reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
/*
 * Copyright 2010      INRIA Saclay
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 * 91893 Orsay, France 
 */

#include <isl_map_private.h>
#include <isl/set.h>
#include <isl_space_private.h>
#include <isl_seq.h>

/*
 * Let C be a cone and define
 *
 *	C' := { y | forall x in C : y x >= 0 }
 *
 * C' contains the coefficients of all linear constraints
 * that are valid for C.
 * Furthermore, C'' = C.
 *
 * If C is defined as { x | A x >= 0 }
 * then any element in C' must be a non-negative combination
 * of the rows of A, i.e., y = t A with t >= 0.  That is,
 *
 *	C' = { y | exists t >= 0 : y = t A }
 *
 * If any of the rows in A actually represents an equality, then
 * also negative combinations of this row are allowed and so the
 * non-negativity constraint on the corresponding element of t
 * can be dropped.
 *
 * A polyhedron P = { x | b + A x >= 0 } can be represented
 * in homogeneous coordinates by the cone
 * C = { [z,x] | b z + A x >= and z >= 0 }
 * The valid linear constraints on C correspond to the valid affine
 * constraints on P.
 * This is essentially Farkas' lemma.
 *
 * Since
 *				  [ 1 0 ]
 *		[ w y ] = [t_0 t] [ b A ]
 *
 * we have
 *
 *	C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
 * or
 *
 *	C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
 *
 * In practice, we introduce an extra variable (w), shifting all
 * other variables to the right, and an extra inequality
 * (w - t b >= 0) corresponding to the positivity constraint on
 * the homogeneous coordinate.
 *
 * When going back from coefficients to solutions, we immediately
 * plug in 1 for z, which corresponds to shifting all variables
 * to the left, with the leftmost ending up in the constant position.
 */

/* Add the given prefix to all named isl_dim_set dimensions in "dim".
 */
static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *dim,
	const char *prefix)
{
	int i;
	isl_ctx *ctx;
	unsigned nvar;
	size_t prefix_len = strlen(prefix);

	if (!dim)
		return NULL;

	ctx = isl_space_get_ctx(dim);
	nvar = isl_space_dim(dim, isl_dim_set);

	for (i = 0; i < nvar; ++i) {
		const char *name;
		char *prefix_name;

		name = isl_space_get_dim_name(dim, isl_dim_set, i);
		if (!name)
			continue;

		prefix_name = isl_alloc_array(ctx, char,
					      prefix_len + strlen(name) + 1);
		if (!prefix_name)
			goto error;
		memcpy(prefix_name, prefix, prefix_len);
		strcpy(prefix_name + prefix_len, name);

		dim = isl_space_set_dim_name(dim, isl_dim_set, i, prefix_name);
		free(prefix_name);
	}

	return dim;
error:
	isl_space_free(dim);
	return NULL;
}

/* Given a dimension specification of the solutions space, construct
 * a dimension specification for the space of coefficients.
 *
 * In particular transform
 *
 *	[params] -> { S }
 *
 * to
 *
 *	{ coefficients[[cst, params] -> S] }
 *
 * and prefix each dimension name with "c_".
 */
static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *dim)
{
	isl_space *dim_param;
	unsigned nvar;
	unsigned nparam;

	nvar = isl_space_dim(dim, isl_dim_set);
	nparam = isl_space_dim(dim, isl_dim_param);
	dim_param = isl_space_copy(dim);
	dim_param = isl_space_drop_dims(dim_param, isl_dim_set, 0, nvar);
	dim_param = isl_space_move_dims(dim_param, isl_dim_set, 0,
				 isl_dim_param, 0, nparam);
	dim_param = isl_space_prefix(dim_param, "c_");
	dim_param = isl_space_insert_dims(dim_param, isl_dim_set, 0, 1);
	dim_param = isl_space_set_dim_name(dim_param, isl_dim_set, 0, "c_cst");
	dim = isl_space_drop_dims(dim, isl_dim_param, 0, nparam);
	dim = isl_space_prefix(dim, "c_");
	dim = isl_space_join(isl_space_from_domain(dim_param),
			   isl_space_from_range(dim));
	dim = isl_space_wrap(dim);
	dim = isl_space_set_tuple_name(dim, isl_dim_set, "coefficients");

	return dim;
}

/* Drop the given prefix from all named dimensions of type "type" in "dim".
 */
static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *dim,
	enum isl_dim_type type, const char *prefix)
{
	int i;
	unsigned n;
	size_t prefix_len = strlen(prefix);

	n = isl_space_dim(dim, type);

	for (i = 0; i < n; ++i) {
		const char *name;

		name = isl_space_get_dim_name(dim, type, i);
		if (!name)
			continue;
		if (strncmp(name, prefix, prefix_len))
			continue;

		dim = isl_space_set_dim_name(dim, type, i, name + prefix_len);
	}

	return dim;
}

/* Given a dimension specification of the space of coefficients, construct
 * a dimension specification for the space of solutions.
 *
 * In particular transform
 *
 *	{ coefficients[[cst, params] -> S] }
 *
 * to
 *
 *	[params] -> { S }
 *
 * and drop the "c_" prefix from the dimension names.
 */
static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *dim)
{
	unsigned nparam;

	dim = isl_space_unwrap(dim);
	dim = isl_space_drop_dims(dim, isl_dim_in, 0, 1);
	dim = isl_space_unprefix(dim, isl_dim_in, "c_");
	dim = isl_space_unprefix(dim, isl_dim_out, "c_");
	nparam = isl_space_dim(dim, isl_dim_in);
	dim = isl_space_move_dims(dim, isl_dim_param, 0, isl_dim_in, 0, nparam);
	dim = isl_space_range(dim);

	return dim;
}

/* Return the rational universe basic set in the given space.
 */
static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
{
	isl_basic_set *bset;

	bset = isl_basic_set_universe(space);
	bset = isl_basic_set_set_rational(bset);

	return bset;
}

/* Compute the dual of "bset" by applying Farkas' lemma.
 * As explained above, we add an extra dimension to represent
 * the coefficient of the constant term when going from solutions
 * to coefficients (shift == 1) and we drop the extra dimension when going
 * in the opposite direction (shift == -1).  "dim" is the space in which
 * the dual should be created.
 *
 * If "bset" is (obviously) empty, then the way this emptiness
 * is represented by the constraints does not allow for the application
 * of the standard farkas algorithm.  We therefore handle this case
 * specifically and return the universe basic set.
 */
static __isl_give isl_basic_set *farkas(__isl_take isl_space *space,
	__isl_take isl_basic_set *bset, int shift)
{
	int i, j, k;
	isl_basic_set *dual = NULL;
	unsigned total;

	if (isl_basic_set_plain_is_empty(bset)) {
		isl_basic_set_free(bset);
		return rational_universe(space);
	}

	total = isl_basic_set_total_dim(bset);

	dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
					total, bset->n_ineq + (shift > 0));
	dual = isl_basic_set_set_rational(dual);

	for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_div(dual);
		if (k < 0)
			goto error;
		isl_int_set_si(dual->div[k][0], 0);
	}

	for (i = 0; i < total; ++i) {
		k = isl_basic_set_alloc_equality(dual);
		if (k < 0)
			goto error;
		isl_seq_clr(dual->eq[k], 1 + shift + total);
		isl_int_set_si(dual->eq[k][1 + shift + i], -1);
		for (j = 0; j < bset->n_eq; ++j)
			isl_int_set(dual->eq[k][1 + shift + total + j],
				    bset->eq[j][1 + i]);
		for (j = 0; j < bset->n_ineq; ++j)
			isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
				    bset->ineq[j][1 + i]);
	}

	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(dual);
		if (k < 0)
			goto error;
		isl_seq_clr(dual->ineq[k],
			    1 + shift + total + bset->n_eq + bset->n_ineq);
		isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
	}

	if (shift > 0) {
		k = isl_basic_set_alloc_inequality(dual);
		if (k < 0)
			goto error;
		isl_seq_clr(dual->ineq[k], 2 + total);
		isl_int_set_si(dual->ineq[k][1], 1);
		for (j = 0; j < bset->n_eq; ++j)
			isl_int_neg(dual->ineq[k][2 + total + j],
				    bset->eq[j][0]);
		for (j = 0; j < bset->n_ineq; ++j)
			isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
				    bset->ineq[j][0]);
	}

	dual = isl_basic_set_remove_divs(dual);
	dual = isl_basic_set_simplify(dual);
	dual = isl_basic_set_finalize(dual);

	isl_basic_set_free(bset);
	return dual;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(dual);
	return NULL;
}

/* Construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the given basic set.
 */
__isl_give isl_basic_set *isl_basic_set_coefficients(
	__isl_take isl_basic_set *bset)
{
	isl_space *dim;

	if (!bset)
		return NULL;
	if (bset->n_div)
		isl_die(bset->ctx, isl_error_invalid,
			"input set not allowed to have local variables",
			goto error);

	dim = isl_basic_set_get_space(bset);
	dim = isl_space_coefficients(dim);

	return farkas(dim, bset, 1);
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Construct a basic set containing the elements that satisfy all
 * affine constraints whose coefficient tuples are
 * contained in the given basic set.
 */
__isl_give isl_basic_set *isl_basic_set_solutions(
	__isl_take isl_basic_set *bset)
{
	isl_space *dim;

	if (!bset)
		return NULL;
	if (bset->n_div)
		isl_die(bset->ctx, isl_error_invalid,
			"input set not allowed to have local variables",
			goto error);

	dim = isl_basic_set_get_space(bset);
	dim = isl_space_solutions(dim);

	return farkas(dim, bset, -1);
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Construct a basic set containing the tuples of coefficients of all
 * valid affine constraints on the given set.
 */
__isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
{
	int i;
	isl_basic_set *coeff;

	if (!set)
		return NULL;
	if (set->n == 0) {
		isl_space *space = isl_set_get_space(set);
		space = isl_space_coefficients(space);
		isl_set_free(set);
		return rational_universe(space);
	}

	coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));

	for (i = 1; i < set->n; ++i) {
		isl_basic_set *bset, *coeff_i;
		bset = isl_basic_set_copy(set->p[i]);
		coeff_i = isl_basic_set_coefficients(bset);
		coeff = isl_basic_set_intersect(coeff, coeff_i);
	}

	isl_set_free(set);
	return coeff;
}

/* Wrapper around isl_basic_set_coefficients for use
 * as a isl_basic_set_list_map callback.
 */
static __isl_give isl_basic_set *coefficients_wrap(
	__isl_take isl_basic_set *bset, void *user)
{
	return isl_basic_set_coefficients(bset);
}

/* Replace the elements of "list" by the result of applying
 * isl_basic_set_coefficients to them.
 */
__isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
	__isl_take isl_basic_set_list *list)
{
	return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
}

/* Construct a basic set containing the elements that satisfy all
 * affine constraints whose coefficient tuples are
 * contained in the given set.
 */
__isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
{
	int i;
	isl_basic_set *sol;

	if (!set)
		return NULL;
	if (set->n == 0) {
		isl_space *space = isl_set_get_space(set);
		space = isl_space_solutions(space);
		isl_set_free(set);
		return rational_universe(space);
	}

	sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));

	for (i = 1; i < set->n; ++i) {
		isl_basic_set *bset, *sol_i;
		bset = isl_basic_set_copy(set->p[i]);
		sol_i = isl_basic_set_solutions(bset);
		sol = isl_basic_set_intersect(sol, sol_i);
	}

	isl_set_free(set);
	return sol;
}