1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
| /*
* Copyright 2010-2011 INRIA Saclay
* Copyright 2014 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl_map_private.h>
#include <isl_aff_private.h>
#include <isl_morph.h>
#include <isl_seq.h>
#include <isl_mat_private.h>
#include <isl_space_private.h>
#include <isl_equalities.h>
#include <isl_id_private.h>
isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph)
{
if (!morph)
return NULL;
return isl_basic_set_get_ctx(morph->dom);
}
__isl_give isl_morph *isl_morph_alloc(
__isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran,
__isl_take isl_mat *map, __isl_take isl_mat *inv)
{
isl_morph *morph;
if (!dom || !ran || !map || !inv)
goto error;
morph = isl_alloc_type(dom->ctx, struct isl_morph);
if (!morph)
goto error;
morph->ref = 1;
morph->dom = dom;
morph->ran = ran;
morph->map = map;
morph->inv = inv;
return morph;
error:
isl_basic_set_free(dom);
isl_basic_set_free(ran);
isl_mat_free(map);
isl_mat_free(inv);
return NULL;
}
__isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph)
{
if (!morph)
return NULL;
morph->ref++;
return morph;
}
__isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
{
if (!morph)
return NULL;
return isl_morph_alloc(isl_basic_set_copy(morph->dom),
isl_basic_set_copy(morph->ran),
isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
}
__isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph)
{
if (!morph)
return NULL;
if (morph->ref == 1)
return morph;
morph->ref--;
return isl_morph_dup(morph);
}
__isl_null isl_morph *isl_morph_free(__isl_take isl_morph *morph)
{
if (!morph)
return NULL;
if (--morph->ref > 0)
return NULL;
isl_basic_set_free(morph->dom);
isl_basic_set_free(morph->ran);
isl_mat_free(morph->map);
isl_mat_free(morph->inv);
free(morph);
return NULL;
}
/* Is "morph" an identity on the parameters?
*/
static int identity_on_parameters(__isl_keep isl_morph *morph)
{
int is_identity;
unsigned nparam;
isl_mat *sub;
nparam = isl_morph_dom_dim(morph, isl_dim_param);
if (nparam != isl_morph_ran_dim(morph, isl_dim_param))
return 0;
if (nparam == 0)
return 1;
sub = isl_mat_sub_alloc(morph->map, 0, 1 + nparam, 0, 1 + nparam);
is_identity = isl_mat_is_scaled_identity(sub);
isl_mat_free(sub);
return is_identity;
}
/* Return an affine expression of the variables of the range of "morph"
* in terms of the parameters and the variables of the domain on "morph".
*
* In order for the space manipulations to make sense, we require
* that the parameters are not modified by "morph".
*/
__isl_give isl_multi_aff *isl_morph_get_var_multi_aff(
__isl_keep isl_morph *morph)
{
isl_space *dom, *ran, *space;
isl_local_space *ls;
isl_multi_aff *ma;
unsigned nparam, nvar;
int i;
int is_identity;
if (!morph)
return NULL;
is_identity = identity_on_parameters(morph);
if (is_identity < 0)
return NULL;
if (!is_identity)
isl_die(isl_morph_get_ctx(morph), isl_error_invalid,
"cannot handle parameter compression", return NULL);
dom = isl_morph_get_dom_space(morph);
ls = isl_local_space_from_space(isl_space_copy(dom));
ran = isl_morph_get_ran_space(morph);
space = isl_space_map_from_domain_and_range(dom, ran);
ma = isl_multi_aff_zero(space);
nparam = isl_multi_aff_dim(ma, isl_dim_param);
nvar = isl_multi_aff_dim(ma, isl_dim_out);
for (i = 0; i < nvar; ++i) {
isl_val *val;
isl_vec *v;
isl_aff *aff;
v = isl_mat_get_row(morph->map, 1 + nparam + i);
v = isl_vec_insert_els(v, 0, 1);
val = isl_mat_get_element_val(morph->map, 0, 0);
v = isl_vec_set_element_val(v, 0, val);
aff = isl_aff_alloc_vec(isl_local_space_copy(ls), v);
ma = isl_multi_aff_set_aff(ma, i, aff);
}
isl_local_space_free(ls);
return ma;
}
/* Return the domain space of "morph".
*/
__isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph)
{
if (!morph)
return NULL;
return isl_basic_set_get_space(morph->dom);
}
__isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph)
{
if (!morph)
return NULL;
return isl_space_copy(morph->ran->dim);
}
unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
{
if (!morph)
return 0;
return isl_basic_set_dim(morph->dom, type);
}
unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type)
{
if (!morph)
return 0;
return isl_basic_set_dim(morph->ran, type);
}
__isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph,
enum isl_dim_type type, unsigned first, unsigned n)
{
unsigned dom_offset;
if (n == 0)
return morph;
morph = isl_morph_cow(morph);
if (!morph)
return NULL;
dom_offset = 1 + isl_space_offset(morph->dom->dim, type);
morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n);
morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n);
morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n);
if (morph->dom && morph->ran && morph->map && morph->inv)
return morph;
isl_morph_free(morph);
return NULL;
}
__isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph,
enum isl_dim_type type, unsigned first, unsigned n)
{
unsigned ran_offset;
if (n == 0)
return morph;
morph = isl_morph_cow(morph);
if (!morph)
return NULL;
ran_offset = 1 + isl_space_offset(morph->ran->dim, type);
morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n);
morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n);
morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n);
if (morph->dom && morph->ran && morph->map && morph->inv)
return morph;
isl_morph_free(morph);
return NULL;
}
/* Project domain of morph onto its parameter domain.
*/
__isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph)
{
unsigned n;
morph = isl_morph_cow(morph);
if (!morph)
return NULL;
n = isl_basic_set_dim(morph->dom, isl_dim_set);
morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n);
if (!morph)
return NULL;
morph->dom = isl_basic_set_params(morph->dom);
if (morph->dom)
return morph;
isl_morph_free(morph);
return NULL;
}
/* Project range of morph onto its parameter domain.
*/
__isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph)
{
unsigned n;
morph = isl_morph_cow(morph);
if (!morph)
return NULL;
n = isl_basic_set_dim(morph->ran, isl_dim_set);
morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n);
if (!morph)
return NULL;
morph->ran = isl_basic_set_params(morph->ran);
if (morph->ran)
return morph;
isl_morph_free(morph);
return NULL;
}
void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out)
{
if (!morph)
return;
isl_basic_set_dump(morph->dom);
isl_basic_set_dump(morph->ran);
isl_mat_print_internal(morph->map, out, 4);
isl_mat_print_internal(morph->inv, out, 4);
}
void isl_morph_dump(__isl_take isl_morph *morph)
{
isl_morph_print_internal(morph, stderr);
}
__isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
{
isl_mat *id;
isl_basic_set *universe;
unsigned total;
if (!bset)
return NULL;
total = isl_basic_set_total_dim(bset);
id = isl_mat_identity(bset->ctx, 1 + total);
universe = isl_basic_set_universe(isl_space_copy(bset->dim));
return isl_morph_alloc(universe, isl_basic_set_copy(universe),
id, isl_mat_copy(id));
}
/* Create a(n identity) morphism between empty sets of the same dimension
* a "bset".
*/
__isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
{
isl_mat *id;
isl_basic_set *empty;
unsigned total;
if (!bset)
return NULL;
total = isl_basic_set_total_dim(bset);
id = isl_mat_identity(bset->ctx, 1 + total);
empty = isl_basic_set_empty(isl_space_copy(bset->dim));
return isl_morph_alloc(empty, isl_basic_set_copy(empty),
id, isl_mat_copy(id));
}
/* Construct a basic set described by the "n" equalities of "bset" starting
* at "first".
*/
static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
unsigned first, unsigned n)
{
int i, k;
isl_basic_set *eq;
unsigned total;
isl_assert(bset->ctx, bset->n_div == 0, return NULL);
total = isl_basic_set_total_dim(bset);
eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0);
if (!eq)
return NULL;
for (i = 0; i < n; ++i) {
k = isl_basic_set_alloc_equality(eq);
if (k < 0)
goto error;
isl_seq_cpy(eq->eq[k], bset->eq[first + i], 1 + total);
}
return eq;
error:
isl_basic_set_free(eq);
return NULL;
}
/* Given a basic set, exploit the equalities in the basic set to construct
* a morphism that maps the basic set to a lower-dimensional space
* with identifier "id".
* Specifically, the morphism reduces the number of dimensions of type "type".
*
* We first select the equalities of interest, that is those that involve
* variables of type "type" and no later variables.
* Denote those equalities as
*
* -C(p) + M x = 0
*
* where C(p) depends on the parameters if type == isl_dim_set and
* is a constant if type == isl_dim_param.
*
* Use isl_mat_final_variable_compression to construct a compression
*
* x = T x'
*
* x' = Q x
*
* If T is a zero-column matrix, then the set of equality constraints
* do not admit a solution. In this case, an empty morphism is returned.
*
* Both matrices are extended to map the full original space to the full
* compressed space.
*/
__isl_give isl_morph *isl_basic_set_variable_compression_with_id(
__isl_keep isl_basic_set *bset, enum isl_dim_type type,
__isl_keep isl_id *id)
{
unsigned otype;
unsigned ntype;
unsigned orest;
unsigned nrest;
int f_eq, n_eq;
isl_space *space;
isl_mat *E, *Q, *C;
isl_basic_set *dom, *ran;
if (!bset)
return NULL;
if (isl_basic_set_plain_is_empty(bset))
return isl_morph_empty(bset);
isl_assert(bset->ctx, bset->n_div == 0, return NULL);
otype = 1 + isl_space_offset(bset->dim, type);
ntype = isl_basic_set_dim(bset, type);
orest = otype + ntype;
nrest = isl_basic_set_total_dim(bset) - (orest - 1);
for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
break;
for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
break;
if (n_eq == 0)
return isl_morph_identity(bset);
E = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, 0, orest);
C = isl_mat_final_variable_compression(E, otype - 1, &Q);
if (!Q)
C = isl_mat_free(C);
if (C && C->n_col == 0) {
isl_mat_free(C);
isl_mat_free(Q);
return isl_morph_empty(bset);
}
Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));
space = isl_space_copy(bset->dim);
space = isl_space_drop_dims(space, type, 0, ntype);
space = isl_space_add_dims(space, type, ntype - n_eq);
space = isl_space_set_tuple_id(space, isl_dim_set, isl_id_copy(id));
ran = isl_basic_set_universe(space);
dom = copy_equalities(bset, f_eq, n_eq);
return isl_morph_alloc(dom, ran, Q, C);
}
/* Given a basic set, exploit the equalities in the basic set to construct
* a morphism that maps the basic set to a lower-dimensional space.
* Specifically, the morphism reduces the number of dimensions of type "type".
*/
__isl_give isl_morph *isl_basic_set_variable_compression(
__isl_keep isl_basic_set *bset, enum isl_dim_type type)
{
return isl_basic_set_variable_compression_with_id(bset, type,
&isl_id_none);
}
/* Construct a parameter compression for "bset".
* We basically just call isl_mat_parameter_compression with the right input
* and then extend the resulting matrix to include the variables.
*
* The implementation assumes that "bset" does not have any equalities
* that only involve the parameters and that isl_basic_set_gauss has
* been applied to "bset".
*
* Let the equalities be given as
*
* B(p) + A x = 0.
*
* We use isl_mat_parameter_compression_ext to compute the compression
*
* p = T p'.
*/
__isl_give isl_morph *isl_basic_set_parameter_compression(
__isl_keep isl_basic_set *bset)
{
unsigned nparam;
unsigned nvar;
unsigned n_div;
int n_eq;
isl_mat *H, *B;
isl_mat *map, *inv;
isl_basic_set *dom, *ran;
if (!bset)
return NULL;
if (isl_basic_set_plain_is_empty(bset))
return isl_morph_empty(bset);
if (bset->n_eq == 0)
return isl_morph_identity(bset);
n_eq = bset->n_eq;
nparam = isl_basic_set_dim(bset, isl_dim_param);
nvar = isl_basic_set_dim(bset, isl_dim_set);
n_div = isl_basic_set_dim(bset, isl_dim_div);
if (isl_seq_first_non_zero(bset->eq[bset->n_eq - 1] + 1 + nparam,
nvar + n_div) == -1)
isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
"input not allowed to have parameter equalities",
return NULL);
if (n_eq > nvar + n_div)
isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
"input not gaussed", return NULL);
B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
H = isl_mat_sub_alloc6(bset->ctx, bset->eq,
0, n_eq, 1 + nparam, nvar + n_div);
inv = isl_mat_parameter_compression_ext(B, H);
inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
map = isl_mat_right_inverse(isl_mat_copy(inv));
dom = isl_basic_set_universe(isl_space_copy(bset->dim));
ran = isl_basic_set_universe(isl_space_copy(bset->dim));
return isl_morph_alloc(dom, ran, map, inv);
}
/* Add stride constraints to "bset" based on the inverse mapping
* that was plugged in. In particular, if morph maps x' to x,
* the constraints of the original input
*
* A x' + b >= 0
*
* have been rewritten to
*
* A inv x + b >= 0
*
* However, this substitution may loose information on the integrality of x',
* so we need to impose that
*
* inv x
*
* is integral. If inv = B/d, this means that we need to impose that
*
* B x = 0 mod d
*
* or
*
* exists alpha in Z^m: B x = d alpha
*
* This function is similar to add_strides in isl_affine_hull.c
*/
static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
__isl_keep isl_morph *morph)
{
int i, div, k;
isl_int gcd;
if (isl_int_is_one(morph->inv->row[0][0]))
return bset;
isl_int_init(gcd);
for (i = 0; 1 + i < morph->inv->n_row; ++i) {
isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
continue;
div = isl_basic_set_alloc_div(bset);
if (div < 0)
goto error;
isl_int_set_si(bset->div[div][0], 0);
k = isl_basic_set_alloc_equality(bset);
if (k < 0)
goto error;
isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
morph->inv->n_col);
isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
isl_int_set(bset->eq[k][morph->inv->n_col + div],
morph->inv->row[0][0]);
}
isl_int_clear(gcd);
return bset;
error:
isl_int_clear(gcd);
isl_basic_set_free(bset);
return NULL;
}
/* Apply the morphism to the basic set.
* We basically just compute the preimage of "bset" under the inverse mapping
* in morph, add in stride constraints and intersect with the range
* of the morphism.
*/
__isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
__isl_take isl_basic_set *bset)
{
isl_basic_set *res = NULL;
isl_mat *mat = NULL;
int i, k;
int max_stride;
if (!morph || !bset)
goto error;
isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim),
goto error);
max_stride = morph->inv->n_row - 1;
if (isl_int_is_one(morph->inv->row[0][0]))
max_stride = 0;
res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim),
bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);
for (i = 0; i < bset->n_div; ++i)
if (isl_basic_set_alloc_div(res) < 0)
goto error;
mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
0, morph->inv->n_row);
mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
if (!mat)
goto error;
for (i = 0; i < bset->n_eq; ++i) {
k = isl_basic_set_alloc_equality(res);
if (k < 0)
goto error;
isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
morph->inv->row[0][0], bset->n_div);
}
isl_mat_free(mat);
mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq,
0, morph->inv->n_row);
mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
if (!mat)
goto error;
for (i = 0; i < bset->n_ineq; ++i) {
k = isl_basic_set_alloc_inequality(res);
if (k < 0)
goto error;
isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
isl_seq_scale(res->ineq[k] + mat->n_col,
bset->ineq[i] + mat->n_col,
morph->inv->row[0][0], bset->n_div);
}
isl_mat_free(mat);
mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div,
1, morph->inv->n_row);
mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
if (!mat)
goto error;
for (i = 0; i < bset->n_div; ++i) {
isl_int_mul(res->div[i][0],
morph->inv->row[0][0], bset->div[i][0]);
isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
isl_seq_scale(res->div[i] + 1 + mat->n_col,
bset->div[i] + 1 + mat->n_col,
morph->inv->row[0][0], bset->n_div);
}
isl_mat_free(mat);
res = add_strides(res, morph);
if (isl_basic_set_is_rational(bset))
res = isl_basic_set_set_rational(res);
res = isl_basic_set_simplify(res);
res = isl_basic_set_finalize(res);
res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));
isl_morph_free(morph);
isl_basic_set_free(bset);
return res;
error:
isl_mat_free(mat);
isl_morph_free(morph);
isl_basic_set_free(bset);
isl_basic_set_free(res);
return NULL;
}
/* Apply the morphism to the set.
*/
__isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
__isl_take isl_set *set)
{
int i;
if (!morph || !set)
goto error;
isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error);
set = isl_set_cow(set);
if (!set)
goto error;
isl_space_free(set->dim);
set->dim = isl_space_copy(morph->ran->dim);
if (!set->dim)
goto error;
for (i = 0; i < set->n; ++i) {
set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
if (!set->p[i])
goto error;
}
isl_morph_free(morph);
ISL_F_CLR(set, ISL_SET_NORMALIZED);
return set;
error:
isl_set_free(set);
isl_morph_free(morph);
return NULL;
}
/* Construct a morphism that first does morph2 and then morph1.
*/
__isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
__isl_take isl_morph *morph2)
{
isl_mat *map, *inv;
isl_basic_set *dom, *ran;
if (!morph1 || !morph2)
goto error;
map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
isl_basic_set_copy(morph1->dom));
dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
ran = isl_morph_basic_set(isl_morph_copy(morph1),
isl_basic_set_copy(morph2->ran));
ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));
isl_morph_free(morph1);
isl_morph_free(morph2);
return isl_morph_alloc(dom, ran, map, inv);
error:
isl_morph_free(morph1);
isl_morph_free(morph2);
return NULL;
}
__isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph)
{
isl_basic_set *bset;
isl_mat *mat;
morph = isl_morph_cow(morph);
if (!morph)
return NULL;
bset = morph->dom;
morph->dom = morph->ran;
morph->ran = bset;
mat = morph->map;
morph->map = morph->inv;
morph->inv = mat;
return morph;
}
/* We detect all the equalities first to avoid implicit equalities
* being discovered during the computations. In particular,
* the compression on the variables could expose additional stride
* constraints on the parameters. This would result in existentially
* quantified variables after applying the resulting morph, which
* in turn could break invariants of the calling functions.
*/
__isl_give isl_morph *isl_basic_set_full_compression(
__isl_keep isl_basic_set *bset)
{
isl_morph *morph, *morph2;
bset = isl_basic_set_copy(bset);
bset = isl_basic_set_detect_equalities(bset);
morph = isl_basic_set_variable_compression(bset, isl_dim_param);
bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
morph2 = isl_basic_set_parameter_compression(bset);
bset = isl_morph_basic_set(isl_morph_copy(morph2), bset);
morph = isl_morph_compose(morph2, morph);
morph2 = isl_basic_set_variable_compression(bset, isl_dim_set);
isl_basic_set_free(bset);
morph = isl_morph_compose(morph2, morph);
return morph;
}
__isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph,
__isl_take isl_vec *vec)
{
if (!morph)
goto error;
vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec);
isl_morph_free(morph);
return vec;
error:
isl_morph_free(morph);
isl_vec_free(vec);
return NULL;
}
|