1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
| /*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <isl_map_private.h>
#include <isl/set.h>
#include <isl_space_private.h>
#include <isl_seq.h>
/*
* Let C be a cone and define
*
* C' := { y | forall x in C : y x >= 0 }
*
* C' contains the coefficients of all linear constraints
* that are valid for C.
* Furthermore, C'' = C.
*
* If C is defined as { x | A x >= 0 }
* then any element in C' must be a non-negative combination
* of the rows of A, i.e., y = t A with t >= 0. That is,
*
* C' = { y | exists t >= 0 : y = t A }
*
* If any of the rows in A actually represents an equality, then
* also negative combinations of this row are allowed and so the
* non-negativity constraint on the corresponding element of t
* can be dropped.
*
* A polyhedron P = { x | b + A x >= 0 } can be represented
* in homogeneous coordinates by the cone
* C = { [z,x] | b z + A x >= and z >= 0 }
* The valid linear constraints on C correspond to the valid affine
* constraints on P.
* This is essentially Farkas' lemma.
*
* Since
* [ 1 0 ]
* [ w y ] = [t_0 t] [ b A ]
*
* we have
*
* C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b }
* or
*
* C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 }
*
* In practice, we introduce an extra variable (w), shifting all
* other variables to the right, and an extra inequality
* (w - t b >= 0) corresponding to the positivity constraint on
* the homogeneous coordinate.
*
* When going back from coefficients to solutions, we immediately
* plug in 1 for z, which corresponds to shifting all variables
* to the left, with the leftmost ending up in the constant position.
*/
/* Add the given prefix to all named isl_dim_set dimensions in "dim".
*/
static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *dim,
const char *prefix)
{
int i;
isl_ctx *ctx;
unsigned nvar;
size_t prefix_len = strlen(prefix);
if (!dim)
return NULL;
ctx = isl_space_get_ctx(dim);
nvar = isl_space_dim(dim, isl_dim_set);
for (i = 0; i < nvar; ++i) {
const char *name;
char *prefix_name;
name = isl_space_get_dim_name(dim, isl_dim_set, i);
if (!name)
continue;
prefix_name = isl_alloc_array(ctx, char,
prefix_len + strlen(name) + 1);
if (!prefix_name)
goto error;
memcpy(prefix_name, prefix, prefix_len);
strcpy(prefix_name + prefix_len, name);
dim = isl_space_set_dim_name(dim, isl_dim_set, i, prefix_name);
free(prefix_name);
}
return dim;
error:
isl_space_free(dim);
return NULL;
}
/* Given a dimension specification of the solutions space, construct
* a dimension specification for the space of coefficients.
*
* In particular transform
*
* [params] -> { S }
*
* to
*
* { coefficients[[cst, params] -> S] }
*
* and prefix each dimension name with "c_".
*/
static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *dim)
{
isl_space *dim_param;
unsigned nvar;
unsigned nparam;
nvar = isl_space_dim(dim, isl_dim_set);
nparam = isl_space_dim(dim, isl_dim_param);
dim_param = isl_space_copy(dim);
dim_param = isl_space_drop_dims(dim_param, isl_dim_set, 0, nvar);
dim_param = isl_space_move_dims(dim_param, isl_dim_set, 0,
isl_dim_param, 0, nparam);
dim_param = isl_space_prefix(dim_param, "c_");
dim_param = isl_space_insert_dims(dim_param, isl_dim_set, 0, 1);
dim_param = isl_space_set_dim_name(dim_param, isl_dim_set, 0, "c_cst");
dim = isl_space_drop_dims(dim, isl_dim_param, 0, nparam);
dim = isl_space_prefix(dim, "c_");
dim = isl_space_join(isl_space_from_domain(dim_param),
isl_space_from_range(dim));
dim = isl_space_wrap(dim);
dim = isl_space_set_tuple_name(dim, isl_dim_set, "coefficients");
return dim;
}
/* Drop the given prefix from all named dimensions of type "type" in "dim".
*/
static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *dim,
enum isl_dim_type type, const char *prefix)
{
int i;
unsigned n;
size_t prefix_len = strlen(prefix);
n = isl_space_dim(dim, type);
for (i = 0; i < n; ++i) {
const char *name;
name = isl_space_get_dim_name(dim, type, i);
if (!name)
continue;
if (strncmp(name, prefix, prefix_len))
continue;
dim = isl_space_set_dim_name(dim, type, i, name + prefix_len);
}
return dim;
}
/* Given a dimension specification of the space of coefficients, construct
* a dimension specification for the space of solutions.
*
* In particular transform
*
* { coefficients[[cst, params] -> S] }
*
* to
*
* [params] -> { S }
*
* and drop the "c_" prefix from the dimension names.
*/
static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *dim)
{
unsigned nparam;
dim = isl_space_unwrap(dim);
dim = isl_space_drop_dims(dim, isl_dim_in, 0, 1);
dim = isl_space_unprefix(dim, isl_dim_in, "c_");
dim = isl_space_unprefix(dim, isl_dim_out, "c_");
nparam = isl_space_dim(dim, isl_dim_in);
dim = isl_space_move_dims(dim, isl_dim_param, 0, isl_dim_in, 0, nparam);
dim = isl_space_range(dim);
return dim;
}
/* Return the rational universe basic set in the given space.
*/
static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space)
{
isl_basic_set *bset;
bset = isl_basic_set_universe(space);
bset = isl_basic_set_set_rational(bset);
return bset;
}
/* Compute the dual of "bset" by applying Farkas' lemma.
* As explained above, we add an extra dimension to represent
* the coefficient of the constant term when going from solutions
* to coefficients (shift == 1) and we drop the extra dimension when going
* in the opposite direction (shift == -1). "dim" is the space in which
* the dual should be created.
*
* If "bset" is (obviously) empty, then the way this emptiness
* is represented by the constraints does not allow for the application
* of the standard farkas algorithm. We therefore handle this case
* specifically and return the universe basic set.
*/
static __isl_give isl_basic_set *farkas(__isl_take isl_space *space,
__isl_take isl_basic_set *bset, int shift)
{
int i, j, k;
isl_basic_set *dual = NULL;
unsigned total;
if (isl_basic_set_plain_is_empty(bset)) {
isl_basic_set_free(bset);
return rational_universe(space);
}
total = isl_basic_set_total_dim(bset);
dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq,
total, bset->n_ineq + (shift > 0));
dual = isl_basic_set_set_rational(dual);
for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) {
k = isl_basic_set_alloc_div(dual);
if (k < 0)
goto error;
isl_int_set_si(dual->div[k][0], 0);
}
for (i = 0; i < total; ++i) {
k = isl_basic_set_alloc_equality(dual);
if (k < 0)
goto error;
isl_seq_clr(dual->eq[k], 1 + shift + total);
isl_int_set_si(dual->eq[k][1 + shift + i], -1);
for (j = 0; j < bset->n_eq; ++j)
isl_int_set(dual->eq[k][1 + shift + total + j],
bset->eq[j][1 + i]);
for (j = 0; j < bset->n_ineq; ++j)
isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j],
bset->ineq[j][1 + i]);
}
for (i = 0; i < bset->n_ineq; ++i) {
k = isl_basic_set_alloc_inequality(dual);
if (k < 0)
goto error;
isl_seq_clr(dual->ineq[k],
1 + shift + total + bset->n_eq + bset->n_ineq);
isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1);
}
if (shift > 0) {
k = isl_basic_set_alloc_inequality(dual);
if (k < 0)
goto error;
isl_seq_clr(dual->ineq[k], 2 + total);
isl_int_set_si(dual->ineq[k][1], 1);
for (j = 0; j < bset->n_eq; ++j)
isl_int_neg(dual->ineq[k][2 + total + j],
bset->eq[j][0]);
for (j = 0; j < bset->n_ineq; ++j)
isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j],
bset->ineq[j][0]);
}
dual = isl_basic_set_remove_divs(dual);
dual = isl_basic_set_simplify(dual);
dual = isl_basic_set_finalize(dual);
isl_basic_set_free(bset);
return dual;
error:
isl_basic_set_free(bset);
isl_basic_set_free(dual);
return NULL;
}
/* Construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the given basic set.
*/
__isl_give isl_basic_set *isl_basic_set_coefficients(
__isl_take isl_basic_set *bset)
{
isl_space *dim;
if (!bset)
return NULL;
if (bset->n_div)
isl_die(bset->ctx, isl_error_invalid,
"input set not allowed to have local variables",
goto error);
dim = isl_basic_set_get_space(bset);
dim = isl_space_coefficients(dim);
return farkas(dim, bset, 1);
error:
isl_basic_set_free(bset);
return NULL;
}
/* Construct a basic set containing the elements that satisfy all
* affine constraints whose coefficient tuples are
* contained in the given basic set.
*/
__isl_give isl_basic_set *isl_basic_set_solutions(
__isl_take isl_basic_set *bset)
{
isl_space *dim;
if (!bset)
return NULL;
if (bset->n_div)
isl_die(bset->ctx, isl_error_invalid,
"input set not allowed to have local variables",
goto error);
dim = isl_basic_set_get_space(bset);
dim = isl_space_solutions(dim);
return farkas(dim, bset, -1);
error:
isl_basic_set_free(bset);
return NULL;
}
/* Construct a basic set containing the tuples of coefficients of all
* valid affine constraints on the given set.
*/
__isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set)
{
int i;
isl_basic_set *coeff;
if (!set)
return NULL;
if (set->n == 0) {
isl_space *space = isl_set_get_space(set);
space = isl_space_coefficients(space);
isl_set_free(set);
return rational_universe(space);
}
coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0]));
for (i = 1; i < set->n; ++i) {
isl_basic_set *bset, *coeff_i;
bset = isl_basic_set_copy(set->p[i]);
coeff_i = isl_basic_set_coefficients(bset);
coeff = isl_basic_set_intersect(coeff, coeff_i);
}
isl_set_free(set);
return coeff;
}
/* Wrapper around isl_basic_set_coefficients for use
* as a isl_basic_set_list_map callback.
*/
static __isl_give isl_basic_set *coefficients_wrap(
__isl_take isl_basic_set *bset, void *user)
{
return isl_basic_set_coefficients(bset);
}
/* Replace the elements of "list" by the result of applying
* isl_basic_set_coefficients to them.
*/
__isl_give isl_basic_set_list *isl_basic_set_list_coefficients(
__isl_take isl_basic_set_list *list)
{
return isl_basic_set_list_map(list, &coefficients_wrap, NULL);
}
/* Construct a basic set containing the elements that satisfy all
* affine constraints whose coefficient tuples are
* contained in the given set.
*/
__isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set)
{
int i;
isl_basic_set *sol;
if (!set)
return NULL;
if (set->n == 0) {
isl_space *space = isl_set_get_space(set);
space = isl_space_solutions(space);
isl_set_free(set);
return rational_universe(space);
}
sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0]));
for (i = 1; i < set->n; ++i) {
isl_basic_set *bset, *sol_i;
bset = isl_basic_set_copy(set->p[i]);
sol_i = isl_basic_set_solutions(bset);
sol = isl_basic_set_intersect(sol, sol_i);
}
isl_set_free(set);
return sol;
}
|