reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 * Copyright 2011      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
 */

#define xSF(TYPE,SUFFIX) TYPE ## SUFFIX
#define SF(TYPE,SUFFIX) xSF(TYPE,SUFFIX)

/* Given a basic map with at least two parallel constraints (as found
 * by the function parallel_constraints), first look for more constraints
 * parallel to the two constraint and replace the found list of parallel
 * constraints by a single constraint with as "input" part the minimum
 * of the input parts of the list of constraints.  Then, recursively call
 * basic_map_partial_lexopt (possibly finding more parallel constraints)
 * and plug in the definition of the minimum in the result.
 *
 * As in parallel_constraints, only inequality constraints that only
 * involve input variables that do not occur in any other inequality
 * constraints are considered.
 *
 * More specifically, given a set of constraints
 *
 *	a x + b_i(p) >= 0
 *
 * Replace this set by a single constraint
 *
 *	a x + u >= 0
 *
 * with u a new parameter with constraints
 *
 *	u <= b_i(p)
 *
 * Any solution to the new system is also a solution for the original system
 * since
 *
 *	a x >= -u >= -b_i(p)
 *
 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
 * therefore be plugged into the solution.
 */
static TYPE *SF(basic_map_partial_lexopt_symm,SUFFIX)(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
	__isl_give isl_set **empty, int max, int first, int second)
{
	int i, n, k;
	int *list = NULL;
	unsigned n_in, n_out, n_div;
	isl_ctx *ctx;
	isl_vec *var = NULL;
	isl_mat *cst = NULL;
	isl_space *map_space, *set_space;

	map_space = isl_basic_map_get_space(bmap);
	set_space = empty ? isl_basic_set_get_space(dom) : NULL;

	n_in = isl_basic_map_dim(bmap, isl_dim_param) +
	       isl_basic_map_dim(bmap, isl_dim_in);
	n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;

	ctx = isl_basic_map_get_ctx(bmap);
	list = isl_alloc_array(ctx, int, bmap->n_ineq);
	var = isl_vec_alloc(ctx, n_out);
	if ((bmap->n_ineq && !list) || (n_out && !var))
		goto error;

	list[0] = first;
	list[1] = second;
	isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
	for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
		if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out) &&
		    all_single_occurrence(bmap, i, n_in))
			list[n++] = i;
	}

	cst = isl_mat_alloc(ctx, n, 1 + n_in);
	if (!cst)
		goto error;

	for (i = 0; i < n; ++i)
		isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);

	bmap = isl_basic_map_cow(bmap);
	if (!bmap)
		goto error;
	for (i = n - 1; i >= 0; --i)
		if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
			goto error;

	bmap = isl_basic_map_add_dims(bmap, isl_dim_in, 1);
	bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
	k = isl_basic_map_alloc_inequality(bmap);
	if (k < 0)
		goto error;
	isl_seq_clr(bmap->ineq[k], 1 + n_in);
	isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
	isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
	bmap = isl_basic_map_finalize(bmap);

	n_div = isl_basic_set_dim(dom, isl_dim_div);
	dom = isl_basic_set_add_dims(dom, isl_dim_set, 1);
	dom = isl_basic_set_extend_constraints(dom, 0, n);
	for (i = 0; i < n; ++i) {
		k = isl_basic_set_alloc_inequality(dom);
		if (k < 0)
			goto error;
		isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
		isl_int_set_si(dom->ineq[k][1 + n_in], -1);
		isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
	}

	isl_vec_free(var);
	free(list);

	return SF(basic_map_partial_lexopt_symm_core,SUFFIX)(bmap, dom, empty,
						max, cst, map_space, set_space);
error:
	isl_space_free(map_space);
	isl_space_free(set_space);
	isl_mat_free(cst);
	isl_vec_free(var);
	free(list);
	isl_basic_set_free(dom);
	isl_basic_map_free(bmap);
	return NULL;
}

/* Recursive part of isl_tab_basic_map_partial_lexopt*, after detecting
 * equalities and removing redundant constraints.
 *
 * We first check if there are any parallel constraints (left).
 * If not, we are in the base case.
 * If there are parallel constraints, we replace them by a single
 * constraint in basic_map_partial_lexopt_symm_pma and then call
 * this function recursively to look for more parallel constraints.
 */
static __isl_give TYPE *SF(basic_map_partial_lexopt,SUFFIX)(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
	__isl_give isl_set **empty, int max)
{
	isl_bool par = isl_bool_false;
	int first, second;

	if (!bmap)
		goto error;

	if (bmap->ctx->opt->pip_symmetry)
		par = parallel_constraints(bmap, &first, &second);
	if (par < 0)
		goto error;
	if (!par)
		return SF(basic_map_partial_lexopt_base,SUFFIX)(bmap, dom,
								empty, max);

	return SF(basic_map_partial_lexopt_symm,SUFFIX)(bmap, dom, empty, max,
							 first, second);
error:
	isl_basic_set_free(dom);
	isl_basic_map_free(bmap);
	return NULL;
}

/* Compute the lexicographic minimum (or maximum if "flags" includes
 * ISL_OPT_MAX) of "bmap" over the domain "dom" and return the result as
 * either a map or a piecewise multi-affine expression depending on TYPE.
 * If "empty" is not NULL, then *empty is assigned a set that
 * contains those parts of the domain where there is no solution.
 * If "flags" includes ISL_OPT_FULL, then "dom" is NULL and the optimum
 * should be computed over the domain of "bmap".  "empty" is also NULL
 * in this case.
 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
 * then we compute the rational optimum.  Otherwise, we compute
 * the integral optimum.
 *
 * We perform some preprocessing.  As the PILP solver does not
 * handle implicit equalities very well, we first make sure all
 * the equalities are explicitly available.
 *
 * We also add context constraints to the basic map and remove
 * redundant constraints.  This is only needed because of the
 * way we handle simple symmetries.  In particular, we currently look
 * for symmetries on the constraints, before we set up the main tableau.
 * It is then no good to look for symmetries on possibly redundant constraints.
 * If the domain was extracted from the basic map, then there is
 * no need to add back those constraints again.
 */
__isl_give TYPE *SF(isl_tab_basic_map_partial_lexopt,SUFFIX)(
	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
	__isl_give isl_set **empty, unsigned flags)
{
	int max, full;
	isl_bool compatible;

	if (empty)
		*empty = NULL;

	full = ISL_FL_ISSET(flags, ISL_OPT_FULL);
	if (full)
		dom = extract_domain(bmap, flags);
	compatible = isl_basic_map_compatible_domain(bmap, dom);
	if (compatible < 0)
		goto error;
	if (!compatible)
		isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
			"domain does not match input", goto error);

	max = ISL_FL_ISSET(flags, ISL_OPT_MAX);
	if (isl_basic_set_dim(dom, isl_dim_all) == 0)
		return SF(basic_map_partial_lexopt,SUFFIX)(bmap, dom, empty,
							    max);

	if (!full)
		bmap = isl_basic_map_intersect_domain(bmap,
						    isl_basic_set_copy(dom));
	bmap = isl_basic_map_detect_equalities(bmap);
	bmap = isl_basic_map_remove_redundancies(bmap);

	return SF(basic_map_partial_lexopt,SUFFIX)(bmap, dom, empty, max);
error:
	isl_basic_set_free(dom);
	isl_basic_map_free(bmap);
	return NULL;
}