reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
#ifndef PET_H
#define PET_H

#include <isl/aff.h>
#include <isl/arg.h>
#include <isl/ast_build.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_map.h>
#include <isl/printer.h>
#include <isl/id_to_ast_expr.h>
#include <isl/id_to_pw_aff.h>
#include <isl/schedule.h>

#if defined(__cplusplus)
extern "C" {
#endif

struct pet_options;
ISL_ARG_DECL(pet_options, struct pet_options, pet_options_args)

/* Create an isl_ctx that references the pet options. */
isl_ctx *isl_ctx_alloc_with_pet_options();

/* If autodetect is set, any valid scop is extracted.
 * Otherwise, the scop needs to be delimited by pragmas.
 */
int pet_options_set_autodetect(isl_ctx *ctx, int val);
int pet_options_get_autodetect(isl_ctx *ctx);

int pet_options_set_detect_conditional_assignment(isl_ctx *ctx, int val);
int pet_options_get_detect_conditional_assignment(isl_ctx *ctx);

/* If encapsulate-dynamic-control is set, then any dynamic control
 * in the input program will be encapsulated in macro statements.
 * This means in particular that no statements with arguments
 * will be created.
 */
int pet_options_set_encapsulate_dynamic_control(isl_ctx *ctx, int val);
int pet_options_get_encapsulate_dynamic_control(isl_ctx *ctx);

#define	PET_OVERFLOW_AVOID	0
#define	PET_OVERFLOW_IGNORE	1
int pet_options_set_signed_overflow(isl_ctx *ctx, int val);
int pet_options_get_signed_overflow(isl_ctx *ctx);

struct pet_loc;
typedef struct pet_loc pet_loc;

/* Return an additional reference to "loc". */
__isl_give pet_loc *pet_loc_copy(__isl_keep pet_loc *loc);
/* Free a reference to "loc". */
pet_loc *pet_loc_free(__isl_take pet_loc *loc);

/* Return the offset in the input file of the start of "loc". */
unsigned pet_loc_get_start(__isl_keep pet_loc *loc);
/* Return the offset in the input file of the character after "loc". */
unsigned pet_loc_get_end(__isl_keep pet_loc *loc);
/* Return the line number of a line within the "loc" region. */
int pet_loc_get_line(__isl_keep pet_loc *loc);
/* Return the indentation of the "loc" region. */
__isl_keep const char *pet_loc_get_indent(__isl_keep pet_loc *loc);

enum pet_expr_type {
	pet_expr_error = -1,
	pet_expr_access,
	pet_expr_call,
	pet_expr_cast,
	pet_expr_int,
	pet_expr_double,
	pet_expr_op
};

enum pet_op_type {
	/* only compound assignments operators before assignment */
	pet_op_add_assign,
	pet_op_sub_assign,
	pet_op_mul_assign,
	pet_op_div_assign,
	pet_op_and_assign,
	pet_op_xor_assign,
	pet_op_or_assign,
	pet_op_assign,
	pet_op_add,
	pet_op_sub,
	pet_op_mul,
	pet_op_div,
	pet_op_mod,
	pet_op_shl,
	pet_op_shr,
	pet_op_eq,
	pet_op_ne,
	pet_op_le,
	pet_op_ge,
	pet_op_lt,
	pet_op_gt,
	pet_op_minus,
	pet_op_post_inc,
	pet_op_post_dec,
	pet_op_pre_inc,
	pet_op_pre_dec,
	pet_op_address_of,
	pet_op_assume,
	pet_op_kill,
	pet_op_and,
	pet_op_xor,
	pet_op_or,
	pet_op_not,
	pet_op_land,
	pet_op_lor,
	pet_op_lnot,
	pet_op_cond,
	pet_op_last
};

/* Index into the pet_expr->args array when pet_expr->type == pet_expr_unary
 */
enum pet_un_arg_type {
	pet_un_arg
};

/* Indices into the pet_expr->args array when
 * pet_expr->type == pet_expr_binary
 */
enum pet_bin_arg_type {
	pet_bin_lhs,
	pet_bin_rhs
};

/* Indices into the pet_expr->args array when
 * pet_expr->type == pet_expr_ternary
 */
enum pet_ter_arg_type {
	pet_ter_cond,
	pet_ter_true,
	pet_ter_false
};

struct pet_expr;
typedef struct pet_expr pet_expr;

/* Return an additional reference to "expr". */
__isl_give pet_expr *pet_expr_copy(__isl_keep pet_expr *expr);
/* Free a reference to "expr". */
__isl_null pet_expr *pet_expr_free(__isl_take pet_expr *expr);

/* Return the isl_ctx in which "expr" was created. */
isl_ctx *pet_expr_get_ctx(__isl_keep pet_expr *expr);

/* Return the type of "expr". */
enum pet_expr_type pet_expr_get_type(__isl_keep pet_expr *expr);
/* Return the number of arguments of "expr". */
int pet_expr_get_n_arg(__isl_keep pet_expr *expr);
/* Set the number of arguments of "expr" to "n". */
__isl_give pet_expr *pet_expr_set_n_arg(__isl_take pet_expr *expr, int n);
/* Return the argument of "expr" at position "pos". */
__isl_give pet_expr *pet_expr_get_arg(__isl_keep pet_expr *expr, int pos);
/* Replace the argument of "expr" at position "pos" by "arg". */
__isl_give pet_expr *pet_expr_set_arg(__isl_take pet_expr *expr, int pos,
	__isl_take pet_expr *arg);

/* Return the operation type of operation expression "expr". */
enum pet_op_type pet_expr_op_get_type(__isl_keep pet_expr *expr);
/* Replace the operation type of operation expression "expr" by "type". */
__isl_give pet_expr *pet_expr_op_set_type(__isl_take pet_expr *expr,
	enum pet_op_type type);

/* Construct a (read) access pet_expr from an index expression. */
__isl_give pet_expr *pet_expr_from_index(__isl_take isl_multi_pw_aff *index);

/* Does "expr" represent an affine expression? */
isl_bool pet_expr_is_affine(__isl_keep pet_expr *expr);
/* Does the access expression "expr" read the accessed elements? */
isl_bool pet_expr_access_is_read(__isl_keep pet_expr *expr);
/* Does the access expression "expr" write to the accessed elements? */
isl_bool pet_expr_access_is_write(__isl_keep pet_expr *expr);
/* Does the access expression "expr" kill the accessed elements? */
isl_bool pet_expr_access_is_kill(__isl_keep pet_expr *expr);
/* Mark "expr" as a read depending on "read". */
__isl_give pet_expr *pet_expr_access_set_read(__isl_take pet_expr *expr,
	int read);
/* Mark "expr" as a write depending on "write". */
__isl_give pet_expr *pet_expr_access_set_write(__isl_take pet_expr *expr,
	int write);
/* Mark "expr" as a kill depending on "kill". */
__isl_give pet_expr *pet_expr_access_set_kill(__isl_take pet_expr *expr,
	int kill);
/* Return the reference identifier of access expression "expr". */
__isl_give isl_id *pet_expr_access_get_ref_id(__isl_keep pet_expr *expr);
/* Replace the reference identifier of access expression "expr" by "ref_id". */
__isl_give pet_expr *pet_expr_access_set_ref_id(__isl_take pet_expr *expr,
	__isl_take isl_id *ref_id);
/* Return the identifier of the outer array accessed by "expr". */
__isl_give isl_id *pet_expr_access_get_id(__isl_keep pet_expr *expr);
/* Return the index expression of access expression "expr". */
__isl_give isl_multi_pw_aff *pet_expr_access_get_index(
	__isl_keep pet_expr *expr);

/* Return the potential read access relation of access expression "expr". */
__isl_give isl_union_map *pet_expr_access_get_may_read(
	__isl_keep pet_expr *expr);
/* Return the potential write access relation of access expression "expr". */
__isl_give isl_union_map *pet_expr_access_get_may_write(
	__isl_keep pet_expr *expr);
/* Return the definite write access relation of access expression "expr". */
__isl_give isl_union_map *pet_expr_access_get_must_write(
	__isl_keep pet_expr *expr);
/* Return the argument dependent potential read access relation of "expr". */
__isl_give isl_union_map *pet_expr_access_get_dependent_may_read(
	__isl_keep pet_expr *expr);
/* Return the argument dependent potential write access relation of "expr". */
__isl_give isl_union_map *pet_expr_access_get_dependent_may_write(
	__isl_keep pet_expr *expr);
/* Return the argument dependent definite write access relation of "expr". */
__isl_give isl_union_map *pet_expr_access_get_dependent_must_write(
	__isl_keep pet_expr *expr);
/* Return the tagged potential read access relation of access "expr". */
__isl_give isl_union_map *pet_expr_access_get_tagged_may_read(
	__isl_keep pet_expr *expr);
/* Return the tagged potential write access relation of access "expr". */
__isl_give isl_union_map *pet_expr_access_get_tagged_may_write(
	__isl_keep pet_expr *expr);

/* Return the name of the function called by "expr". */
__isl_keep const char *pet_expr_call_get_name(__isl_keep pet_expr *expr);
/* Replace the name of the function called by "expr" by "name". */
__isl_give pet_expr *pet_expr_call_set_name(__isl_take pet_expr *expr,
	__isl_keep const char *name);

/* Create a pet_expr representing a cast of "arg" to "type_name". */
__isl_give pet_expr *pet_expr_new_cast(const char *type_name,
	__isl_take pet_expr *arg);
/* Replace the type of the cast performed by "expr" by "name". */
__isl_give pet_expr *pet_expr_cast_set_type_name(__isl_take pet_expr *expr,
	__isl_keep const char *name);

/* Return the value of the integer represented by "expr". */
__isl_give isl_val *pet_expr_int_get_val(__isl_keep pet_expr *expr);
/* Replace the value of the integer represented by "expr" by "v". */
__isl_give pet_expr *pet_expr_int_set_val(__isl_take pet_expr *expr,
	__isl_take isl_val *v);

/* Return a string representation of the double expression "expr". */
__isl_give char *pet_expr_double_get_str(__isl_keep pet_expr *expr);
/* Replace value and string representation of the double expression "expr" */
__isl_give pet_expr *pet_expr_double_set(__isl_take pet_expr *expr,
	double d, __isl_keep const char *s);

/* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access. */
int pet_expr_foreach_access_expr(__isl_keep pet_expr *expr,
	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user);
/* Call "fn" on each of the subexpressions of "expr" of type pet_expr_call. */
int pet_expr_foreach_call_expr(__isl_keep pet_expr *expr,
	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user);

struct pet_context;
typedef struct pet_context pet_context;

/* Create a context with the given domain. */
__isl_give pet_context *pet_context_alloc(__isl_take isl_set *domain);
/* Return an additional reference to "pc". */
__isl_give pet_context *pet_context_copy(__isl_keep pet_context *pc);
/* Free a reference to "pc". */
__isl_null pet_context *pet_context_free(__isl_take pet_context *pc);

/* Return the isl_ctx in which "pc" was created. */
isl_ctx *pet_context_get_ctx(__isl_keep pet_context *pc);

/* Extract an affine expression defined over the domain of "pc" from "expr"
 * or return NaN.
 */
__isl_give isl_pw_aff *pet_expr_extract_affine(__isl_keep pet_expr *expr,
	__isl_keep pet_context *pc);

void pet_expr_dump(__isl_keep pet_expr *expr);

enum pet_tree_type {
	pet_tree_error = -1,
	pet_tree_expr,
	pet_tree_block,
	pet_tree_break,
	pet_tree_continue,
	pet_tree_decl,		/* A declaration without initialization */
	pet_tree_decl_init,	/* A declaration with initialization */
	pet_tree_if,		/* An if without an else branch */
	pet_tree_if_else,	/* An if with an else branch */
	pet_tree_for,
	pet_tree_infinite_loop,
	pet_tree_while,
	pet_tree_return,
};

struct pet_tree;
typedef struct pet_tree pet_tree;

/* Return the isl_ctx in which "tree" was created. */
isl_ctx *pet_tree_get_ctx(__isl_keep pet_tree *tree);

/* Return an additional reference to "tree". */
__isl_give pet_tree *pet_tree_copy(__isl_keep pet_tree *tree);
/* Free a reference to "tree". */
__isl_null pet_tree *pet_tree_free(__isl_take pet_tree *tree);

/* Return the location of "tree". */
__isl_give pet_loc *pet_tree_get_loc(__isl_keep pet_tree *tree);

/* Return the type of "tree". */
enum pet_tree_type pet_tree_get_type(__isl_keep pet_tree *tree);

/* Return the expression of the expression tree "tree". */
__isl_give pet_expr *pet_tree_expr_get_expr(__isl_keep pet_tree *tree);

/* Return the expression returned by the return tree "tree". */
__isl_give pet_expr *pet_tree_return_get_expr(__isl_keep pet_tree *tree);

/* Return the number of children of the block tree "tree". */
int pet_tree_block_n_child(__isl_keep pet_tree *tree);
/* Return child "pos" of the block tree "tree". */
__isl_give pet_tree *pet_tree_block_get_child(__isl_keep pet_tree *tree,
	int pos);

/* Is "tree" a declaration (with or without initialization)? */
int pet_tree_is_decl(__isl_keep pet_tree *tree);
/* Return the variable declared by the declaration tree "tree". */
__isl_give pet_expr *pet_tree_decl_get_var(__isl_keep pet_tree *tree);
/* Return the initial value of the pet_tree_decl_init tree "tree". */
__isl_give pet_expr *pet_tree_decl_get_init(__isl_keep pet_tree *tree);

/* Return the condition of the if tree "tree". */
__isl_give pet_expr *pet_tree_if_get_cond(__isl_keep pet_tree *tree);
/* Return the then branch of the if tree "tree". */
__isl_give pet_tree *pet_tree_if_get_then(__isl_keep pet_tree *tree);
/* Return the else branch of the if tree with else branch "tree". */
__isl_give pet_tree *pet_tree_if_get_else(__isl_keep pet_tree *tree);

/* Is "tree" a for loop, a while loop or an infinite loop? */
int pet_tree_is_loop(__isl_keep pet_tree *tree);
/* Return the induction variable of the for loop "tree" */
__isl_give pet_expr *pet_tree_loop_get_var(__isl_keep pet_tree *tree);
/* Return the initial value of the induction variable of the for loop "tree" */
__isl_give pet_expr *pet_tree_loop_get_init(__isl_keep pet_tree *tree);
/* Return the condition of the loop tree "tree" */
__isl_give pet_expr *pet_tree_loop_get_cond(__isl_keep pet_tree *tree);
/* Return the induction variable of the for loop "tree" */
__isl_give pet_expr *pet_tree_loop_get_inc(__isl_keep pet_tree *tree);
/* Return the body of the loop tree "tree" */
__isl_give pet_tree *pet_tree_loop_get_body(__isl_keep pet_tree *tree);

/* Call "fn" on each top-level expression in the nodes of "tree" */
int pet_tree_foreach_expr(__isl_keep pet_tree *tree,
	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user);
/* Call "fn" on each access subexpression in the nodes of "tree" */
int pet_tree_foreach_access_expr(__isl_keep pet_tree *tree,
	int (*fn)(__isl_keep pet_expr *expr, void *user), void *user);
/* Modify all call subexpressions in the nodes of "tree" through "fn". */
__isl_give pet_tree *pet_tree_map_call_expr(__isl_take pet_tree *tree,
	__isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
	void *user);

void pet_tree_dump(__isl_keep pet_tree *tree);

/* "loc" represents the region of the source code that is represented
 * by this statement.
 *
 * If the statement has arguments, i.e., n_arg != 0, then
 * "domain" is a wrapped map, mapping the iteration domain
 * to the values of the arguments for which this statement
 * is executed.
 * Otherwise, it is simply the iteration domain.
 *
 * If one of the arguments is an access expression that accesses
 * more than one element for a given iteration, then the constraints
 * on the value of this argument (encoded in "domain") should be satisfied
 * for all of those accessed elements.
 */
struct pet_stmt {
	pet_loc *loc;
	isl_set *domain;
	pet_tree *body;

	unsigned n_arg;
	pet_expr **args;
};

/* Return the iteration space of "stmt". */
__isl_give isl_space *pet_stmt_get_space(struct pet_stmt *stmt);

/* Is "stmt" an assignment statement? */
int pet_stmt_is_assign(struct pet_stmt *stmt);
/* Is "stmt" a kill statement? */
int pet_stmt_is_kill(struct pet_stmt *stmt);

/* pet_stmt_build_ast_exprs is currently limited to only handle
 * some forms of data dependent accesses.
 * If pet_stmt_can_build_ast_exprs returns 1, then pet_stmt_build_ast_exprs
 * can safely be called on "stmt".
 */
int pet_stmt_can_build_ast_exprs(struct pet_stmt *stmt);
/* Construct an associative array from reference identifiers of
 * access expressions in "stmt" to the corresponding isl_ast_expr.
 * Each index expression is first transformed through "fn_index"
 * (if not NULL).  Then an AST expression is generated using "build".
 * Finally, the AST expression is transformed using "fn_expr"
 * (if not NULL).
 */
__isl_give isl_id_to_ast_expr *pet_stmt_build_ast_exprs(struct pet_stmt *stmt,
	__isl_keep isl_ast_build *build,
	__isl_give isl_multi_pw_aff *(*fn_index)(
		__isl_take isl_multi_pw_aff *mpa, __isl_keep isl_id *id,
		void *user), void *user_index,
	__isl_give isl_ast_expr *(*fn_expr)(__isl_take isl_ast_expr *expr,
		__isl_keep isl_id *id, void *user), void *user_expr);

/* Print "stmt" to "p".
 *
 * The access expressions in "stmt" are replaced by the isl_ast_expr
 * associated to its reference identifier in "ref2expr".
 */
__isl_give isl_printer *pet_stmt_print_body(struct pet_stmt *stmt,
	__isl_take isl_printer *p, __isl_keep isl_id_to_ast_expr *ref2expr);

/* This structure represents a defined type.
 * "name" is the name of the type, while "definition" is a string
 * representation of its definition.
 */
struct pet_type {
	char *name;
	char *definition;
};

/* context holds constraints on the parameter that ensure that
 * this array has a valid (i.e., non-negative) size
 *
 * extent holds constraints on the indices
 *
 * value_bounds holds constraints on the elements of the array
 * and may be NULL if no such constraints were specified by the user
 *
 * element_size is the size in bytes of each array element
 * element_type is the type of the array elements.
 * element_is_record is set if this type is a record type.
 *
 * live_out is set if the array appears in a live-out pragma
 *
 * if uniquely_defined is set then the array is written by a single access
 * such that any element that is ever read
 * is known to be assigned exactly once before the read
 *
 * declared is set if the array was declared somewhere inside the scop.
 * exposed is set if the declared array is visible outside the scop.
 * outer is set if the type of the array elements is a record and
 * the fields of this record are represented by separate pet_array structures.
 */
struct pet_array {
	isl_set *context;
	isl_set *extent;
	isl_set *value_bounds;
	char *element_type;
	int element_is_record;
	int element_size;
	int live_out;
	int uniquely_defined;
	int declared;
	int exposed;
	int outer;
};

/* This structure represents an implication on a boolean filter.
 * In particular, if the filter value of an element in the domain
 * of "extension" is equal to "satisfied", then the filter values
 * of the corresponding images in "extension" are also equal
 * to "satisfied".
 */
struct pet_implication {
	int satisfied;
	isl_map *extension;
};

/* This structure represents an independence implied by a for loop
 * that is marked as independent in the source code.
 * "filter" contains pairs of statement instances that are guaranteed
 * not to be dependent on each other based on the independent for loop,
 * assuming that no dependences carried by this loop are implied
 * by the variables in "local".
 * "local" contains the variables that are local to the loop that was
 * marked independent.
 */
struct pet_independence {
	isl_union_map *filter;
	isl_union_set *local;
};

/* "loc" represents the region of the source code that is represented
 * by this scop.
 * If the scop was detected based on scop and endscop pragmas, then
 * the lines containing these pragmas are included in this region.
 * In the final result, the context describes the set of parameter values
 * for which the scop can be executed.
 * During the construction of the pet_scop, the context lives in a set space
 * where each dimension refers to an outer loop.
 * context_value describes assignments to the parameters (if any)
 * outside of the scop.
 *
 * "schedule" is the schedule of the statements in the scop.
 *
 * The n_type types define types that may be referenced from by the arrays.
 *
 * The n_implication implications describe implications on boolean filters.
 *
 * The n_independence independences describe independences implied
 * by for loops that are marked independent in the source code.
 */
struct pet_scop {
	pet_loc *loc;

	isl_set *context;
	isl_set *context_value;
	isl_schedule *schedule;

	int n_type;
	struct pet_type **types;

	int n_array;
	struct pet_array **arrays;

	int n_stmt;
	struct pet_stmt **stmts;

	int n_implication;
	struct pet_implication **implications;

	int n_independence;
	struct pet_independence **independences;
};
typedef struct pet_scop pet_scop;

/* Return a textual representation of the operator. */
const char *pet_op_str(enum pet_op_type op);
int pet_op_is_inc_dec(enum pet_op_type op);

/* Extract a pet_scop from a C source file.
 * If function is not NULL, then the pet_scop is extracted from
 * a function with that name.
 */
__isl_give pet_scop *pet_scop_extract_from_C_source(isl_ctx *ctx,
	const char *filename, const char *function);

/* Transform the C source file "input" by rewriting each scop
 * When autodetecting scops, at most one scop per function is rewritten.
 * The transformed C code is written to "output".
 */
int pet_transform_C_source(isl_ctx *ctx, const char *input, FILE *output,
	__isl_give isl_printer *(*transform)(__isl_take isl_printer *p,
		__isl_take pet_scop *scop, void *user), void *user);
/* Given a scop and a printer passed to a pet_transform_C_source callback,
 * print the original corresponding code to the printer.
 */
__isl_give isl_printer *pet_scop_print_original(__isl_keep pet_scop *scop,
	__isl_take isl_printer *p);

/* Update all isl_sets and isl_maps such that they all have the same
 * parameters in the same order.
 */
__isl_give pet_scop *pet_scop_align_params(__isl_take pet_scop *scop);

/* Does "scop" contain any data dependent accesses? */
int pet_scop_has_data_dependent_accesses(__isl_keep pet_scop *scop);
/* Does "scop" contain any data dependent conditions? */
int pet_scop_has_data_dependent_conditions(__isl_keep pet_scop *scop);
/* pet_stmt_build_ast_exprs is currently limited to only handle
 * some forms of data dependent accesses.
 * If pet_scop_can_build_ast_exprs returns 1, then pet_stmt_build_ast_exprs
 * can safely be called on all statements in the scop.
 */
int pet_scop_can_build_ast_exprs(__isl_keep pet_scop *scop);

void pet_scop_dump(__isl_keep pet_scop *scop);
__isl_null pet_scop *pet_scop_free(__isl_take pet_scop *scop);

/* Return the context of "scop". */
__isl_give isl_set *pet_scop_get_context(__isl_keep pet_scop *scop);
/* Return the schedule of "scop". */
__isl_give isl_schedule *pet_scop_get_schedule(__isl_keep pet_scop *scop);
/* Return the set of all statement instances. */
__isl_give isl_union_set *pet_scop_get_instance_set(__isl_keep pet_scop *scop);
/* Return the potential read access relation. */
__isl_give isl_union_map *pet_scop_get_may_reads(__isl_keep pet_scop *scop);
/* Return the tagged potential read access relation. */
__isl_give isl_union_map *pet_scop_get_tagged_may_reads(
	__isl_keep pet_scop *scop);
/* Return the potential write access relation. */
__isl_give isl_union_map *pet_scop_get_may_writes(__isl_keep pet_scop *scop);
/* Return the definite write access relation. */
__isl_give isl_union_map *pet_scop_get_must_writes(__isl_keep pet_scop *scop);
/* Return the tagged potential write access relation. */
__isl_give isl_union_map *pet_scop_get_tagged_may_writes(
	__isl_keep pet_scop *scop);
/* Return the tagged definite write access relation. */
__isl_give isl_union_map *pet_scop_get_tagged_must_writes(
	__isl_keep pet_scop *scop);
/* Return the definite kill access relation. */
__isl_give isl_union_map *pet_scop_get_must_kills(__isl_keep pet_scop *scop);
/* Return the tagged definite kill access relation. */
__isl_give isl_union_map *pet_scop_get_tagged_must_kills(
	__isl_keep pet_scop *scop);

/* Compute a mapping from all outermost arrays (of structs) in scop
 * to their innermost members.
 */
__isl_give isl_union_map *pet_scop_compute_outer_to_inner(
	__isl_keep pet_scop *scop);
/* Compute a mapping from all outermost arrays (of structs) in scop
 * to their members, including the outermost arrays themselves.
 */
__isl_give isl_union_map *pet_scop_compute_outer_to_any(
	__isl_keep pet_scop *scop);

#if defined(__cplusplus)
}
#endif

#endif