] == STATUS_VALID)
continue;
if (info->ineq[i] == STATUS_CUT)
continue;
return 0;
}
return 1;
}
/* Compute the hash of the (apparent) affine hull of info->bmap (with
* the existentially quantified variables removed) and store it
* in info->hash.
*/
static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info)
{
isl_basic_map *hull;
unsigned n_div;
hull = isl_basic_map_copy(info->bmap);
hull = isl_basic_map_plain_affine_hull(hull);
n_div = isl_basic_map_dim(hull, isl_dim_div);
hull = isl_basic_map_drop_constraints_involving_dims(hull,
isl_dim_div, 0, n_div);
info->hull_hash = isl_basic_map_get_hash(hull);
isl_basic_map_free(hull);
return hull ? 0 : -1;
}
/* Free all the allocated memory in an array
* of "n" isl_coalesce_info elements.
*/
static void clear_coalesce_info(int n, struct isl_coalesce_info *info)
{
int i;
if (!info)
return;
for (i = 0; i < n; ++i) {
isl_basic_map_free(info[i].bmap);
isl_tab_free(info[i].tab);
}
free(info);
}
/* Drop the basic map represented by "info".
* That is, clear the memory associated to the entry and
* mark it as having been removed.
*/
static void drop(struct isl_coalesce_info *info)
{
info->bmap = isl_basic_map_free(info->bmap);
isl_tab_free(info->tab);
info->tab = NULL;
info->removed = 1;
}
/* Exchange the information in "info1" with that in "info2".
*/
static void exchange(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
struct isl_coalesce_info info;
info = *info1;
*info1 = *info2;
*info2 = info;
}
/* This type represents the kind of change that has been performed
* while trying to coalesce two basic maps.
*
* isl_change_none: nothing was changed
* isl_change_drop_first: the first basic map was removed
* isl_change_drop_second: the second basic map was removed
* isl_change_fuse: the two basic maps were replaced by a new basic map.
*/
enum isl_change {
isl_change_error = -1,
isl_change_none = 0,
isl_change_drop_first,
isl_change_drop_second,
isl_change_fuse,
};
/* Update "change" based on an interchange of the first and the second
* basic map. That is, interchange isl_change_drop_first and
* isl_change_drop_second.
*/
static enum isl_change invert_change(enum isl_change change)
{
switch (change) {
case isl_change_error:
return isl_change_error;
case isl_change_none:
return isl_change_none;
case isl_change_drop_first:
return isl_change_drop_second;
case isl_change_drop_second:
return isl_change_drop_first;
case isl_change_fuse:
return isl_change_fuse;
}
return isl_change_error;
}
/* Add the valid constraints of the basic map represented by "info"
* to "bmap". "len" is the size of the constraints.
* If only one of the pair of inequalities that make up an equality
* is valid, then add that inequality.
*/
static __isl_give isl_basic_map *add_valid_constraints(
__isl_take isl_basic_map *bmap, struct isl_coalesce_info *info,
unsigned len)
{
int k, l;
if (!bmap)
return NULL;
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_equality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len);
} else if (info->eq[2 * k + 1] == STATUS_VALID) {
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len);
}
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] != STATUS_VALID)
continue;
l = isl_basic_map_alloc_inequality(bmap);
if (l < 0)
return isl_basic_map_free(bmap);
isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len);
}
return bmap;
}
/* Is "bmap" defined by a number of (non-redundant) constraints that
* is greater than the number of constraints of basic maps i and j combined?
* Equalities are counted as two inequalities.
*/
static int number_of_constraints_increases(int i, int j,
struct isl_coalesce_info *info,
__isl_keep isl_basic_map *bmap, struct isl_tab *tab)
{
int k, n_old, n_new;
n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq;
n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
n_new = 2 * bmap->n_eq;
for (k = 0; k < bmap->n_ineq; ++k)
if (!isl_tab_is_redundant(tab, bmap->n_eq + k))
++n_new;
return n_new > n_old;
}
/* Replace the pair of basic maps i and j by the basic map bounded
* by the valid constraints in both basic maps and the constraints
* in extra (if not NULL).
* Place the fused basic map in the position that is the smallest of i and j.
*
* If "detect_equalities" is set, then look for equalities encoded
* as pairs of inequalities.
* If "check_number" is set, then the original basic maps are only
* replaced if the total number of constraints does not increase.
* While the number of integer divisions in the two basic maps
* is assumed to be the same, the actual definitions may be different.
* We only copy the definition from one of the basic map if it is
* the same as that of the other basic map. Otherwise, we mark
* the integer division as unknown and simplify the basic map
* in an attempt to recover the integer division definition.
*/
static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info,
__isl_keep isl_mat *extra, int detect_equalities, int check_number)
{
int k, l;
struct isl_basic_map *fused = NULL;
struct isl_tab *fused_tab = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
unsigned extra_rows = extra ? extra->n_row : 0;
unsigned n_eq, n_ineq;
int simplify = 0;
if (j < i)
return fuse(j, i, info, extra, detect_equalities, check_number);
n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq;
n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq;
fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim),
info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows);
fused = add_valid_constraints(fused, &info[i], 1 + total);
fused = add_valid_constraints(fused, &info[j], 1 + total);
if (!fused)
goto error;
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) &&
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
for (k = 0; k < info[i].bmap->n_div; ++k) {
int l = isl_basic_map_alloc_div(fused);
if (l < 0)
goto error;
if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k],
1 + 1 + total)) {
isl_seq_cpy(fused->div[l], info[i].bmap->div[k],
1 + 1 + total);
} else {
isl_int_set_si(fused->div[l][0], 0);
simplify = 1;
}
}
for (k = 0; k < extra_rows; ++k) {
l = isl_basic_map_alloc_inequality(fused);
if (l < 0)
goto error;
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
}
if (detect_equalities)
fused = isl_basic_map_detect_inequality_pairs(fused, NULL);
fused = isl_basic_map_gauss(fused, NULL);
if (simplify || info[j].simplify) {
fused = isl_basic_map_simplify(fused);
info[i].simplify = 0;
}
fused = isl_basic_map_finalize(fused);
fused_tab = isl_tab_from_basic_map(fused, 0);
if (isl_tab_detect_redundant(fused_tab) < 0)
goto error;
if (check_number &&
number_of_constraints_increases(i, j, info, fused, fused_tab)) {
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_none;
}
isl_basic_map_free(info[i].bmap);
info[i].bmap = fused;
isl_tab_free(info[i].tab);
info[i].tab = fused_tab;
drop(&info[j]);
return isl_change_fuse;
error:
isl_tab_free(fused_tab);
isl_basic_map_free(fused);
return isl_change_error;
}
/* Given a pair of basic maps i and j such that all constraints are either
* "valid" or "cut", check if the facets corresponding to the "cut"
* constraints of i lie entirely within basic map j.
* If so, replace the pair by the basic map consisting of the valid
* constraints in both basic maps.
* Checking whether the facet lies entirely within basic map j
* is performed by checking whether the constraints of basic map j
* are valid for the facet. These tests are performed on a rational
* tableau to avoid the theoretical possibility that a constraint
* that was considered to be a cut constraint for the entire basic map i
* happens to be considered to be a valid constraint for the facet,
* even though it cuts off the same rational points.
*
* To see that we are not introducing any extra points, call the
* two basic maps A and B and the resulting map U and let x
* be an element of U \setminus ( A \cup B ).
* A line connecting x with an element of A \cup B meets a facet F
* of either A or B. Assume it is a facet of B and let c_1 be
* the corresponding facet constraint. We have c_1(x) < 0 and
* so c_1 is a cut constraint. This implies that there is some
* (possibly rational) point x' satisfying the constraints of A
* and the opposite of c_1 as otherwise c_1 would have been marked
* valid for A. The line connecting x and x' meets a facet of A
* in a (possibly rational) point that also violates c_1, but this
* is impossible since all cut constraints of B are valid for all
* cut facets of A.
* In case F is a facet of A rather than B, then we can apply the
* above reasoning to find a facet of B separating x from A \cup B first.
*/
static enum isl_change check_facets(int i, int j,
struct isl_coalesce_info *info)
{
int k, l;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
snap = isl_tab_snap(info[i].tab);
if (isl_tab_mark_rational(info[i].tab) < 0)
return isl_change_error;
snap2 = isl_tab_snap(info[i].tab);
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
if (info[i].ineq[k] != STATUS_CUT)
continue;
if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0)
return isl_change_error;
for (l = 0; l < info[j].bmap->n_ineq; ++l) {
int stat;
if (info[j].ineq[l] != STATUS_CUT)
continue;
stat = status_in(info[j].bmap->ineq[l], info[i].tab);
if (stat < 0)
return isl_change_error;
if (stat != STATUS_VALID)
break;
}
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
if (l < info[j].bmap->n_ineq)
break;
}
if (k < info[i].bmap->n_ineq) {
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
return fuse(i, j, info, NULL, 0, 0);
}
/* Check if info->bmap contains the basic map represented
* by the tableau "tab".
* For each equality, we check both the constraint itself
* (as an inequality) and its negation. Make sure the
* equality is returned to its original state before returning.
*/
static isl_bool contains(struct isl_coalesce_info *info, struct isl_tab *tab)
{
int k;
unsigned dim;
isl_basic_map *bmap = info->bmap;
dim = isl_basic_map_total_dim(bmap);
for (k = 0; k < bmap->n_eq; ++k) {
int stat;
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
stat = status_in(bmap->eq[k], tab);
isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim);
if (stat < 0)
return isl_bool_error;
if (stat != STATUS_VALID)
return isl_bool_false;
stat = status_in(bmap->eq[k], tab);
if (stat < 0)
return isl_bool_error;
if (stat != STATUS_VALID)
return isl_bool_false;
}
for (k = 0; k < bmap->n_ineq; ++k) {
int stat;
if (info->ineq[k] == STATUS_REDUNDANT)
continue;
stat = status_in(bmap->ineq[k], tab);
if (stat < 0)
return isl_bool_error;
if (stat != STATUS_VALID)
return isl_bool_false;
}
return isl_bool_true;
}
/* Basic map "i" has an inequality (say "k") that is adjacent
* to some inequality of basic map "j". All the other inequalities
* are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* Note that this function is only called if some of the equalities or
* inequalities of basic map "j" do cut basic map "i". The function is
* correct even if there are no such cut constraints, but in that case
* the additional checks performed by this function are overkill.
*
* In particular, we replace constraint k, say f >= 0, by constraint
* f <= -1, add the inequalities of "j" that are valid for "i"
* and check if the result is a subset of basic map "j".
* To improve the chances of the subset relation being detected,
* any variable that only attains a single integer value
* in the tableau of "i" is first fixed to that value.
* If the result is a subset, then we know that this result is exactly equal
* to basic map "j" since all its constraints are valid for basic map "j".
* By combining the valid constraints of "i" (all equalities and all
* inequalities except "k") and the valid constraints of "j" we therefore
* obtain a basic map that is equal to their union.
* In this case, there is no need to perform a rollback of the tableau
* since it is going to be destroyed in fuse().
*
*
* |\__ |\__
* | \__ | \__
* | \_ => | \__
* |_______| _ |_________\
*
*
* |\ |\
* | \ | \
* | \ | \
* | | | \
* | ||\ => | \
* | || \ | \
* | || | | |
* |__||_/ |_____/
*/
static enum isl_change is_adj_ineq_extension(int i, int j,
struct isl_coalesce_info *info)
{
int k;
struct isl_tab_undo *snap;
unsigned n_eq = info[i].bmap->n_eq;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
isl_stat r;
isl_bool super;
if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0)
return isl_change_error;
k = find_ineq(&info[i], STATUS_ADJ_INEQ);
if (k < 0)
isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal,
"info[i].ineq should have exactly one STATUS_ADJ_INEQ",
return isl_change_error);
snap = isl_tab_snap(info[i].tab);
if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0)
return isl_change_error;
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]);
isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total);
isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1);
if (r < 0)
return isl_change_error;
for (k = 0; k < info[j].bmap->n_ineq; ++k) {
if (info[j].ineq[k] != STATUS_VALID)
continue;
if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0)
return isl_change_error;
}
if (isl_tab_detect_constants(info[i].tab) < 0)
return isl_change_error;
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super)
return fuse(i, j, info, NULL, 0, 0);
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
/* Both basic maps have at least one inequality with and adjacent
* (but opposite) inequality in the other basic map.
* Check that there are no cut constraints and that there is only
* a single pair of adjacent inequalities.
* If so, we can replace the pair by a single basic map described
* by all but the pair of adjacent inequalities.
* Any additional points introduced lie strictly between the two
* adjacent hyperplanes and can therefore be integral.
*
* ____ _____
* / ||\ / \
* / || \ / \
* \ || \ => \ \
* \ || / \ /
* \___||_/ \_____/
*
* The test for a single pair of adjancent inequalities is important
* for avoiding the combination of two basic maps like the following
*
* /|
* / |
* /__|
* _____
* | |
* | |
* |___|
*
* If there are some cut constraints on one side, then we may
* still be able to fuse the two basic maps, but we need to perform
* some additional checks in is_adj_ineq_extension.
*/
static enum isl_change check_adj_ineq(int i, int j,
struct isl_coalesce_info *info)
{
int count_i, count_j;
int cut_i, cut_j;
count_i = count_ineq(&info[i], STATUS_ADJ_INEQ);
count_j = count_ineq(&info[j], STATUS_ADJ_INEQ);
if (count_i != 1 && count_j != 1)
return isl_change_none;
cut_i = any_eq(&info[i], STATUS_CUT) || any_ineq(&info[i], STATUS_CUT);
cut_j = any_eq(&info[j], STATUS_CUT) || any_ineq(&info[j], STATUS_CUT);
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
return fuse(i, j, info, NULL, 0, 0);
if (count_i == 1 && !cut_i)
return is_adj_ineq_extension(i, j, info);
if (count_j == 1 && !cut_j)
return is_adj_ineq_extension(j, i, info);
return isl_change_none;
}
/* Given an affine transformation matrix "T", does row "row" represent
* anything other than a unit vector (possibly shifted by a constant)
* that is not involved in any of the other rows?
*
* That is, if a constraint involves the variable corresponding to
* the row, then could its preimage by "T" have any coefficients
* that are different from those in the original constraint?
*/
static int not_unique_unit_row(__isl_keep isl_mat *T, int row)
{
int i, j;
int len = T->n_col - 1;
i = isl_seq_first_non_zero(T->row[row] + 1, len);
if (i < 0)
return 1;
if (!isl_int_is_one(T->row[row][1 + i]) &&
!isl_int_is_negone(T->row[row][1 + i]))
return 1;
j = isl_seq_first_non_zero(T->row[row] + 1 + i + 1, len - (i + 1));
if (j >= 0)
return 1;
for (j = 1; j < T->n_row; ++j) {
if (j == row)
continue;
if (!isl_int_is_zero(T->row[j][1 + i]))
return 1;
}
return 0;
}
/* Does inequality constraint "ineq" of "bmap" involve any of
* the variables marked in "affected"?
* "total" is the total number of variables, i.e., the number
* of entries in "affected".
*/
static isl_bool is_affected(__isl_keep isl_basic_map *bmap, int ineq,
int *affected, int total)
{
int i;
for (i = 0; i < total; ++i) {
if (!affected[i])
continue;
if (!isl_int_is_zero(bmap->ineq[ineq][1 + i]))
return isl_bool_true;
}
return isl_bool_false;
}
/* Given the compressed version of inequality constraint "ineq"
* of info->bmap in "v", check if the constraint can be tightened,
* where the compression is based on an equality constraint valid
* for info->tab.
* If so, add the tightened version of the inequality constraint
* to info->tab. "v" may be modified by this function.
*
* That is, if the compressed constraint is of the form
*
* m f() + c >= 0
*
* with 0 < c < m, then it is equivalent to
*
* f() >= 0
*
* This means that c can also be subtracted from the original,
* uncompressed constraint without affecting the integer points
* in info->tab. Add this tightened constraint as an extra row
* to info->tab to make this information explicitly available.
*/
static __isl_give isl_vec *try_tightening(struct isl_coalesce_info *info,
int ineq, __isl_take isl_vec *v)
{
isl_ctx *ctx;
isl_stat r;
if (!v)
return NULL;
ctx = isl_vec_get_ctx(v);
isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
if (isl_int_is_zero(ctx->normalize_gcd) ||
isl_int_is_one(ctx->normalize_gcd)) {
return v;
}
v = isl_vec_cow(v);
if (!v)
return NULL;
isl_int_fdiv_r(v->el[0], v->el[0], ctx->normalize_gcd);
if (isl_int_is_zero(v->el[0]))
return v;
if (isl_tab_extend_cons(info->tab, 1) < 0)
return isl_vec_free(v);
isl_int_sub(info->bmap->ineq[ineq][0],
info->bmap->ineq[ineq][0], v->el[0]);
r = isl_tab_add_ineq(info->tab, info->bmap->ineq[ineq]);
isl_int_add(info->bmap->ineq[ineq][0],
info->bmap->ineq[ineq][0], v->el[0]);
if (r < 0)
return isl_vec_free(v);
return v;
}
/* Tighten the (non-redundant) constraints on the facet represented
* by info->tab.
* In particular, on input, info->tab represents the result
* of relaxing the "n" inequality constraints of info->bmap in "relaxed"
* by one, i.e., replacing f_i >= 0 by f_i + 1 >= 0, and then
* replacing the one at index "l" by the corresponding equality,
* i.e., f_k + 1 = 0, with k = relaxed[l].
*
* Compute a variable compression from the equality constraint f_k + 1 = 0
* and use it to tighten the other constraints of info->bmap
* (that is, all constraints that have not been relaxed),
* updating info->tab (and leaving info->bmap untouched).
* The compression handles essentially two cases, one where a variable
* is assigned a fixed value and can therefore be eliminated, and one
* where one variable is a shifted multiple of some other variable and
* can therefore be replaced by that multiple.
* Gaussian elimination would also work for the first case, but for
* the second case, the effectiveness would depend on the order
* of the variables.
* After compression, some of the constraints may have coefficients
* with a common divisor. If this divisor does not divide the constant
* term, then the constraint can be tightened.
* The tightening is performed on the tableau info->tab by introducing
* extra (temporary) constraints.
*
* Only constraints that are possibly affected by the compression are
* considered. In particular, if the constraint only involves variables
* that are directly mapped to a distinct set of other variables, then
* no common divisor can be introduced and no tightening can occur.
*
* It is important to only consider the non-redundant constraints
* since the facet constraint has been relaxed prior to the call
* to this function, meaning that the constraints that were redundant
* prior to the relaxation may no longer be redundant.
* These constraints will be ignored in the fused result, so
* the fusion detection should not exploit them.
*/
static isl_stat tighten_on_relaxed_facet(struct isl_coalesce_info *info,
int n, int *relaxed, int l)
{
unsigned total;
isl_ctx *ctx;
isl_vec *v = NULL;
isl_mat *T;
int i;
int k;
int *affected;
k = relaxed[l];
ctx = isl_basic_map_get_ctx(info->bmap);
total = isl_basic_map_total_dim(info->bmap);
isl_int_add_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
T = isl_mat_sub_alloc6(ctx, info->bmap->ineq, k, 1, 0, 1 + total);
T = isl_mat_variable_compression(T, NULL);
isl_int_sub_ui(info->bmap->ineq[k][0], info->bmap->ineq[k][0], 1);
if (!T)
return isl_stat_error;
if (T->n_col == 0) {
isl_mat_free(T);
return isl_stat_ok;
}
affected = isl_alloc_array(ctx, int, total);
if (!affected)
goto error;
for (i = 0; i < total; ++i)
affected[i] = not_unique_unit_row(T, 1 + i);
for (i = 0; i < info->bmap->n_ineq; ++i) {
isl_bool handle;
if (any(relaxed, n, i))
continue;
if (info->ineq[i] == STATUS_REDUNDANT)
continue;
handle = is_affected(info->bmap, i, affected, total);
if (handle < 0)
goto error;
if (!handle)
continue;
v = isl_vec_alloc(ctx, 1 + total);
if (!v)
goto error;
isl_seq_cpy(v->el, info->bmap->ineq[i], 1 + total);
v = isl_vec_mat_product(v, isl_mat_copy(T));
v = try_tightening(info, i, v);
isl_vec_free(v);
if (!v)
goto error;
}
isl_mat_free(T);
free(affected);
return isl_stat_ok;
error:
isl_mat_free(T);
free(affected);
return isl_stat_error;
}
/* Replace the basic maps "i" and "j" by an extension of "i"
* along the "n" inequality constraints in "relax" by one.
* The tableau info[i].tab has already been extended.
* Extend info[i].bmap accordingly by relaxing all constraints in "relax"
* by one.
* Each integer division that does not have exactly the same
* definition in "i" and "j" is marked unknown and the basic map
* is scheduled to be simplified in an attempt to recover
* the integer division definition.
* Place the extension in the position that is the smallest of i and j.
*/
static enum isl_change extend(int i, int j, int n, int *relax,
struct isl_coalesce_info *info)
{
int l;
unsigned total;
info[i].bmap = isl_basic_map_cow(info[i].bmap);
if (!info[i].bmap)
return isl_change_error;
total = isl_basic_map_total_dim(info[i].bmap);
for (l = 0; l < info[i].bmap->n_div; ++l)
if (!isl_seq_eq(info[i].bmap->div[l],
info[j].bmap->div[l], 1 + 1 + total)) {
isl_int_set_si(info[i].bmap->div[l][0], 0);
info[i].simplify = 1;
}
for (l = 0; l < n; ++l)
isl_int_add_ui(info[i].bmap->ineq[relax[l]][0],
info[i].bmap->ineq[relax[l]][0], 1);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL);
drop(&info[j]);
if (j < i)
exchange(&info[i], &info[j]);
return isl_change_fuse;
}
/* Basic map "i" has "n" inequality constraints (collected in "relax")
* that are such that they include basic map "j" if they are relaxed
* by one. All the other inequalities are valid for "j".
* Check if basic map "j" forms an extension of basic map "i".
*
* In particular, relax the constraints in "relax", compute the corresponding
* facets one by one and check whether each of these is included
* in the other basic map.
* Before testing for inclusion, the constraints on each facet
* are tightened to increase the chance of an inclusion being detected.
* (Adding the valid constraints of "j" to the tableau of "i", as is done
* in is_adj_ineq_extension, may further increase those chances, but this
* is not currently done.)
* If each facet is included, we know that relaxing the constraints extends
* the basic map with exactly the other basic map (we already know that this
* other basic map is included in the extension, because all other
* inequality constraints are valid of "j") and we can replace the
* two basic maps by this extension.
*
* If any of the relaxed constraints turn out to be redundant, then bail out.
* isl_tab_select_facet refuses to handle such constraints. It may be
* possible to handle them anyway by making a distinction between
* redundant constraints with a corresponding facet that still intersects
* the set (allowing isl_tab_select_facet to handle them) and
* those where the facet does not intersect the set (which can be ignored
* because the empty facet is trivially included in the other disjunct).
* However, relaxed constraints that turn out to be redundant should
* be fairly rare and no such instance has been reported where
* coalescing would be successful.
* ____ _____
* / || / |
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*
*
* \ |\
* |\\ | \
* | \\ | \
* | | => | /
* | / | /
* |/ |/
*/
static enum isl_change is_relaxed_extension(int i, int j, int n, int *relax,
struct isl_coalesce_info *info)
{
int l;
isl_bool super;
struct isl_tab_undo *snap, *snap2;
unsigned n_eq = info[i].bmap->n_eq;
for (l = 0; l < n; ++l)
if (isl_tab_is_equality(info[i].tab, n_eq + relax[l]))
return isl_change_none;
snap = isl_tab_snap(info[i].tab);
for (l = 0; l < n; ++l)
if (isl_tab_relax(info[i].tab, n_eq + relax[l]) < 0)
return isl_change_error;
for (l = 0; l < n; ++l) {
if (!isl_tab_is_redundant(info[i].tab, n_eq + relax[l]))
continue;
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
snap2 = isl_tab_snap(info[i].tab);
for (l = 0; l < n; ++l) {
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
if (isl_tab_select_facet(info[i].tab, n_eq + relax[l]) < 0)
return isl_change_error;
if (tighten_on_relaxed_facet(&info[i], n, relax, l) < 0)
return isl_change_error;
super = contains(&info[j], info[i].tab);
if (super < 0)
return isl_change_error;
if (super)
continue;
if (isl_tab_rollback(info[i].tab, snap) < 0)
return isl_change_error;
return isl_change_none;
}
if (isl_tab_rollback(info[i].tab, snap2) < 0)
return isl_change_error;
return extend(i, j, n, relax, info);
}
/* Data structure that keeps track of the wrapping constraints
* and of information to bound the coefficients of those constraints.
*
* bound is set if we want to apply a bound on the coefficients
* mat contains the wrapping constraints
* max is the bound on the coefficients (if bound is set)
*/
struct isl_wraps {
int bound;
isl_mat *mat;
isl_int max;
};
/* Update wraps->max to be greater than or equal to the coefficients
* in the equalities and inequalities of info->bmap that can be removed
* if we end up applying wrapping.
*/
static isl_stat wraps_update_max(struct isl_wraps *wraps,
struct isl_coalesce_info *info)
{
int k;
isl_int max_k;
unsigned total = isl_basic_map_total_dim(info->bmap);
isl_int_init(max_k);
for (k = 0; k < info->bmap->n_eq; ++k) {
if (info->eq[2 * k] == STATUS_VALID &&
info->eq[2 * k + 1] == STATUS_VALID)
continue;
isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
for (k = 0; k < info->bmap->n_ineq; ++k) {
if (info->ineq[k] == STATUS_VALID ||
info->ineq[k] == STATUS_REDUNDANT)
continue;
isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k);
if (isl_int_abs_gt(max_k, wraps->max))
isl_int_set(wraps->max, max_k);
}
isl_int_clear(max_k);
return isl_stat_ok;
}
/* Initialize the isl_wraps data structure.
* If we want to bound the coefficients of the wrapping constraints,
* we set wraps->max to the largest coefficient
* in the equalities and inequalities that can be removed if we end up
* applying wrapping.
*/
static isl_stat wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
struct isl_coalesce_info *info, int i, int j)
{
isl_ctx *ctx;
wraps->bound = 0;
wraps->mat = mat;
if (!mat)
return isl_stat_error;
ctx = isl_mat_get_ctx(mat);
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
if (!wraps->bound)
return isl_stat_ok;
isl_int_init(wraps->max);
isl_int_set_si(wraps->max, 0);
if (wraps_update_max(wraps, &info[i]) < 0)
return isl_stat_error;
if (wraps_update_max(wraps, &info[j]) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Free the contents of the isl_wraps data structure.
*/
static void wraps_free(struct isl_wraps *wraps)
{
isl_mat_free(wraps->mat);
if (wraps->bound)
isl_int_clear(wraps->max);
}
/* Is the wrapping constraint in row "row" allowed?
*
* If wraps->bound is set, we check that none of the coefficients
* is greater than wraps->max.
*/
static int allow_wrap(struct isl_wraps *wraps, int row)
{
int i;
if (!wraps->bound)
return 1;
for (i = 1; i < wraps->mat->n_col; ++i)
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
return 0;
return 1;
}
/* Wrap "ineq" (or its opposite if "negate" is set) around "bound"
* to include "set" and add the result in position "w" of "wraps".
* "len" is the total number of coefficients in "bound" and "ineq".
* Return 1 on success, 0 on failure and -1 on error.
* Wrapping can fail if the result of wrapping is equal to "bound"
* or if we want to bound the sizes of the coefficients and
* the wrapped constraint does not satisfy this bound.
*/
static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound,
isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate)
{
isl_seq_cpy(wraps->mat->row[w], bound, len);
if (negate) {
isl_seq_neg(wraps->mat->row[w + 1], ineq, len);
ineq = wraps->mat->row[w + 1];
}
if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq))
return -1;
if (isl_seq_eq(wraps->mat->row[w], bound, len))
return 0;
if (!allow_wrap(wraps, w))
return 0;
return 1;
}
/* For each constraint in info->bmap that is not redundant (as determined
* by info->tab) and that is not a valid constraint for the other basic map,
* wrap the constraint around "bound" such that it includes the whole
* set "set" and append the resulting constraint to "wraps".
* Note that the constraints that are valid for the other basic map
* will be added to the combined basic map by default, so there is
* no need to wrap them.
* The caller wrap_in_facets even relies on this function not wrapping
* any constraints that are already valid.
* "wraps" is assumed to have been pre-allocated to the appropriate size.
* wraps->n_row is the number of actual wrapped constraints that have
* been added.
* If any of the wrapping problems results in a constraint that is
* identical to "bound", then this means that "set" is unbounded in such
* way that no wrapping is possible. If this happens then wraps->n_row
* is reset to zero.
* Similarly, if we want to bound the coefficients of the wrapping
* constraints and a newly added wrapping constraint does not
* satisfy the bound, then wraps->n_row is also reset to zero.
*/
static isl_stat add_wraps(struct isl_wraps *wraps,
struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set)
{
int l, m;
int w;
int added;
isl_basic_map *bmap = info->bmap;
unsigned len = 1 + isl_basic_map_total_dim(bmap);
w = wraps->mat->n_row;
for (l = 0; l < bmap->n_ineq; ++l) {
if (info->ineq[l] == STATUS_VALID ||
info->ineq[l] == STATUS_REDUNDANT)
continue;
if (isl_seq_is_neg(bound, bmap->ineq[l], len))
continue;
if (isl_seq_eq(bound, bmap->ineq[l], len))
continue;
if (isl_tab_is_redundant(info->tab, bmap->n_eq + l))
continue;
added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0);
if (added < 0)
return isl_stat_error;
if (!added)
goto unbounded;
++w;
}
for (l = 0; l < bmap->n_eq; ++l) {
if (isl_seq_is_neg(bound, bmap->eq[l], len))
continue;
if (isl_seq_eq(bound, bmap->eq[l], len))
continue;
for (m = 0; m < 2; ++m) {
if (info->eq[2 * l + m] == STATUS_VALID)
continue;
added = add_wrap(wraps, w, bound, bmap->eq[l], len,
set, !m);
if (added < 0)
return isl_stat_error;
if (!added)
goto unbounded;
++w;
}
}
wraps->mat->n_row = w;
return isl_stat_ok;
unbounded:
wraps->mat->n_row = 0;
return isl_stat_ok;
}
/* Check if the constraints in "wraps" from "first" until the last
* are all valid for the basic set represented by "tab".
* If not, wraps->n_row is set to zero.
*/
static int check_wraps(__isl_keep isl_mat *wraps, int first,
struct isl_tab *tab)
{
int i;
for (i = first; i < wraps->n_row; ++i) {
enum isl_ineq_type type;
type = isl_tab_ineq_type(tab, wraps->row[i]);
if (type == isl_ineq_error)
return -1;
if (type == isl_ineq_redundant)
continue;
wraps->n_row = 0;
return 0;
}
return 0;
}
/* Return a set that corresponds to the non-redundant constraints
* (as recorded in tab) of bmap.
*
* It's important to remove the redundant constraints as some
* of the other constraints may have been modified after the
* constraints were marked redundant.
* In particular, a constraint may have been relaxed.
* Redundant constraints are ignored when a constraint is relaxed
* and should therefore continue to be ignored ever after.
* Otherwise, the relaxation might be thwarted by some of
* these constraints.
*
* Update the underlying set to ensure that the dimension doesn't change.
* Otherwise the integer divisions could get dropped if the tab
* turns out to be empty.
*/
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
struct isl_tab *tab)
{
isl_basic_set *bset;
bmap = isl_basic_map_copy(bmap);
bset = isl_basic_map_underlying_set(bmap);
bset = isl_basic_set_cow(bset);
bset = isl_basic_set_update_from_tab(bset, tab);
return isl_set_from_basic_set(bset);
}
/* Wrap the constraints of info->bmap that bound the facet defined
* by inequality "k" around (the opposite of) this inequality to
* include "set". "bound" may be used to store the negated inequality.
* Since the wrapped constraints are not guaranteed to contain the whole
* of info->bmap, we check them in check_wraps.
* If any of the wrapped constraints turn out to be invalid, then
* check_wraps will reset wrap->n_row to zero.
*/
static isl_stat add_wraps_around_facet(struct isl_wraps *wraps,
struct isl_coalesce_info *info, int k, isl_int *bound,
__isl_keep isl_set *set)
{
struct isl_tab_undo *snap;
int n;
unsigned total = isl_basic_map_total_dim(info->bmap);
snap = isl_tab_snap(info->tab);
if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0)
return isl_stat_error;
if (isl_tab_detect_redundant(info->tab) < 0)
return isl_stat_error;
isl_seq_neg(bound, info->bmap->ineq[k], 1 + total);
n = wraps->mat->n_row;
if (add_wraps(wraps, info, bound, set) < 0)
return isl_stat_error;
if (isl_tab_rollback(info->tab, snap) < 0)
return isl_stat_error;
if (check_wraps(wraps->mat, n, info->tab) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Given a basic set i with a constraint k that is adjacent to
* basic set j, check if we can wrap
* both the facet corresponding to k (if "wrap_facet" is set) and basic map j
* (always) around their ridges to include the other set.
* If so, replace the pair of basic sets by their union.
*
* All constraints of i (except k) are assumed to be valid or
* cut constraints for j.
* Wrapping the cut constraints to include basic map j may result
* in constraints that are no longer valid of basic map i
* we have to check that the resulting wrapping constraints are valid for i.
* If "wrap_facet" is not set, then all constraints of i (except k)
* are assumed to be valid for j.
* ____ _____
* / | / \
* / || / |
* \ || => \ |
* \ || \ |
* \___|| \____|
*
*/
static enum isl_change can_wrap_in_facet(int i, int j, int k,
struct isl_coalesce_info *info, int wrap_facet)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !bound)
goto error;
isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_normalize(ctx, bound->el, 1 + total);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
if (wrap_facet) {
if (add_wraps_around_facet(&wraps, &info[i], k,
bound->el, set_j) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
}
change = fuse(i, j, info, wraps.mat, 0, 0);
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
error:
wraps_free(&wraps);
isl_vec_free(bound);
isl_set_free(set_i);
isl_set_free(set_j);
return isl_change_error;
}
/* Given a cut constraint t(x) >= 0 of basic map i, stored in row "w"
* of wrap.mat, replace it by its relaxed version t(x) + 1 >= 0, and
* add wrapping constraints to wrap.mat for all constraints
* of basic map j that bound the part of basic map j that sticks out
* of the cut constraint.
* "set_i" is the underlying set of basic map i.
* If any wrapping fails, then wraps->mat.n_row is reset to zero.
*
* In particular, we first intersect basic map j with t(x) + 1 = 0.
* If the result is empty, then t(x) >= 0 was actually a valid constraint
* (with respect to the integer points), so we add t(x) >= 0 instead.
* Otherwise, we wrap the constraints of basic map j that are not
* redundant in this intersection and that are not already valid
* for basic map i over basic map i.
* Note that it is sufficient to wrap the constraints to include
* basic map i, because we will only wrap the constraints that do
* not include basic map i already. The wrapped constraint will
* therefore be more relaxed compared to the original constraint.
* Since the original constraint is valid for basic map j, so is
* the wrapped constraint.
*/
static isl_stat wrap_in_facet(struct isl_wraps *wraps, int w,
struct isl_coalesce_info *info_j, __isl_keep isl_set *set_i,
struct isl_tab_undo *snap)
{
isl_int_add_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
if (isl_tab_add_eq(info_j->tab, wraps->mat->row[w]) < 0)
return isl_stat_error;
if (isl_tab_detect_redundant(info_j->tab) < 0)
return isl_stat_error;
if (info_j->tab->empty)
isl_int_sub_ui(wraps->mat->row[w][0], wraps->mat->row[w][0], 1);
else if (add_wraps(wraps, info_j, wraps->mat->row[w], set_i) < 0)
return isl_stat_error;
if (isl_tab_rollback(info_j->tab, snap) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Given a pair of basic maps i and j such that j sticks out
* of i at n cut constraints, each time by at most one,
* try to compute wrapping constraints and replace the two
* basic maps by a single basic map.
* The other constraints of i are assumed to be valid for j.
* "set_i" is the underlying set of basic map i.
* "wraps" has been initialized to be of the right size.
*
* For each cut constraint t(x) >= 0 of i, we add the relaxed version
* t(x) + 1 >= 0, along with wrapping constraints for all constraints
* of basic map j that bound the part of basic map j that sticks out
* of the cut constraint.
*
* If any wrapping fails, i.e., if we cannot wrap to touch
* the union, then we give up.
* Otherwise, the pair of basic maps is replaced by their union.
*/
static enum isl_change try_wrap_in_facets(int i, int j,
struct isl_coalesce_info *info, struct isl_wraps *wraps,
__isl_keep isl_set *set_i)
{
int k, l, w;
unsigned total;
struct isl_tab_undo *snap;
total = isl_basic_map_total_dim(info[i].bmap);
snap = isl_tab_snap(info[j].tab);
wraps->mat->n_row = 0;
for (k = 0; k < info[i].bmap->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
if (info[i].eq[2 * k + l] != STATUS_CUT)
continue;
w = wraps->mat->n_row++;
if (l == 0)
isl_seq_neg(wraps->mat->row[w],
info[i].bmap->eq[k], 1 + total);
else
isl_seq_cpy(wraps->mat->row[w],
info[i].bmap->eq[k], 1 + total);
if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
return isl_change_error;
if (!wraps->mat->n_row)
return isl_change_none;
}
}
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
if (info[i].ineq[k] != STATUS_CUT)
continue;
w = wraps->mat->n_row++;
isl_seq_cpy(wraps->mat->row[w],
info[i].bmap->ineq[k], 1 + total);
if (wrap_in_facet(wraps, w, &info[j], set_i, snap) < 0)
return isl_change_error;
if (!wraps->mat->n_row)
return isl_change_none;
}
return fuse(i, j, info, wraps->mat, 0, 1);
}
/* Given a pair of basic maps i and j such that j sticks out
* of i at n cut constraints, each time by at most one,
* try to compute wrapping constraints and replace the two
* basic maps by a single basic map.
* The other constraints of i are assumed to be valid for j.
*
* The core computation is performed by try_wrap_in_facets.
* This function simply extracts an underlying set representation
* of basic map i and initializes the data structure for keeping
* track of wrapping constraints.
*/
static enum isl_change wrap_in_facets(int i, int j, int n,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
isl_set *set_i = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
int max_wrap;
if (isl_tab_extend_cons(info[j].tab, 1) < 0)
return isl_change_error;
max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq;
max_wrap *= n;
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, max_wrap, 1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
if (!set_i)
goto error;
change = try_wrap_in_facets(i, j, info, &wraps, set_i);
wraps_free(&wraps);
isl_set_free(set_i);
return change;
error:
wraps_free(&wraps);
isl_set_free(set_i);
return isl_change_error;
}
/* Return the effect of inequality "ineq" on the tableau "tab",
* after relaxing the constant term of "ineq" by one.
*/
static enum isl_ineq_type type_of_relaxed(struct isl_tab *tab, isl_int *ineq)
{
enum isl_ineq_type type;
isl_int_add_ui(ineq[0], ineq[0], 1);
type = isl_tab_ineq_type(tab, ineq);
isl_int_sub_ui(ineq[0], ineq[0], 1);
return type;
}
/* Given two basic sets i and j,
* check if relaxing all the cut constraints of i by one turns
* them into valid constraint for j and check if we can wrap in
* the bits that are sticking out.
* If so, replace the pair by their union.
*
* We first check if all relaxed cut inequalities of i are valid for j
* and then try to wrap in the intersections of the relaxed cut inequalities
* with j.
*
* During this wrapping, we consider the points of j that lie at a distance
* of exactly 1 from i. In particular, we ignore the points that lie in
* between this lower-dimensional space and the basic map i.
* We can therefore only apply this to integer maps.
* ____ _____
* / ___|_ / \
* / | | / |
* \ | | => \ |
* \|____| \ |
* \___| \____/
*
* _____ ______
* | ____|_ | \
* | | | | |
* | | | => | |
* |_| | | |
* |_____| \______|
*
* _______
* | |
* | |\ |
* | | \ |
* | | \ |
* | | \|
* | | \
* | |_____\
* | |
* |_______|
*
* Wrapping can fail if the result of wrapping one of the facets
* around its edges does not produce any new facet constraint.
* In particular, this happens when we try to wrap in unbounded sets.
*
* _______________________________________________________________________
* |
* | ___
* | | |
* |_| |_________________________________________________________________
* |___|
*
* The following is not an acceptable result of coalescing the above two
* sets as it includes extra integer points.
* _______________________________________________________________________
* |
* |
* |
* |
* \______________________________________________________________________
*/
static enum isl_change can_wrap_in_set(int i, int j,
struct isl_coalesce_info *info)
{
int k, l;
int n;
unsigned total;
if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) ||
ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL))
return isl_change_none;
n = count_eq(&info[i], STATUS_CUT) + count_ineq(&info[i], STATUS_CUT);
if (n == 0)
return isl_change_none;
total = isl_basic_map_total_dim(info[i].bmap);
for (k = 0; k < info[i].bmap->n_eq; ++k) {
for (l = 0; l < 2; ++l) {
enum isl_ineq_type type;
if (info[i].eq[2 * k + l] != STATUS_CUT)
continue;
if (l == 0)
isl_seq_neg(info[i].bmap->eq[k],
info[i].bmap->eq[k], 1 + total);
type = type_of_relaxed(info[j].tab,
info[i].bmap->eq[k]);
if (l == 0)
isl_seq_neg(info[i].bmap->eq[k],
info[i].bmap->eq[k], 1 + total);
if (type == isl_ineq_error)
return isl_change_error;
if (type != isl_ineq_redundant)
return isl_change_none;
}
}
for (k = 0; k < info[i].bmap->n_ineq; ++k) {
enum isl_ineq_type type;
if (info[i].ineq[k] != STATUS_CUT)
continue;
type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[k]);
if (type == isl_ineq_error)
return isl_change_error;
if (type != isl_ineq_redundant)
return isl_change_none;
}
return wrap_in_facets(i, j, n, info);
}
/* Check if either i or j has only cut constraints that can
* be used to wrap in (a facet of) the other basic set.
* if so, replace the pair by their union.
*/
static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
change = can_wrap_in_set(i, j, info);
if (change != isl_change_none)
return change;
change = can_wrap_in_set(j, i, info);
return change;
}
/* Check if all inequality constraints of "i" that cut "j" cease
* to be cut constraints if they are relaxed by one.
* If so, collect the cut constraints in "list".
* The caller is responsible for allocating "list".
*/
static isl_bool all_cut_by_one(int i, int j, struct isl_coalesce_info *info,
int *list)
{
int l, n;
n = 0;
for (l = 0; l < info[i].bmap->n_ineq; ++l) {
enum isl_ineq_type type;
if (info[i].ineq[l] != STATUS_CUT)
continue;
type = type_of_relaxed(info[j].tab, info[i].bmap->ineq[l]);
if (type == isl_ineq_error)
return isl_bool_error;
if (type != isl_ineq_redundant)
return isl_bool_false;
list[n++] = l;
}
return isl_bool_true;
}
/* Given two basic maps such that "j" has at least one equality constraint
* that is adjacent to an inequality constraint of "i" and such that "i" has
* exactly one inequality constraint that is adjacent to an equality
* constraint of "j", check whether "i" can be extended to include "j" or
* whether "j" can be wrapped into "i".
* All remaining constraints of "i" and "j" are assumed to be valid
* or cut constraints of the other basic map.
* However, none of the equality constraints of "i" are cut constraints.
*
* If "i" has any "cut" inequality constraints, then check if relaxing
* each of them by one is sufficient for them to become valid.
* If so, check if the inequality constraint adjacent to an equality
* constraint of "j" along with all these cut constraints
* can be relaxed by one to contain exactly "j".
* Otherwise, or if this fails, check if "j" can be wrapped into "i".
*/
static enum isl_change check_single_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
int k;
int n_cut;
int *relax;
isl_ctx *ctx;
isl_bool try_relax;
n_cut = count_ineq(&info[i], STATUS_CUT);
k = find_ineq(&info[i], STATUS_ADJ_EQ);
if (n_cut > 0) {
ctx = isl_basic_map_get_ctx(info[i].bmap);
relax = isl_calloc_array(ctx, int, 1 + n_cut);
if (!relax)
return isl_change_error;
relax[0] = k;
try_relax = all_cut_by_one(i, j, info, relax + 1);
if (try_relax < 0)
change = isl_change_error;
} else {
try_relax = isl_bool_true;
relax = &k;
}
if (try_relax && change == isl_change_none)
change = is_relaxed_extension(i, j, 1 + n_cut, relax, info);
if (n_cut > 0)
free(relax);
if (change != isl_change_none)
return change;
change = can_wrap_in_facet(i, j, k, info, n_cut > 0);
return change;
}
/* At least one of the basic maps has an equality that is adjacent
* to an inequality. Make sure that only one of the basic maps has
* such an equality and that the other basic map has exactly one
* inequality adjacent to an equality.
* If the other basic map does not have such an inequality, then
* check if all its constraints are either valid or cut constraints
* and, if so, try wrapping in the first map into the second.
* Otherwise, try to extend one basic map with the other or
* wrap one basic map in the other.
*/
static enum isl_change check_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
if (any_eq(&info[i], STATUS_ADJ_INEQ) &&
any_eq(&info[j], STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
if (any_eq(&info[i], STATUS_ADJ_INEQ))
return check_adj_eq(j, i, info);
/* j has an equality adjacent to an inequality in i */
if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1) {
if (all_valid_or_cut(&info[i]))
return can_wrap_in_set(i, j, info);
return isl_change_none;
}
if (any_eq(&info[i], STATUS_CUT))
return isl_change_none;
if (any_ineq(&info[j], STATUS_ADJ_EQ) ||
any_ineq(&info[i], STATUS_ADJ_INEQ) ||
any_ineq(&info[j], STATUS_ADJ_INEQ))
/* ADJ EQ TOO MANY */
return isl_change_none;
return check_single_adj_eq(i, j, info);
}
/* Disjunct "j" lies on a hyperplane that is adjacent to disjunct "i".
* In particular, disjunct "i" has an inequality constraint that is adjacent
* to a (combination of) equality constraint(s) of disjunct "j",
* but disjunct "j" has no explicit equality constraint adjacent
* to an inequality constraint of disjunct "i".
*
* Disjunct "i" is already known not to have any equality constraints
* that are adjacent to an equality or inequality constraint.
* Check that, other than the inequality constraint mentioned above,
* all other constraints of disjunct "i" are valid for disjunct "j".
* If so, try and wrap in disjunct "j".
*/
static enum isl_change check_ineq_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
int k;
if (any_eq(&info[i], STATUS_CUT))
return isl_change_none;
if (any_ineq(&info[i], STATUS_CUT))
return isl_change_none;
if (any_ineq(&info[i], STATUS_ADJ_INEQ))
return isl_change_none;
if (count_ineq(&info[i], STATUS_ADJ_EQ) != 1)
return isl_change_none;
k = find_ineq(&info[i], STATUS_ADJ_EQ);
return can_wrap_in_facet(i, j, k, info, 0);
}
/* The two basic maps lie on adjacent hyperplanes. In particular,
* basic map "i" has an equality that lies parallel to basic map "j".
* Check if we can wrap the facets around the parallel hyperplanes
* to include the other set.
*
* We perform basically the same operations as can_wrap_in_facet,
* except that we don't need to select a facet of one of the sets.
* _
* \\ \\
* \\ => \\
* \ \|
*
* If there is more than one equality of "i" adjacent to an equality of "j",
* then the result will satisfy one or more equalities that are a linear
* combination of these equalities. These will be encoded as pairs
* of inequalities in the wrapping constraints and need to be made
* explicit.
*/
static enum isl_change check_eq_adj_eq(int i, int j,
struct isl_coalesce_info *info)
{
int k;
enum isl_change change = isl_change_none;
int detect_equalities = 0;
struct isl_wraps wraps;
isl_ctx *ctx;
isl_mat *mat;
struct isl_set *set_i = NULL;
struct isl_set *set_j = NULL;
struct isl_vec *bound = NULL;
unsigned total = isl_basic_map_total_dim(info[i].bmap);
if (count_eq(&info[i], STATUS_ADJ_EQ) != 1)
detect_equalities = 1;
k = find_eq(&info[i], STATUS_ADJ_EQ);
set_i = set_from_updated_bmap(info[i].bmap, info[i].tab);
set_j = set_from_updated_bmap(info[j].bmap, info[j].tab);
ctx = isl_basic_map_get_ctx(info[i].bmap);
mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) +
info[i].bmap->n_ineq + info[j].bmap->n_ineq,
1 + total);
if (wraps_init(&wraps, mat, info, i, j) < 0)
goto error;
bound = isl_vec_alloc(ctx, 1 + total);
if (!set_i || !set_j || !bound)
goto error;
if (k % 2 == 0)
isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total);
else
isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total);
isl_int_add_ui(bound->el[0], bound->el[0], 1);
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
wraps.mat->n_row = 1;
if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
isl_seq_neg(bound->el, bound->el, 1 + total);
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
wraps.mat->n_row++;
if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0)
goto error;
if (!wraps.mat->n_row)
goto unbounded;
change = fuse(i, j, info, wraps.mat, detect_equalities, 0);
if (0) {
error: change = isl_change_error;
}
unbounded:
wraps_free(&wraps);
isl_set_free(set_i);
isl_set_free(set_j);
isl_vec_free(bound);
return change;
}
/* Initialize the "eq" and "ineq" fields of "info".
*/
static void init_status(struct isl_coalesce_info *info)
{
info->eq = info->ineq = NULL;
}
/* Set info->eq to the positions of the equalities of info->bmap
* with respect to the basic map represented by "tab".
* If info->eq has already been computed, then do not compute it again.
*/
static void set_eq_status_in(struct isl_coalesce_info *info,
struct isl_tab *tab)
{
if (info->eq)
return;
info->eq = eq_status_in(info->bmap, tab);
}
/* Set info->ineq to the positions of the inequalities of info->bmap
* with respect to the basic map represented by "tab".
* If info->ineq has already been computed, then do not compute it again.
*/
static void set_ineq_status_in(struct isl_coalesce_info *info,
struct isl_tab *tab)
{
if (info->ineq)
return;
info->ineq = ineq_status_in(info->bmap, info->tab, tab);
}
/* Free the memory allocated by the "eq" and "ineq" fields of "info".
* This function assumes that init_status has been called on "info" first,
* after which the "eq" and "ineq" fields may or may not have been
* assigned a newly allocated array.
*/
static void clear_status(struct isl_coalesce_info *info)
{
free(info->eq);
free(info->ineq);
}
/* Are all inequality constraints of the basic map represented by "info"
* valid for the other basic map, except for a single constraint
* that is adjacent to an inequality constraint of the other basic map?
*/
static int all_ineq_valid_or_single_adj_ineq(struct isl_coalesce_info *info)
{
int i;
int k = -1;
for (i = 0; i < info->bmap->n_ineq; ++i) {
if (info->ineq[i] == STATUS_REDUNDANT)
continue;
if (info->ineq[i] == STATUS_VALID)
continue;
if (info->ineq[i] != STATUS_ADJ_INEQ)
return 0;
if (k != -1)
return 0;
k = i;
}
return k != -1;
}
/* Basic map "i" has one or more equality constraints that separate it
* from basic map "j". Check if it happens to be an extension
* of basic map "j".
* In particular, check that all constraints of "j" are valid for "i",
* except for one inequality constraint that is adjacent
* to an inequality constraints of "i".
* If so, check for "i" being an extension of "j" by calling
* is_adj_ineq_extension.
*
* Clean up the memory allocated for keeping track of the status
* of the constraints before returning.
*/
static enum isl_change separating_equality(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
all_ineq_valid_or_single_adj_ineq(&info[j]))
change = is_adj_ineq_extension(j, i, info);
clear_status(&info[i]);
clear_status(&info[j]);
return change;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
* The two basic maps are assumed to live in the same local space.
* The "eq" and "ineq" fields of info[i] and info[j] are assumed
* to have been initialized by the caller, either to NULL or
* to valid information.
*
* We first check the effect of each constraint of one basic map
* on the other basic map.
* The constraint may be
* redundant the constraint is redundant in its own
* basic map and should be ignore and removed
* in the end
* valid all (integer) points of the other basic map
* satisfy the constraint
* separate no (integer) point of the other basic map
* satisfies the constraint
* cut some but not all points of the other basic map
* satisfy the constraint
* adj_eq the given constraint is adjacent (on the outside)
* to an equality of the other basic map
* adj_ineq the given constraint is adjacent (on the outside)
* to an inequality of the other basic map
*
* We consider seven cases in which we can replace the pair by a single
* basic map. We ignore all "redundant" constraints.
*
* 1. all constraints of one basic map are valid
* => the other basic map is a subset and can be removed
*
* 2. all constraints of both basic maps are either "valid" or "cut"
* and the facets corresponding to the "cut" constraints
* of one of the basic maps lies entirely inside the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 3. there is a single pair of adjacent inequalities
* (all other constraints are "valid")
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 4. one basic map has a single adjacent inequality, while the other
* constraints are "valid". The other basic map has some
* "cut" constraints, but replacing the adjacent inequality by
* its opposite and adding the valid constraints of the other
* basic map results in a subset of the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps
*
* 5. there is a single adjacent pair of an inequality and an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, if the inequality the basic map is relaxed
* and then turned into an equality, then resulting facet lies
* entirely inside the other basic map
* => the pair can be replaced by the basic map containing
* the inequality, with the inequality relaxed.
*
* 6. there is a single inequality adjacent to an equality,
* the other constraints of the basic map containing the inequality are
* "valid". Moreover, the facets corresponding to both
* the inequality and the equality can be wrapped around their
* ridges to include the other basic map
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 7. one of the basic maps extends beyond the other by at most one.
* Moreover, the facets corresponding to the cut constraints and
* the pieces of the other basic map at offset one from these cut
* constraints can be wrapped around their ridges to include
* the union of the two basic maps
* => the pair can be replaced by a basic map consisting
* of the valid constraints in both basic maps together
* with all wrapping constraints
*
* 8. the two basic maps live in adjacent hyperplanes. In principle
* such sets can always be combined through wrapping, but we impose
* that there is only one such pair, to avoid overeager coalescing.
*
* Throughout the computation, we maintain a collection of tableaus
* corresponding to the basic maps. When the basic maps are dropped
* or combined, the tableaus are modified accordingly.
*/
static enum isl_change coalesce_local_pair_reuse(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
set_ineq_status_in(&info[i], info[j].tab);
if (info[i].bmap->n_ineq && !info[i].ineq)
goto error;
if (any_ineq(&info[i], STATUS_ERROR))
goto error;
if (any_ineq(&info[i], STATUS_SEPARATE))
goto done;
set_ineq_status_in(&info[j], info[i].tab);
if (info[j].bmap->n_ineq && !info[j].ineq)
goto error;
if (any_ineq(&info[j], STATUS_ERROR))
goto error;
if (any_ineq(&info[j], STATUS_SEPARATE))
goto done;
set_eq_status_in(&info[i], info[j].tab);
if (info[i].bmap->n_eq && !info[i].eq)
goto error;
if (any_eq(&info[i], STATUS_ERROR))
goto error;
set_eq_status_in(&info[j], info[i].tab);
if (info[j].bmap->n_eq && !info[j].eq)
goto error;
if (any_eq(&info[j], STATUS_ERROR))
goto error;
if (any_eq(&info[i], STATUS_SEPARATE))
return separating_equality(i, j, info);
if (any_eq(&info[j], STATUS_SEPARATE))
return separating_equality(j, i, info);
if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) &&
all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) {
drop(&info[j]);
change = isl_change_drop_second;
} else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) &&
all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) {
drop(&info[i]);
change = isl_change_drop_first;
} else if (any_eq(&info[i], STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(i, j, info);
} else if (any_eq(&info[j], STATUS_ADJ_EQ)) {
change = check_eq_adj_eq(j, i, info);
} else if (any_eq(&info[i], STATUS_ADJ_INEQ) ||
any_eq(&info[j], STATUS_ADJ_INEQ)) {
change = check_adj_eq(i, j, info);
} else if (any_ineq(&info[i], STATUS_ADJ_EQ)) {
change = check_ineq_adj_eq(i, j, info);
} else if (any_ineq(&info[j], STATUS_ADJ_EQ)) {
change = check_ineq_adj_eq(j, i, info);
} else if (any_ineq(&info[i], STATUS_ADJ_INEQ) ||
any_ineq(&info[j], STATUS_ADJ_INEQ)) {
change = check_adj_ineq(i, j, info);
} else {
if (!any_eq(&info[i], STATUS_CUT) &&
!any_eq(&info[j], STATUS_CUT))
change = check_facets(i, j, info);
if (change == isl_change_none)
change = check_wrap(i, j, info);
}
done:
clear_status(&info[i]);
clear_status(&info[j]);
return change;
error:
clear_status(&info[i]);
clear_status(&info[j]);
return isl_change_error;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
* The two basic maps are assumed to live in the same local space.
*/
static enum isl_change coalesce_local_pair(int i, int j,
struct isl_coalesce_info *info)
{
init_status(&info[i]);
init_status(&info[j]);
return coalesce_local_pair_reuse(i, j, info);
}
/* Shift the integer division at position "div" of the basic map
* represented by "info" by "shift".
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
static isl_stat shift_div(struct isl_coalesce_info *info, int div,
isl_int shift)
{
unsigned total;
info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift);
if (!info->bmap)
return isl_stat_error;
total = isl_basic_map_dim(info->bmap, isl_dim_all);
total -= isl_basic_map_dim(info->bmap, isl_dim_div);
if (isl_tab_shift_var(info->tab, total + div, shift) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* If the integer division at position "div" is defined by an equality,
* i.e., a stride constraint, then change the integer division expression
* to have a constant term equal to zero.
*
* Let the equality constraint be
*
* c + f + m a = 0
*
* The integer division expression is then typically of the form
*
* a = floor((-f - c')/m)
*
* The integer division is first shifted by t = floor(c/m),
* turning the equality constraint into
*
* c - m floor(c/m) + f + m a' = 0
*
* i.e.,
*
* (c mod m) + f + m a' = 0
*
* That is,
*
* a' = (-f - (c mod m))/m = floor((-f)/m)
*
* because a' is an integer and 0 <= (c mod m) < m.
* The constant term of a' can therefore be zeroed out,
* but only if the integer division expression is of the expected form.
*/
static isl_stat normalize_stride_div(struct isl_coalesce_info *info, int div)
{
isl_bool defined, valid;
isl_stat r;
isl_constraint *c;
isl_int shift, stride;
defined = isl_basic_map_has_defining_equality(info->bmap, isl_dim_div,
div, &c);
if (defined < 0)
return isl_stat_error;
if (!defined)
return isl_stat_ok;
if (!c)
return isl_stat_error;
valid = isl_constraint_is_div_equality(c, div);
isl_int_init(shift);
isl_int_init(stride);
isl_constraint_get_constant(c, &shift);
isl_constraint_get_coefficient(c, isl_dim_div, div, &stride);
isl_int_fdiv_q(shift, shift, stride);
r = shift_div(info, div, shift);
isl_int_clear(stride);
isl_int_clear(shift);
isl_constraint_free(c);
if (r < 0 || valid < 0)
return isl_stat_error;
if (!valid)
return isl_stat_ok;
info->bmap = isl_basic_map_set_div_expr_constant_num_si_inplace(
info->bmap, div, 0);
if (!info->bmap)
return isl_stat_error;
return isl_stat_ok;
}
/* The basic maps represented by "info1" and "info2" are known
* to have the same number of integer divisions.
* Check if pairs of integer divisions are equal to each other
* despite the fact that they differ by a rational constant.
*
* In particular, look for any pair of integer divisions that
* only differ in their constant terms.
* If either of these integer divisions is defined
* by stride constraints, then modify it to have a zero constant term.
* If both are defined by stride constraints then in the end they will have
* the same (zero) constant term.
*/
static isl_stat harmonize_stride_divs(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
int i, n;
n = isl_basic_map_dim(info1->bmap, isl_dim_div);
for (i = 0; i < n; ++i) {
isl_bool known, harmonize;
known = isl_basic_map_div_is_known(info1->bmap, i);
if (known >= 0 && known)
known = isl_basic_map_div_is_known(info2->bmap, i);
if (known < 0)
return isl_stat_error;
if (!known)
continue;
harmonize = isl_basic_map_equal_div_expr_except_constant(
info1->bmap, i, info2->bmap, i);
if (harmonize < 0)
return isl_stat_error;
if (!harmonize)
continue;
if (normalize_stride_div(info1, i) < 0)
return isl_stat_error;
if (normalize_stride_div(info2, i) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* If "shift" is an integer constant, then shift the integer division
* at position "div" of the basic map represented by "info" by "shift".
* If "shift" is not an integer constant, then do nothing.
* If "shift" is equal to zero, then no shift needs to be performed either.
*
* That is, if the integer division has the form
*
* floor(f(x)/d)
*
* then replace it by
*
* floor((f(x) + shift * d)/d) - shift
*/
static isl_stat shift_if_cst_int(struct isl_coalesce_info *info, int div,
__isl_keep isl_aff *shift)
{
isl_bool cst;
isl_stat r;
isl_int d;
isl_val *c;
cst = isl_aff_is_cst(shift);
if (cst < 0 || !cst)
return cst < 0 ? isl_stat_error : isl_stat_ok;
c = isl_aff_get_constant_val(shift);
cst = isl_val_is_int(c);
if (cst >= 0 && cst)
cst = isl_bool_not(isl_val_is_zero(c));
if (cst < 0 || !cst) {
isl_val_free(c);
return cst < 0 ? isl_stat_error : isl_stat_ok;
}
isl_int_init(d);
r = isl_val_get_num_isl_int(c, &d);
if (r >= 0)
r = shift_div(info, div, d);
isl_int_clear(d);
isl_val_free(c);
return r;
}
/* Check if some of the divs in the basic map represented by "info1"
* are shifts of the corresponding divs in the basic map represented
* by "info2", taking into account the equality constraints "eq1" of "info1"
* and "eq2" of "info2". If so, align them with those of "info2".
* "info1" and "info2" are assumed to have the same number
* of integer divisions.
*
* An integer division is considered to be a shift of another integer
* division if, after simplification with respect to the equality
* constraints of the other basic map, one is equal to the other
* plus a constant.
*
* In particular, for each pair of integer divisions, if both are known,
* have the same denominator and are not already equal to each other,
* simplify each with respect to the equality constraints
* of the other basic map. If the difference is an integer constant,
* then move this difference outside.
* That is, if, after simplification, one integer division is of the form
*
* floor((f(x) + c_1)/d)
*
* while the other is of the form
*
* floor((f(x) + c_2)/d)
*
* and n = (c_2 - c_1)/d is an integer, then replace the first
* integer division by
*
* floor((f_1(x) + c_1 + n * d)/d) - n,
*
* where floor((f_1(x) + c_1 + n * d)/d) = floor((f2(x) + c_2)/d)
* after simplification with respect to the equality constraints.
*/
static isl_stat harmonize_divs_with_hulls(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2, __isl_keep isl_basic_set *eq1,
__isl_keep isl_basic_set *eq2)
{
int i;
int total;
isl_local_space *ls1, *ls2;
total = isl_basic_map_total_dim(info1->bmap);
ls1 = isl_local_space_wrap(isl_basic_map_get_local_space(info1->bmap));
ls2 = isl_local_space_wrap(isl_basic_map_get_local_space(info2->bmap));
for (i = 0; i < info1->bmap->n_div; ++i) {
isl_stat r;
isl_aff *div1, *div2;
if (!isl_local_space_div_is_known(ls1, i) ||
!isl_local_space_div_is_known(ls2, i))
continue;
if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0]))
continue;
if (isl_seq_eq(info1->bmap->div[i] + 1,
info2->bmap->div[i] + 1, 1 + total))
continue;
div1 = isl_local_space_get_div(ls1, i);
div2 = isl_local_space_get_div(ls2, i);
div1 = isl_aff_substitute_equalities(div1,
isl_basic_set_copy(eq2));
div2 = isl_aff_substitute_equalities(div2,
isl_basic_set_copy(eq1));
div2 = isl_aff_sub(div2, div1);
r = shift_if_cst_int(info1, i, div2);
isl_aff_free(div2);
if (r < 0)
break;
}
isl_local_space_free(ls1);
isl_local_space_free(ls2);
if (i < info1->bmap->n_div)
return isl_stat_error;
return isl_stat_ok;
}
/* Check if some of the divs in the basic map represented by "info1"
* are shifts of the corresponding divs in the basic map represented
* by "info2". If so, align them with those of "info2".
* Only do this if "info1" and "info2" have the same number
* of integer divisions.
*
* An integer division is considered to be a shift of another integer
* division if, after simplification with respect to the equality
* constraints of the other basic map, one is equal to the other
* plus a constant.
*
* First check if pairs of integer divisions are equal to each other
* despite the fact that they differ by a rational constant.
* If so, try and arrange for them to have the same constant term.
*
* Then, extract the equality constraints and continue with
* harmonize_divs_with_hulls.
*
* If the equality constraints of both basic maps are the same,
* then there is no need to perform any shifting since
* the coefficients of the integer divisions should have been
* reduced in the same way.
*/
static isl_stat harmonize_divs(struct isl_coalesce_info *info1,
struct isl_coalesce_info *info2)
{
isl_bool equal;
isl_basic_map *bmap1, *bmap2;
isl_basic_set *eq1, *eq2;
isl_stat r;
if (!info1->bmap || !info2->bmap)
return isl_stat_error;
if (info1->bmap->n_div != info2->bmap->n_div)
return isl_stat_ok;
if (info1->bmap->n_div == 0)
return isl_stat_ok;
if (harmonize_stride_divs(info1, info2) < 0)
return isl_stat_error;
bmap1 = isl_basic_map_copy(info1->bmap);
bmap2 = isl_basic_map_copy(info2->bmap);
eq1 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap1));
eq2 = isl_basic_map_wrap(isl_basic_map_plain_affine_hull(bmap2));
equal = isl_basic_set_plain_is_equal(eq1, eq2);
if (equal < 0)
r = isl_stat_error;
else if (equal)
r = isl_stat_ok;
else
r = harmonize_divs_with_hulls(info1, info2, eq1, eq2);
isl_basic_set_free(eq1);
isl_basic_set_free(eq2);
return r;
}
/* Do the two basic maps live in the same local space, i.e.,
* do they have the same (known) divs?
* If either basic map has any unknown divs, then we can only assume
* that they do not live in the same local space.
*/
static isl_bool same_divs(__isl_keep isl_basic_map *bmap1,
__isl_keep isl_basic_map *bmap2)
{
int i;
isl_bool known;
int total;
if (!bmap1 || !bmap2)
return isl_bool_error;
if (bmap1->n_div != bmap2->n_div)
return isl_bool_false;
if (bmap1->n_div == 0)
return isl_bool_true;
known = isl_basic_map_divs_known(bmap1);
if (known < 0 || !known)
return known;
known = isl_basic_map_divs_known(bmap2);
if (known < 0 || !known)
return known;
total = isl_basic_map_total_dim(bmap1);
for (i = 0; i < bmap1->n_div; ++i)
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
return isl_bool_false;
return isl_bool_true;
}
/* Assuming that "tab" contains the equality constraints and
* the initial inequality constraints of "bmap", copy the remaining
* inequality constraints of "bmap" to "Tab".
*/
static isl_stat copy_ineq(struct isl_tab *tab, __isl_keep isl_basic_map *bmap)
{
int i, n_ineq;
if (!bmap)
return isl_stat_error;
n_ineq = tab->n_con - tab->n_eq;
for (i = n_ineq; i < bmap->n_ineq; ++i)
if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Description of an integer division that is added
* during an expansion.
* "pos" is the position of the corresponding variable.
* "cst" indicates whether this integer division has a fixed value.
* "val" contains the fixed value, if the value is fixed.
*/
struct isl_expanded {
int pos;
isl_bool cst;
isl_int val;
};
/* For each of the "n" integer division variables "expanded",
* if the variable has a fixed value, then add two inequality
* constraints expressing the fixed value.
* Otherwise, add the corresponding div constraints.
* The caller is responsible for removing the div constraints
* that it added for all these "n" integer divisions.
*
* The div constraints and the pair of inequality constraints
* forcing the fixed value cannot both be added for a given variable
* as the combination may render some of the original constraints redundant.
* These would then be ignored during the coalescing detection,
* while they could remain in the fused result.
*
* The two added inequality constraints are
*
* -a + v >= 0
* a - v >= 0
*
* with "a" the variable and "v" its fixed value.
* The facet corresponding to one of these two constraints is selected
* in the tableau to ensure that the pair of inequality constraints
* is treated as an equality constraint.
*
* The information in info->ineq is thrown away because it was
* computed in terms of div constraints, while some of those
* have now been replaced by these pairs of inequality constraints.
*/
static isl_stat fix_constant_divs(struct isl_coalesce_info *info,
int n, struct isl_expanded *expanded)
{
unsigned o_div;
int i;
isl_vec *ineq;
o_div = isl_basic_map_offset(info->bmap, isl_dim_div) - 1;
ineq = isl_vec_alloc(isl_tab_get_ctx(info->tab), 1 + info->tab->n_var);
if (!ineq)
return isl_stat_error;
isl_seq_clr(ineq->el + 1, info->tab->n_var);
for (i = 0; i < n; ++i) {
if (!expanded[i].cst) {
info->bmap = isl_basic_map_extend_constraints(
info->bmap, 0, 2);
if (isl_basic_map_add_div_constraints(info->bmap,
expanded[i].pos - o_div) < 0)
break;
} else {
isl_int_set_si(ineq->el[1 + expanded[i].pos], -1);
isl_int_set(ineq->el[0], expanded[i].val);
info->bmap = isl_basic_map_add_ineq(info->bmap,
ineq->el);
isl_int_set_si(ineq->el[1 + expanded[i].pos], 1);
isl_int_neg(ineq->el[0], expanded[i].val);
info->bmap = isl_basic_map_add_ineq(info->bmap,
ineq->el);
isl_int_set_si(ineq->el[1 + expanded[i].pos], 0);
}
if (copy_ineq(info->tab, info->bmap) < 0)
break;
if (expanded[i].cst &&
isl_tab_select_facet(info->tab, info->tab->n_con - 1) < 0)
break;
}
isl_vec_free(ineq);
clear_status(info);
init_status(info);
return i < n ? isl_stat_error : isl_stat_ok;
}
/* Insert the "n" integer division variables "expanded"
* into info->tab and info->bmap and
* update info->ineq with respect to the redundant constraints
* in the resulting tableau.
* "bmap" contains the result of this insertion in info->bmap,
* while info->bmap is the original version
* of "bmap", i.e., the one that corresponds to the current
* state of info->tab. The number of constraints in info->bmap
* is assumed to be the same as the number of constraints
* in info->tab. This is required to be able to detect
* the extra constraints in "bmap".
*
* In particular, introduce extra variables corresponding
* to the extra integer divisions and add the div constraints
* that were added to "bmap" after info->tab was created
* from info->bmap.
* Furthermore, check if these extra integer divisions happen
* to attain a fixed integer value in info->tab.
* If so, replace the corresponding div constraints by pairs
* of inequality constraints that fix these
* integer divisions to their single integer values.
* Replace info->bmap by "bmap" to match the changes to info->tab.
* info->ineq was computed without a tableau and therefore
* does not take into account the redundant constraints
* in the tableau. Mark them here.
* There is no need to check the newly added div constraints
* since they cannot be redundant.
* The redundancy check is not performed when constants have been discovered
* since info->ineq is completely thrown away in this case.
*/
static isl_stat tab_insert_divs(struct isl_coalesce_info *info,
int n, struct isl_expanded *expanded, __isl_take isl_basic_map *bmap)
{
int i, n_ineq;
unsigned n_eq;
struct isl_tab_undo *snap;
int any;
if (!bmap)
return isl_stat_error;
if (info->bmap->n_eq + info->bmap->n_ineq != info->tab->n_con)
isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
"original tableau does not correspond "
"to original basic map", goto error);
if (isl_tab_extend_vars(info->tab, n) < 0)
goto error;
if (isl_tab_extend_cons(info->tab, 2 * n) < 0)
goto error;
for (i = 0; i < n; ++i) {
if (isl_tab_insert_var(info->tab, expanded[i].pos) < 0)
goto error;
}
snap = isl_tab_snap(info->tab);
n_ineq = info->tab->n_con - info->tab->n_eq;
if (copy_ineq(info->tab, bmap) < 0)
goto error;
isl_basic_map_free(info->bmap);
info->bmap = bmap;
any = 0;
for (i = 0; i < n; ++i) {
expanded[i].cst = isl_tab_is_constant(info->tab,
expanded[i].pos, &expanded[i].val);
if (expanded[i].cst < 0)
return isl_stat_error;
if (expanded[i].cst)
any = 1;
}
if (any) {
if (isl_tab_rollback(info->tab, snap) < 0)
return isl_stat_error;
info->bmap = isl_basic_map_cow(info->bmap);
if (isl_basic_map_free_inequality(info->bmap, 2 * n) < 0)
return isl_stat_error;
return fix_constant_divs(info, n, expanded);
}
n_eq = info->bmap->n_eq;
for (i = 0; i < n_ineq; ++i) {
if (isl_tab_is_redundant(info->tab, n_eq + i))
info->ineq[i] = STATUS_REDUNDANT;
}
return isl_stat_ok;
error:
isl_basic_map_free(bmap);
return isl_stat_error;
}
/* Expand info->tab and info->bmap in the same way "bmap" was expanded
* in isl_basic_map_expand_divs using the expansion "exp" and
* update info->ineq with respect to the redundant constraints
* in the resulting tableau. info->bmap is the original version
* of "bmap", i.e., the one that corresponds to the current
* state of info->tab. The number of constraints in info->bmap
* is assumed to be the same as the number of constraints
* in info->tab. This is required to be able to detect
* the extra constraints in "bmap".
*
* Extract the positions where extra local variables are introduced
* from "exp" and call tab_insert_divs.
*/
static isl_stat expand_tab(struct isl_coalesce_info *info, int *exp,
__isl_take isl_basic_map *bmap)
{
isl_ctx *ctx;
struct isl_expanded *expanded;
int i, j, k, n;
int extra_var;
unsigned total, pos, n_div;
isl_stat r;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
pos = total - n_div;
extra_var = total - info->tab->n_var;
n = n_div - extra_var;
ctx = isl_basic_map_get_ctx(bmap);
expanded = isl_calloc_array(ctx, struct isl_expanded, extra_var);
if (extra_var && !expanded)
goto error;
i = 0;
k = 0;
for (j = 0; j < n_div; ++j) {
if (i < n && exp[i] == j) {
++i;
continue;
}
expanded[k++].pos = pos + j;
}
for (k = 0; k < extra_var; ++k)
isl_int_init(expanded[k].val);
r = tab_insert_divs(info, extra_var, expanded, bmap);
for (k = 0; k < extra_var; ++k)
isl_int_clear(expanded[k].val);
free(expanded);
return r;
error:
isl_basic_map_free(bmap);
return isl_stat_error;
}
/* Check if the union of the basic maps represented by info[i] and info[j]
* can be represented by a single basic map,
* after expanding the divs of info[i] to match those of info[j].
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* The caller has already checked for info[j] being a subset of info[i].
* If some of the divs of info[j] are unknown, then the expanded info[i]
* will not have the corresponding div constraints. The other patterns
* therefore cannot apply. Skip the computation in this case.
*
* The expansion is performed using the divs "div" and expansion "exp"
* computed by the caller.
* info[i].bmap has already been expanded and the result is passed in
* as "bmap".
* The "eq" and "ineq" fields of info[i] reflect the status of
* the constraints of the expanded "bmap" with respect to info[j].tab.
* However, inequality constraints that are redundant in info[i].tab
* have not yet been marked as such because no tableau was available.
*
* Replace info[i].bmap by "bmap" and expand info[i].tab as well,
* updating info[i].ineq with respect to the redundant constraints.
* Then try and coalesce the expanded info[i] with info[j],
* reusing the information in info[i].eq and info[i].ineq.
* If this does not result in any coalescing or if it results in info[j]
* getting dropped (which should not happen in practice, since the case
* of info[j] being a subset of info[i] has already been checked by
* the caller), then revert info[i] to its original state.
*/
static enum isl_change coalesce_expand_tab_divs(__isl_take isl_basic_map *bmap,
int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *div,
int *exp)
{
isl_bool known;
isl_basic_map *bmap_i;
struct isl_tab_undo *snap;
enum isl_change change = isl_change_none;
known = isl_basic_map_divs_known(info[j].bmap);
if (known < 0 || !known) {
clear_status(&info[i]);
isl_basic_map_free(bmap);
return known < 0 ? isl_change_error : isl_change_none;
}
bmap_i = isl_basic_map_copy(info[i].bmap);
snap = isl_tab_snap(info[i].tab);
if (expand_tab(&info[i], exp, bmap) < 0)
change = isl_change_error;
init_status(&info[j]);
if (change == isl_change_none)
change = coalesce_local_pair_reuse(i, j, info);
else
clear_status(&info[i]);
if (change != isl_change_none && change != isl_change_drop_second) {
isl_basic_map_free(bmap_i);
} else {
isl_basic_map_free(info[i].bmap);
info[i].bmap = bmap_i;
if (isl_tab_rollback(info[i].tab, snap) < 0)
change = isl_change_error;
}
return change;
}
/* Check if the union of "bmap" and the basic map represented by info[j]
* can be represented by a single basic map,
* after expanding the divs of "bmap" to match those of info[j].
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* In particular, check if the expanded "bmap" contains the basic map
* represented by the tableau info[j].tab.
* The expansion is performed using the divs "div" and expansion "exp"
* computed by the caller.
* Then we check if all constraints of the expanded "bmap" are valid for
* info[j].tab.
*
* If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
* In this case, the positions of the constraints of info[i].bmap
* with respect to the basic map represented by info[j] are stored
* in info[i].
*
* If the expanded "bmap" does not contain the basic map
* represented by the tableau info[j].tab and if "i" is not -1,
* i.e., if the original "bmap" is info[i].bmap, then expand info[i].tab
* as well and check if that results in coalescing.
*/
static enum isl_change coalesce_with_expanded_divs(
__isl_keep isl_basic_map *bmap, int i, int j,
struct isl_coalesce_info *info, __isl_keep isl_mat *div, int *exp)
{
enum isl_change change = isl_change_none;
struct isl_coalesce_info info_local, *info_i;
info_i = i >= 0 ? &info[i] : &info_local;
init_status(info_i);
bmap = isl_basic_map_copy(bmap);
bmap = isl_basic_map_expand_divs(bmap, isl_mat_copy(div), exp);
bmap = isl_basic_map_mark_final(bmap);
if (!bmap)
goto error;
info_local.bmap = bmap;
info_i->eq = eq_status_in(bmap, info[j].tab);
if (bmap->n_eq && !info_i->eq)
goto error;
if (any_eq(info_i, STATUS_ERROR))
goto error;
if (any_eq(info_i, STATUS_SEPARATE))
goto done;
info_i->ineq = ineq_status_in(bmap, NULL, info[j].tab);
if (bmap->n_ineq && !info_i->ineq)
goto error;
if (any_ineq(info_i, STATUS_ERROR))
goto error;
if (any_ineq(info_i, STATUS_SEPARATE))
goto done;
if (all(info_i->eq, 2 * bmap->n_eq, STATUS_VALID) &&
all(info_i->ineq, bmap->n_ineq, STATUS_VALID)) {
drop(&info[j]);
change = isl_change_drop_second;
}
if (change == isl_change_none && i != -1)
return coalesce_expand_tab_divs(bmap, i, j, info, div, exp);
done:
isl_basic_map_free(bmap);
clear_status(info_i);
return change;
error:
isl_basic_map_free(bmap);
clear_status(info_i);
return isl_change_error;
}
/* Check if the union of "bmap_i" and the basic map represented by info[j]
* can be represented by a single basic map,
* after aligning the divs of "bmap_i" to match those of info[j].
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* In particular, check if "bmap_i" contains the basic map represented by
* info[j] after aligning the divs of "bmap_i" to those of info[j].
* Note that this can only succeed if the number of divs of "bmap_i"
* is smaller than (or equal to) the number of divs of info[j].
*
* We first check if the divs of "bmap_i" are all known and form a subset
* of those of info[j].bmap. If so, we pass control over to
* coalesce_with_expanded_divs.
*
* If "i" is not equal to -1, then "bmap" is equal to info[i].bmap.
*/
static enum isl_change coalesce_after_aligning_divs(
__isl_keep isl_basic_map *bmap_i, int i, int j,
struct isl_coalesce_info *info)
{
isl_bool known;
isl_mat *div_i, *div_j, *div;
int *exp1 = NULL;
int *exp2 = NULL;
isl_ctx *ctx;
enum isl_change change;
known = isl_basic_map_divs_known(bmap_i);
if (known < 0)
return isl_change_error;
if (!known)
return isl_change_none;
ctx = isl_basic_map_get_ctx(bmap_i);
div_i = isl_basic_map_get_divs(bmap_i);
div_j = isl_basic_map_get_divs(info[j].bmap);
if (!div_i || !div_j)
goto error;
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
goto error;
div = isl_merge_divs(div_i, div_j, exp1, exp2);
if (!div)
goto error;
if (div->n_row == div_j->n_row)
change = coalesce_with_expanded_divs(bmap_i,
i, j, info, div, exp1);
else
change = isl_change_none;
isl_mat_free(div);
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp2);
free(exp1);
return change;
error:
isl_mat_free(div_i);
isl_mat_free(div_j);
free(exp1);
free(exp2);
return isl_change_error;
}
/* Check if basic map "j" is a subset of basic map "i" after
* exploiting the extra equalities of "j" to simplify the divs of "i".
* If so, remove basic map "j" and return isl_change_drop_second.
*
* If "j" does not have any equalities or if they are the same
* as those of "i", then we cannot exploit them to simplify the divs.
* Similarly, if there are no divs in "i", then they cannot be simplified.
* If, on the other hand, the affine hulls of "i" and "j" do not intersect,
* then "j" cannot be a subset of "i".
*
* Otherwise, we intersect "i" with the affine hull of "j" and then
* check if "j" is a subset of the result after aligning the divs.
* If so, then "j" is definitely a subset of "i" and can be removed.
* Note that if after intersection with the affine hull of "j".
* "i" still has more divs than "j", then there is no way we can
* align the divs of "i" to those of "j".
*/
static enum isl_change coalesce_subset_with_equalities(int i, int j,
struct isl_coalesce_info *info)
{
isl_basic_map *hull_i, *hull_j, *bmap_i;
int equal, empty;
enum isl_change change;
if (info[j].bmap->n_eq == 0)
return isl_change_none;
if (info[i].bmap->n_div == 0)
return isl_change_none;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || equal || empty < 0 || empty) {
isl_basic_map_free(hull_j);
if (equal < 0 || empty < 0)
return isl_change_error;
return isl_change_none;
}
bmap_i = isl_basic_map_copy(info[i].bmap);
bmap_i = isl_basic_map_intersect(bmap_i, hull_j);
if (!bmap_i)
return isl_change_error;
if (bmap_i->n_div > info[j].bmap->n_div) {
isl_basic_map_free(bmap_i);
return isl_change_none;
}
change = coalesce_after_aligning_divs(bmap_i, -1, j, info);
isl_basic_map_free(bmap_i);
return change;
}
/* Check if the union of and the basic maps represented by info[i] and info[j]
* can be represented by a single basic map, by aligning or equating
* their integer divisions.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* Note that we only perform any test if the number of divs is different
* in the two basic maps. In case the number of divs is the same,
* we have already established that the divs are different
* in the two basic maps.
* In particular, if the number of divs of basic map i is smaller than
* the number of divs of basic map j, then we check if j is a subset of i
* and vice versa.
*/
static enum isl_change coalesce_divs(int i, int j,
struct isl_coalesce_info *info)
{
enum isl_change change = isl_change_none;
if (info[i].bmap->n_div < info[j].bmap->n_div)
change = coalesce_after_aligning_divs(info[i].bmap, i, j, info);
if (change != isl_change_none)
return change;
if (info[j].bmap->n_div < info[i].bmap->n_div)
change = coalesce_after_aligning_divs(info[j].bmap, j, i, info);
if (change != isl_change_none)
return invert_change(change);
change = coalesce_subset_with_equalities(i, j, info);
if (change != isl_change_none)
return change;
change = coalesce_subset_with_equalities(j, i, info);
if (change != isl_change_none)
return invert_change(change);
return isl_change_none;
}
/* Does "bmap" involve any divs that themselves refer to divs?
*/
static isl_bool has_nested_div(__isl_keep isl_basic_map *bmap)
{
int i;
unsigned total;
unsigned n_div;
total = isl_basic_map_dim(bmap, isl_dim_all);
n_div = isl_basic_map_dim(bmap, isl_dim_div);
total -= n_div;
for (i = 0; i < n_div; ++i)
if (isl_seq_first_non_zero(bmap->div[i] + 2 + total,
n_div) != -1)
return isl_bool_true;
return isl_bool_false;
}
/* Return a list of affine expressions, one for each integer division
* in "bmap_i". For each integer division that also appears in "bmap_j",
* the affine expression is set to NaN. The number of NaNs in the list
* is equal to the number of integer divisions in "bmap_j".
* For the other integer divisions of "bmap_i", the corresponding
* element in the list is a purely affine expression equal to the integer
* division in "hull".
* If no such list can be constructed, then the number of elements
* in the returned list is smaller than the number of integer divisions
* in "bmap_i".
*/
static __isl_give isl_aff_list *set_up_substitutions(
__isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j,
__isl_take isl_basic_map *hull)
{
unsigned n_div_i, n_div_j, total;
isl_ctx *ctx;
isl_local_space *ls;
isl_basic_set *wrap_hull;
isl_aff *aff_nan;
isl_aff_list *list;
int i, j;
if (!hull)
return NULL;
ctx = isl_basic_map_get_ctx(hull);
n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div);
n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div);
total = isl_basic_map_total_dim(bmap_i) - n_div_i;
ls = isl_basic_map_get_local_space(bmap_i);
ls = isl_local_space_wrap(ls);
wrap_hull = isl_basic_map_wrap(hull);
aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls));
list = isl_aff_list_alloc(ctx, n_div_i);
j = 0;
for (i = 0; i < n_div_i; ++i) {
isl_aff *aff;
if (j < n_div_j &&
isl_basic_map_equal_div_expr_part(bmap_i, i, bmap_j, j,
0, 2 + total)) {
++j;
list = isl_aff_list_add(list, isl_aff_copy(aff_nan));
continue;
}
if (n_div_i - i <= n_div_j - j)
break;
aff = isl_local_space_get_div(ls, i);
aff = isl_aff_substitute_equalities(aff,
isl_basic_set_copy(wrap_hull));
aff = isl_aff_floor(aff);
if (!aff)
goto error;
if (isl_aff_dim(aff, isl_dim_div) != 0) {
isl_aff_free(aff);
break;
}
list = isl_aff_list_add(list, aff);
}
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
return list;
error:
isl_aff_free(aff_nan);
isl_local_space_free(ls);
isl_basic_set_free(wrap_hull);
isl_aff_list_free(list);
return NULL;
}
/* Add variables to info->bmap and info->tab corresponding to the elements
* in "list" that are not set to NaN.
* "extra_var" is the number of these elements.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in "tab"
* is equal to "dim" plus the number of elements in "list".
*
* The newly added existentially quantified variables are not given
* an explicit representation because the corresponding div constraints
* do not appear in info->bmap. These constraints are not added
* to info->bmap because for internal consistency, they would need to
* be added to info->tab as well, where they could combine with the equality
* that is added later to result in constraints that do not hold
* in the original input.
*/
static isl_stat add_sub_vars(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim, int extra_var)
{
int i, j, n, d;
isl_space *space;
space = isl_basic_map_get_space(info->bmap);
info->bmap = isl_basic_map_cow(info->bmap);
info->bmap = isl_basic_map_extend_space(info->bmap, space,
extra_var, 0, 0);
if (!info->bmap)
return isl_stat_error;
n = isl_aff_list_n_aff(list);
for (i = 0; i < n; ++i) {
int is_nan;
isl_aff *aff;
aff = isl_aff_list_get_aff(list, i);
is_nan = isl_aff_is_nan(aff);
isl_aff_free(aff);
if (is_nan < 0)
return isl_stat_error;
if (is_nan)
continue;
if (isl_tab_insert_var(info->tab, dim + i) < 0)
return isl_stat_error;
d = isl_basic_map_alloc_div(info->bmap);
if (d < 0)
return isl_stat_error;
info->bmap = isl_basic_map_mark_div_unknown(info->bmap, d);
if (!info->bmap)
return isl_stat_error;
for (j = d; j > i; --j)
isl_basic_map_swap_div(info->bmap, j - 1, j);
}
return isl_stat_ok;
}
/* For each element in "list" that is not set to NaN, fix the corresponding
* variable in "tab" to the purely affine expression defined by the element.
* "dim" is the offset in the variables of "tab" where we should
* start considering the elements in "list".
*
* This function assumes that a sufficient number of rows and
* elements in the constraint array are available in the tableau.
*/
static int add_sub_equalities(struct isl_tab *tab,
__isl_keep isl_aff_list *list, int dim)
{
int i, n;
isl_ctx *ctx;
isl_vec *sub;
isl_aff *aff;
n = isl_aff_list_n_aff(list);
ctx = isl_tab_get_ctx(tab);
sub = isl_vec_alloc(ctx, 1 + dim + n);
if (!sub)
return -1;
isl_seq_clr(sub->el + 1 + dim, n);
for (i = 0; i < n; ++i) {
aff = isl_aff_list_get_aff(list, i);
if (!aff)
goto error;
if (isl_aff_is_nan(aff)) {
isl_aff_free(aff);
continue;
}
isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim);
isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]);
if (isl_tab_add_eq(tab, sub->el) < 0)
goto error;
isl_int_set_si(sub->el[1 + dim + i], 0);
isl_aff_free(aff);
}
isl_vec_free(sub);
return 0;
error:
isl_aff_free(aff);
isl_vec_free(sub);
return -1;
}
/* Add variables to info->tab and info->bmap corresponding to the elements
* in "list" that are not set to NaN. The value of the added variable
* in info->tab is fixed to the purely affine expression defined by the element.
* "dim" is the offset in the variables of info->tab where we should
* start considering the elements in "list".
* When this function returns, the total number of variables in info->tab
* is equal to "dim" plus the number of elements in "list".
*/
static int add_subs(struct isl_coalesce_info *info,
__isl_keep isl_aff_list *list, int dim)
{
int extra_var;
int n;
if (!list)
return -1;
n = isl_aff_list_n_aff(list);
extra_var = n - (info->tab->n_var - dim);
if (isl_tab_extend_vars(info->tab, extra_var) < 0)
return -1;
if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0)
return -1;
if (add_sub_vars(info, list, dim, extra_var) < 0)
return -1;
return add_sub_equalities(info->tab, list, dim);
}
/* Coalesce basic map "j" into basic map "i" after adding the extra integer
* divisions in "i" but not in "j" to basic map "j", with values
* specified by "list". The total number of elements in "list"
* is equal to the number of integer divisions in "i", while the number
* of NaN elements in the list is equal to the number of integer divisions
* in "j".
*
* If no coalescing can be performed, then we need to revert basic map "j"
* to its original state. We do the same if basic map "i" gets dropped
* during the coalescing, even though this should not happen in practice
* since we have already checked for "j" being a subset of "i"
* before we reach this stage.
*/
static enum isl_change coalesce_with_subs(int i, int j,
struct isl_coalesce_info *info, __isl_keep isl_aff_list *list)
{
isl_basic_map *bmap_j;
struct isl_tab_undo *snap;
unsigned dim;
enum isl_change change;
bmap_j = isl_basic_map_copy(info[j].bmap);
snap = isl_tab_snap(info[j].tab);
dim = isl_basic_map_dim(bmap_j, isl_dim_all);
dim -= isl_basic_map_dim(bmap_j, isl_dim_div);
if (add_subs(&info[j], list, dim) < 0)
goto error;
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none && change != isl_change_drop_first) {
isl_basic_map_free(bmap_j);
} else {
isl_basic_map_free(info[j].bmap);
info[j].bmap = bmap_j;
if (isl_tab_rollback(info[j].tab, snap) < 0)
return isl_change_error;
}
return change;
error:
isl_basic_map_free(bmap_j);
return isl_change_error;
}
/* Check if we can coalesce basic map "j" into basic map "i" after copying
* those extra integer divisions in "i" that can be simplified away
* using the extra equalities in "j".
* All divs are assumed to be known and not contain any nested divs.
*
* We first check if there are any extra equalities in "j" that we
* can exploit. Then we check if every integer division in "i"
* either already appears in "j" or can be simplified using the
* extra equalities to a purely affine expression.
* If these tests succeed, then we try to coalesce the two basic maps
* by introducing extra dimensions in "j" corresponding to
* the extra integer divsisions "i" fixed to the corresponding
* purely affine expression.
*/
static enum isl_change check_coalesce_into_eq(int i, int j,
struct isl_coalesce_info *info)
{
unsigned n_div_i, n_div_j;
isl_basic_map *hull_i, *hull_j;
int equal, empty;
isl_aff_list *list;
enum isl_change change;
n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div);
n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div);
if (n_div_i <= n_div_j)
return isl_change_none;
if (info[j].bmap->n_eq == 0)
return isl_change_none;
hull_i = isl_basic_map_copy(info[i].bmap);
hull_i = isl_basic_map_plain_affine_hull(hull_i);
hull_j = isl_basic_map_copy(info[j].bmap);
hull_j = isl_basic_map_plain_affine_hull(hull_j);
hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i));
equal = isl_basic_map_plain_is_equal(hull_i, hull_j);
empty = isl_basic_map_plain_is_empty(hull_j);
isl_basic_map_free(hull_i);
if (equal < 0 || empty < 0)
goto error;
if (equal || empty) {
isl_basic_map_free(hull_j);
return isl_change_none;
}
list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j);
if (!list)
return isl_change_error;
if (isl_aff_list_n_aff(list) < n_div_i)
change = isl_change_none;
else
change = coalesce_with_subs(i, j, info, list);
isl_aff_list_free(list);
return change;
error:
isl_basic_map_free(hull_j);
return isl_change_error;
}
/* Check if we can coalesce basic maps "i" and "j" after copying
* those extra integer divisions in one of the basic maps that can
* be simplified away using the extra equalities in the other basic map.
* We require all divs to be known in both basic maps.
* Furthermore, to simplify the comparison of div expressions,
* we do not allow any nested integer divisions.
*/
static enum isl_change check_coalesce_eq(int i, int j,
struct isl_coalesce_info *info)
{
isl_bool known, nested;
enum isl_change change;
known = isl_basic_map_divs_known(info[i].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
known = isl_basic_map_divs_known(info[j].bmap);
if (known < 0 || !known)
return known < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[i].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
nested = has_nested_div(info[j].bmap);
if (nested < 0 || nested)
return nested < 0 ? isl_change_error : isl_change_none;
change = check_coalesce_into_eq(i, j, info);
if (change != isl_change_none)
return change;
change = check_coalesce_into_eq(j, i, info);
if (change != isl_change_none)
return invert_change(change);
return isl_change_none;
}
/* Check if the union of the given pair of basic maps
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and return
* isl_change_drop_first, isl_change_drop_second or isl_change_fuse.
* Otherwise, return isl_change_none.
*
* We first check if the two basic maps live in the same local space,
* after aligning the divs that differ by only an integer constant.
* If so, we do the complete check. Otherwise, we check if they have
* the same number of integer divisions and can be coalesced, if one is
* an obvious subset of the other or if the extra integer divisions
* of one basic map can be simplified away using the extra equalities
* of the other basic map.
*
* Note that trying to coalesce pairs of disjuncts with the same
* number, but different local variables may drop the explicit
* representation of some of these local variables.
* This operation is therefore not performed when
* the "coalesce_preserve_locals" option is set.
*/
static enum isl_change coalesce_pair(int i, int j,
struct isl_coalesce_info *info)
{
int preserve;
isl_bool same;
enum isl_change change;
isl_ctx *ctx;
if (harmonize_divs(&info[i], &info[j]) < 0)
return isl_change_error;
same = same_divs(info[i].bmap, info[j].bmap);
if (same < 0)
return isl_change_error;
if (same)
return coalesce_local_pair(i, j, info);
ctx = isl_basic_map_get_ctx(info[i].bmap);
preserve = isl_options_get_coalesce_preserve_locals(ctx);
if (!preserve && info[i].bmap->n_div == info[j].bmap->n_div) {
change = coalesce_local_pair(i, j, info);
if (change != isl_change_none)
return change;
}
change = coalesce_divs(i, j, info);
if (change != isl_change_none)
return change;
return check_coalesce_eq(i, j, info);
}
/* Return the maximum of "a" and "b".
*/
static int isl_max(int a, int b)
{
return a > b ? a : b;
}
/* Pairwise coalesce the basic maps in the range [start1, end1[ of "info"
* with those in the range [start2, end2[, skipping basic maps
* that have been removed (either before or within this function).
*
* For each basic map i in the first range, we check if it can be coalesced
* with respect to any previously considered basic map j in the second range.
* If i gets dropped (because it was a subset of some j), then
* we can move on to the next basic map.
* If j gets dropped, we need to continue checking against the other
* previously considered basic maps.
* If the two basic maps got fused, then we recheck the fused basic map
* against the previously considered basic maps, starting at i + 1
* (even if start2 is greater than i + 1).
*/
static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info,
int start1, int end1, int start2, int end2)
{
int i, j;
for (i = end1 - 1; i >= start1; --i) {
if (info[i].removed)
continue;
for (j = isl_max(i + 1, start2); j < end2; ++j) {
enum isl_change changed;
if (info[j].removed)
continue;
if (info[i].removed)
isl_die(ctx, isl_error_internal,
"basic map unexpectedly removed",
return -1);
changed = coalesce_pair(i, j, info);
switch (changed) {
case isl_change_error:
return -1;
case isl_change_none:
case isl_change_drop_second:
continue;
case isl_change_drop_first:
j = end2;
break;
case isl_change_fuse:
j = i;
break;
}
}
}
return 0;
}
/* Pairwise coalesce the basic maps described by the "n" elements of "info".
*
* We consider groups of basic maps that live in the same apparent
* affine hull and we first coalesce within such a group before we
* coalesce the elements in the group with elements of previously
* considered groups. If a fuse happens during the second phase,
* then we also reconsider the elements within the group.
*/
static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info)
{
int start, end;
for (end = n; end > 0; end = start) {
start = end - 1;
while (start >= 1 &&
info[start - 1].hull_hash == info[start].hull_hash)
start--;
if (coalesce_range(ctx, info, start, end, start, end) < 0)
return -1;
if (coalesce_range(ctx, info, start, end, end, n) < 0)
return -1;
}
return 0;
}
/* Update the basic maps in "map" based on the information in "info".
* In particular, remove the basic maps that have been marked removed and
* update the others based on the information in the corresponding tableau.
* Since we detected implicit equalities without calling
* isl_basic_map_gauss, we need to do it now.
* Also call isl_basic_map_simplify if we may have lost the definition
* of one or more integer divisions.
*/
static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map,
int n, struct isl_coalesce_info *info)
{
int i;
if (!map)
return NULL;
for (i = n - 1; i >= 0; --i) {
if (info[i].removed) {
isl_basic_map_free(map->p[i]);
if (i != map->n - 1)
map->p[i] = map->p[map->n - 1];
map->n--;
continue;
}
info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap,
info[i].tab);
info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL);
if (info[i].simplify)
info[i].bmap = isl_basic_map_simplify(info[i].bmap);
info[i].bmap = isl_basic_map_finalize(info[i].bmap);
if (!info[i].bmap)
return isl_map_free(map);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT);
ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT);
isl_basic_map_free(map->p[i]);
map->p[i] = info[i].bmap;
info[i].bmap = NULL;
}
return map;
}
/* For each pair of basic maps in the map, check if the union of the two
* can be represented by a single basic map.
* If so, replace the pair by the single basic map and start over.
*
* We factor out any (hidden) common factor from the constraint
* coefficients to improve the detection of adjacent constraints.
*
* Since we are constructing the tableaus of the basic maps anyway,
* we exploit them to detect implicit equalities and redundant constraints.
* This also helps the coalescing as it can ignore the redundant constraints.
* In order to avoid confusion, we make all implicit equalities explicit
* in the basic maps. We don't call isl_basic_map_gauss, though,
* as that may affect the number of constraints.
* This means that we have to call isl_basic_map_gauss at the end
* of the computation (in update_basic_maps) to ensure that
* the basic maps are not left in an unexpected state.
* For each basic map, we also compute the hash of the apparent affine hull
* for use in coalesce.
*/
__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map)
{
int i;
unsigned n;
isl_ctx *ctx;
struct isl_coalesce_info *info = NULL;
map = isl_map_remove_empty_parts(map);
if (!map)
return NULL;
if (map->n <= 1)
return map;
ctx = isl_map_get_ctx(map);
map = isl_map_sort_divs(map);
map = isl_map_cow(map);
if (!map)
return NULL;
n = map->n;
info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n);
if (!info)
goto error;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]);
if (!map->p[i])
goto error;
info[i].bmap = isl_basic_map_copy(map->p[i]);
info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0);
if (!info[i].tab)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT))
if (isl_tab_detect_implicit_equalities(info[i].tab) < 0)
goto error;
info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab,
info[i].bmap);
if (!info[i].bmap)
goto error;
if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT))
if (isl_tab_detect_redundant(info[i].tab) < 0)
goto error;
if (coalesce_info_set_hull_hash(&info[i]) < 0)
goto error;
}
for (i = map->n - 1; i >= 0; --i)
if (info[i].tab->empty)
drop(&info[i]);
if (coalesce(ctx, n, info) < 0)
goto error;
map = update_basic_maps(map, n, info);
clear_coalesce_info(n, info);
return map;
error:
clear_coalesce_info(n, info);
isl_map_free(map);
return NULL;
}
/* For each pair of basic sets in the set, check if the union of the two
* can be represented by a single basic set.
* If so, replace the pair by the single basic set and start over.
*/
struct isl_set *isl_set_coalesce(struct isl_set *set)
{
return set_from_map(isl_map_coalesce(set_to_map(set)));
}
|