1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
| #include <isl_ctx_private.h>
#include <isl/val.h>
#include <isl_constraint_private.h>
#include <isl/set.h>
#include <isl_polynomial_private.h>
#include <isl_morph.h>
#include <isl_range.h>
struct range_data {
struct isl_bound *bound;
int *signs;
int sign;
int test_monotonicity;
int monotonicity;
int tight;
isl_qpolynomial *poly;
isl_pw_qpolynomial_fold *pwf;
isl_pw_qpolynomial_fold *pwf_tight;
};
static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct range_data *data);
/* Check whether the polynomial "poly" has sign "sign" over "bset",
* i.e., if sign == 1, check that the lower bound on the polynomial
* is non-negative and if sign == -1, check that the upper bound on
* the polynomial is non-positive.
*/
static int has_sign(__isl_keep isl_basic_set *bset,
__isl_keep isl_qpolynomial *poly, int sign, int *signs)
{
struct range_data data_m;
unsigned nparam;
isl_space *dim;
isl_val *opt;
int r;
enum isl_fold type;
nparam = isl_basic_set_dim(bset, isl_dim_param);
bset = isl_basic_set_copy(bset);
poly = isl_qpolynomial_copy(poly);
bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
isl_dim_param, 0, nparam);
poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0,
isl_dim_param, 0, nparam);
dim = isl_qpolynomial_get_space(poly);
dim = isl_space_params(dim);
dim = isl_space_from_domain(dim);
dim = isl_space_add_dims(dim, isl_dim_out, 1);
data_m.test_monotonicity = 0;
data_m.signs = signs;
data_m.sign = -sign;
type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type);
data_m.tight = 0;
data_m.pwf_tight = NULL;
if (propagate_on_domain(bset, poly, &data_m) < 0)
goto error;
if (sign > 0)
opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
else
opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
if (!opt)
r = -1;
else if (isl_val_is_nan(opt) ||
isl_val_is_infty(opt) ||
isl_val_is_neginfty(opt))
r = 0;
else
r = sign * isl_val_sgn(opt) >= 0;
isl_val_free(opt);
return r;
error:
isl_pw_qpolynomial_fold_free(data_m.pwf);
return -1;
}
/* Return 1 if poly is monotonically increasing in the last set variable,
* -1 if poly is monotonically decreasing in the last set variable,
* 0 if no conclusion,
* -2 on error.
*
* We simply check the sign of p(x+1)-p(x)
*/
static int monotonicity(__isl_keep isl_basic_set *bset,
__isl_keep isl_qpolynomial *poly, struct range_data *data)
{
isl_ctx *ctx;
isl_space *dim;
isl_qpolynomial *sub = NULL;
isl_qpolynomial *diff = NULL;
int result = 0;
int s;
unsigned nvar;
ctx = isl_qpolynomial_get_ctx(poly);
dim = isl_qpolynomial_get_domain_space(poly);
nvar = isl_basic_set_dim(bset, isl_dim_set);
sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1);
sub = isl_qpolynomial_add(sub,
isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one));
diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
isl_dim_in, nvar - 1, 1, &sub);
diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
s = has_sign(bset, diff, 1, data->signs);
if (s < 0)
goto error;
if (s)
result = 1;
else {
s = has_sign(bset, diff, -1, data->signs);
if (s < 0)
goto error;
if (s)
result = -1;
}
isl_qpolynomial_free(diff);
isl_qpolynomial_free(sub);
return result;
error:
isl_qpolynomial_free(diff);
isl_qpolynomial_free(sub);
return -2;
}
/* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial
* with domain space "space".
*/
static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space,
int sign)
{
if (sign > 0)
return isl_qpolynomial_infty_on_domain(space);
else
return isl_qpolynomial_neginfty_on_domain(space);
}
static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
__isl_take isl_space *space, unsigned pos, int sign)
{
if (!bound)
return signed_infty(space, sign);
isl_space_free(space);
return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
}
static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos)
{
isl_int c;
int is_int;
if (!bound)
return 1;
isl_int_init(c);
isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
is_int = isl_int_is_one(c) || isl_int_is_negone(c);
isl_int_clear(c);
return is_int;
}
struct isl_fixed_sign_data {
int *signs;
int sign;
isl_qpolynomial *poly;
};
/* Add term "term" to data->poly if it has sign data->sign.
* The sign is determined based on the signs of the parameters
* and variables in data->signs. The integer divisions, if
* any, are assumed to be non-negative.
*/
static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
{
struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
isl_int n;
int i;
int sign;
unsigned nparam;
unsigned nvar;
if (!term)
return isl_stat_error;
nparam = isl_term_dim(term, isl_dim_param);
nvar = isl_term_dim(term, isl_dim_set);
isl_int_init(n);
isl_term_get_num(term, &n);
sign = isl_int_sgn(n);
for (i = 0; i < nparam; ++i) {
if (data->signs[i] > 0)
continue;
if (isl_term_get_exp(term, isl_dim_param, i) % 2)
sign = -sign;
}
for (i = 0; i < nvar; ++i) {
if (data->signs[nparam + i] > 0)
continue;
if (isl_term_get_exp(term, isl_dim_set, i) % 2)
sign = -sign;
}
if (sign == data->sign) {
isl_qpolynomial *t = isl_qpolynomial_from_term(term);
data->poly = isl_qpolynomial_add(data->poly, t);
} else
isl_term_free(term);
isl_int_clear(n);
return isl_stat_ok;
}
/* Construct and return a polynomial that consists of the terms
* in "poly" that have sign "sign". The integer divisions, if
* any, are assumed to be non-negative.
*/
__isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
__isl_keep isl_qpolynomial *poly, int *signs, int sign)
{
isl_space *space;
struct isl_fixed_sign_data data = { signs, sign };
space = isl_qpolynomial_get_domain_space(poly);
data.poly = isl_qpolynomial_zero_on_domain(space);
if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
goto error;
return data.poly;
error:
isl_qpolynomial_free(data.poly);
return NULL;
}
/* Helper function to add a guarded polynomial to either pwf_tight or pwf,
* depending on whether the result has been determined to be tight.
*/
static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct range_data *data)
{
enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
isl_set *set;
isl_qpolynomial_fold *fold;
isl_pw_qpolynomial_fold *pwf;
bset = isl_basic_set_params(bset);
poly = isl_qpolynomial_project_domain_on_params(poly);
fold = isl_qpolynomial_fold_alloc(type, poly);
set = isl_set_from_basic_set(bset);
pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
if (data->tight)
data->pwf_tight = isl_pw_qpolynomial_fold_fold(
data->pwf_tight, pwf);
else
data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
return isl_stat_ok;
}
/* Plug in "sub" for the variable at position "pos" in "poly".
*
* If "sub" is an infinite polynomial and if the variable actually
* appears in "poly", then calling isl_qpolynomial_substitute
* to perform the substitution may result in a NaN result.
* In such cases, return positive or negative infinity instead,
* depending on whether an upper bound or a lower bound is being computed,
* and mark the result as not being tight.
*/
static __isl_give isl_qpolynomial *plug_in_at_pos(
__isl_take isl_qpolynomial *poly, int pos,
__isl_take isl_qpolynomial *sub, struct range_data *data)
{
isl_bool involves, infty;
involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1);
if (involves < 0)
goto error;
if (!involves) {
isl_qpolynomial_free(sub);
return poly;
}
infty = isl_qpolynomial_is_infty(sub);
if (infty >= 0 && !infty)
infty = isl_qpolynomial_is_neginfty(sub);
if (infty < 0)
goto error;
if (infty) {
isl_space *space = isl_qpolynomial_get_domain_space(poly);
data->tight = 0;
isl_qpolynomial_free(poly);
isl_qpolynomial_free(sub);
return signed_infty(space, data->sign);
}
poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub);
isl_qpolynomial_free(sub);
return poly;
error:
isl_qpolynomial_free(poly);
isl_qpolynomial_free(sub);
return NULL;
}
/* Given a lower and upper bound on the final variable and constraints
* on the remaining variables where these bounds are active,
* eliminate the variable from data->poly based on these bounds.
* If the polynomial has been determined to be monotonic
* in the variable, then simply plug in the appropriate bound.
* If the current polynomial is tight and if this bound is integer,
* then the result is still tight. In all other cases, the results
* may not be tight.
* Otherwise, plug in the largest bound (in absolute value) in
* the positive terms (if an upper bound is wanted) or the negative terms
* (if a lower bounded is wanted) and the other bound in the other terms.
*
* If all variables have been eliminated, then record the result.
* Ohterwise, recurse on the next variable.
*/
static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower,
__isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
void *user)
{
struct range_data *data = (struct range_data *)user;
int save_tight = data->tight;
isl_qpolynomial *poly;
isl_stat r;
unsigned nvar;
nvar = isl_basic_set_dim(bset, isl_dim_set);
if (data->monotonicity) {
isl_qpolynomial *sub;
isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
if (data->monotonicity * data->sign > 0) {
if (data->tight)
data->tight = bound_is_integer(upper, nvar);
sub = bound2poly(upper, dim, nvar, 1);
isl_constraint_free(lower);
} else {
if (data->tight)
data->tight = bound_is_integer(lower, nvar);
sub = bound2poly(lower, dim, nvar, -1);
isl_constraint_free(upper);
}
poly = isl_qpolynomial_copy(data->poly);
poly = plug_in_at_pos(poly, nvar, sub, data);
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
} else {
isl_qpolynomial *l, *u;
isl_qpolynomial *pos, *neg;
isl_space *dim = isl_qpolynomial_get_domain_space(data->poly);
unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
int sign = data->sign * data->signs[nparam + nvar];
data->tight = 0;
u = bound2poly(upper, isl_space_copy(dim), nvar, 1);
l = bound2poly(lower, dim, nvar, -1);
pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
pos = plug_in_at_pos(pos, nvar, u, data);
neg = plug_in_at_pos(neg, nvar, l, data);
poly = isl_qpolynomial_add(pos, neg);
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
}
if (isl_basic_set_dim(bset, isl_dim_set) == 0)
r = add_guarded_poly(bset, poly, data);
else
r = propagate_on_domain(bset, poly, data);
data->tight = save_tight;
return r;
}
/* Recursively perform range propagation on the polynomial "poly"
* defined over the basic set "bset" and collect the results in "data".
*/
static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct range_data *data)
{
isl_ctx *ctx;
isl_qpolynomial *save_poly = data->poly;
int save_monotonicity = data->monotonicity;
unsigned d;
if (!bset || !poly)
goto error;
ctx = isl_basic_set_get_ctx(bset);
d = isl_basic_set_dim(bset, isl_dim_set);
isl_assert(ctx, d >= 1, goto error);
if (isl_qpolynomial_is_cst(poly, NULL, NULL)) {
bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d);
return add_guarded_poly(bset, poly, data);
}
if (data->test_monotonicity)
data->monotonicity = monotonicity(bset, poly, data);
else
data->monotonicity = 0;
if (data->monotonicity < -1)
goto error;
data->poly = poly;
if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
&propagate_on_bound_pair, data) < 0)
goto error;
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
data->monotonicity = save_monotonicity;
data->poly = save_poly;
return isl_stat_ok;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
data->monotonicity = save_monotonicity;
data->poly = save_poly;
return isl_stat_error;
}
static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset,
void *user)
{
struct range_data *data = (struct range_data *)user;
isl_ctx *ctx;
unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
unsigned dim = isl_basic_set_dim(bset, isl_dim_set);
isl_stat r;
data->signs = NULL;
ctx = isl_basic_set_get_ctx(bset);
data->signs = isl_alloc_array(ctx, int,
isl_basic_set_dim(bset, isl_dim_all));
if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
data->signs + nparam) < 0)
goto error;
if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
data->signs) < 0)
goto error;
r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
free(data->signs);
return r;
error:
free(data->signs);
isl_basic_set_free(bset);
return isl_stat_error;
}
static isl_stat qpolynomial_bound_on_domain_range(
__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
struct range_data *data)
{
unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
unsigned nvar = isl_basic_set_dim(bset, isl_dim_set);
isl_set *set = NULL;
if (!bset)
goto error;
if (nvar == 0)
return add_guarded_poly(bset, poly, data);
set = isl_set_from_basic_set(bset);
set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
data->poly = poly;
data->test_monotonicity = 1;
if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
goto error;
isl_set_free(set);
isl_qpolynomial_free(poly);
return isl_stat_ok;
error:
isl_set_free(set);
isl_qpolynomial_free(poly);
return isl_stat_error;
}
isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
{
struct range_data data;
isl_stat r;
data.pwf = bound->pwf;
data.pwf_tight = bound->pwf_tight;
data.tight = bound->check_tight;
if (bound->type == isl_fold_min)
data.sign = -1;
else
data.sign = 1;
r = qpolynomial_bound_on_domain_range(bset, poly, &data);
bound->pwf = data.pwf;
bound->pwf_tight = data.pwf_tight;
return r;
}
|