reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Tools, utilities, helpers and extensions useful in conjunction with the
// Integer Set Library (isl).
//
//===----------------------------------------------------------------------===//

#include "polly/Support/ISLTools.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <vector>

using namespace polly;

namespace {
/// Create a map that shifts one dimension by an offset.
///
/// Example:
/// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2)
///   = { [i0, i1] -> [i0, i1 - 1] }
///
/// @param Space  The map space of the result. Must have equal number of in- and
///               out-dimensions.
/// @param Pos    Position to shift.
/// @param Amount Value added to the shifted dimension.
///
/// @return An isl_multi_aff for the map with this shifted dimension.
isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) {
  auto Identity = isl::multi_aff::identity(Space);
  if (Amount == 0)
    return Identity;
  auto ShiftAff = Identity.get_aff(Pos);
  ShiftAff = ShiftAff.set_constant_si(Amount);
  return Identity.set_aff(Pos, ShiftAff);
}

/// Construct a map that swaps two nested tuples.
///
/// @param FromSpace1 { Space1[] }
/// @param FromSpace2 { Space2[] }
///
/// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] }
isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1,
                                     isl::space FromSpace2) {
  // Fast-path on out-of-quota.
  if (!FromSpace1 || !FromSpace2)
    return {};

  assert(FromSpace1.is_set());
  assert(FromSpace2.is_set());

  unsigned Dims1 = FromSpace1.dim(isl::dim::set);
  unsigned Dims2 = FromSpace2.dim(isl::dim::set);

  isl::space FromSpace =
      FromSpace1.map_from_domain_and_range(FromSpace2).wrap();
  isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap();
  isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace);

  isl::basic_map Result = isl::basic_map::universe(MapSpace);
  for (auto i = Dims1 - Dims1; i < Dims1; i += 1)
    Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i);
  for (auto i = Dims2 - Dims2; i < Dims2; i += 1) {
    Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i);
  }

  return Result;
}

/// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns
/// an isl_map.
isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) {
  isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2);
  return isl::map(BMapResult);
}
} // anonymous namespace

isl::map polly::beforeScatter(isl::map Map, bool Strict) {
  isl::space RangeSpace = Map.get_space().range();
  isl::map ScatterRel =
      Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace);
  return Map.apply_range(ScatterRel);
}

isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) {
  isl::union_map Result = isl::union_map::empty(UMap.get_space());

  for (isl::map Map : UMap.get_map_list()) {
    isl::map After = beforeScatter(Map, Strict);
    Result = Result.add_map(After);
  }

  return Result;
}

isl::map polly::afterScatter(isl::map Map, bool Strict) {
  isl::space RangeSpace = Map.get_space().range();
  isl::map ScatterRel =
      Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace);
  return Map.apply_range(ScatterRel);
}

isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) {
  isl::union_map Result = isl::union_map::empty(UMap.get_space());
  for (isl::map Map : UMap.get_map_list()) {
    isl::map After = afterScatter(Map, Strict);
    Result = Result.add_map(After);
  }
  return Result;
}

isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom,
                               bool InclTo) {
  isl::map AfterFrom = afterScatter(From, !InclFrom);
  isl::map BeforeTo = beforeScatter(To, !InclTo);

  return AfterFrom.intersect(BeforeTo);
}

isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To,
                                     bool InclFrom, bool InclTo) {
  isl::union_map AfterFrom = afterScatter(From, !InclFrom);
  isl::union_map BeforeTo = beforeScatter(To, !InclTo);

  return AfterFrom.intersect(BeforeTo);
}

isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) {
  if (!UMap)
    return nullptr;

  if (isl_union_map_n_map(UMap.get()) == 0)
    return isl::map::empty(ExpectedSpace);

  isl::map Result = isl::map::from_union_map(UMap);
  assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace));

  return Result;
}

isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) {
  if (!USet)
    return nullptr;

  if (isl_union_set_n_set(USet.get()) == 0)
    return isl::set::empty(ExpectedSpace);

  isl::set Result(USet);
  assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace));

  return Result;
}

unsigned polly::getNumScatterDims(const isl::union_map &Schedule) {
  unsigned Dims = 0;
  for (isl::map Map : Schedule.get_map_list())
    Dims = std::max(Dims, Map.dim(isl::dim::out));
  return Dims;
}

isl::space polly::getScatterSpace(const isl::union_map &Schedule) {
  if (!Schedule)
    return nullptr;
  unsigned Dims = getNumScatterDims(Schedule);
  isl::space ScatterSpace = Schedule.get_space().set_from_params();
  return ScatterSpace.add_dims(isl::dim::set, Dims);
}

isl::union_map polly::makeIdentityMap(const isl::union_set &USet,
                                      bool RestrictDomain) {
  isl::union_map Result = isl::union_map::empty(USet.get_space());
  for (isl::set Set : USet.get_set_list()) {
    isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set());
    if (RestrictDomain)
      IdentityMap = IdentityMap.intersect_domain(Set);
    Result = Result.add_map(IdentityMap);
  }
  return Result;
}

isl::map polly::reverseDomain(isl::map Map) {
  isl::space DomSpace = Map.get_space().domain().unwrap();
  isl::space Space1 = DomSpace.domain();
  isl::space Space2 = DomSpace.range();
  isl::map Swap = makeTupleSwapMap(Space1, Space2);
  return Map.apply_domain(Swap);
}

isl::union_map polly::reverseDomain(const isl::union_map &UMap) {
  isl::union_map Result = isl::union_map::empty(UMap.get_space());
  for (isl::map Map : UMap.get_map_list()) {
    auto Reversed = reverseDomain(std::move(Map));
    Result = Result.add_map(Reversed);
  }
  return Result;
}

isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) {
  int NumDims = Set.dim(isl::dim::set);
  if (Pos < 0)
    Pos = NumDims + Pos;
  assert(Pos < NumDims && "Dimension index must be in range");
  isl::space Space = Set.get_space();
  Space = Space.map_from_domain_and_range(Space);
  isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
  isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
  return Set.apply(TranslatorMap);
}

isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) {
  isl::union_set Result = isl::union_set::empty(USet.get_space());
  for (isl::set Set : USet.get_set_list()) {
    isl::set Shifted = shiftDim(Set, Pos, Amount);
    Result = Result.add_set(Shifted);
  }
  return Result;
}

isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) {
  int NumDims = Map.dim(Dim);
  if (Pos < 0)
    Pos = NumDims + Pos;
  assert(Pos < NumDims && "Dimension index must be in range");
  isl::space Space = Map.get_space();
  switch (Dim) {
  case isl::dim::in:
    Space = Space.domain();
    break;
  case isl::dim::out:
    Space = Space.range();
    break;
  default:
    llvm_unreachable("Unsupported value for 'dim'");
  }
  Space = Space.map_from_domain_and_range(Space);
  isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
  isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
  switch (Dim) {
  case isl::dim::in:
    return Map.apply_domain(TranslatorMap);
  case isl::dim::out:
    return Map.apply_range(TranslatorMap);
  default:
    llvm_unreachable("Unsupported value for 'dim'");
  }
}

isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos,
                               int Amount) {
  isl::union_map Result = isl::union_map::empty(UMap.get_space());

  for (isl::map Map : UMap.get_map_list()) {
    isl::map Shifted = shiftDim(Map, Dim, Pos, Amount);
    Result = Result.add_map(Shifted);
  }
  return Result;
}

void polly::simplify(isl::set &Set) {
  Set = isl::manage(isl_set_compute_divs(Set.copy()));
  Set = Set.detect_equalities();
  Set = Set.coalesce();
}

void polly::simplify(isl::union_set &USet) {
  USet = isl::manage(isl_union_set_compute_divs(USet.copy()));
  USet = USet.detect_equalities();
  USet = USet.coalesce();
}

void polly::simplify(isl::map &Map) {
  Map = isl::manage(isl_map_compute_divs(Map.copy()));
  Map = Map.detect_equalities();
  Map = Map.coalesce();
}

void polly::simplify(isl::union_map &UMap) {
  UMap = isl::manage(isl_union_map_compute_divs(UMap.copy()));
  UMap = UMap.detect_equalities();
  UMap = UMap.coalesce();
}

isl::union_map polly::computeReachingWrite(isl::union_map Schedule,
                                           isl::union_map Writes, bool Reverse,
                                           bool InclPrevDef, bool InclNextDef) {

  // { Scatter[] }
  isl::space ScatterSpace = getScatterSpace(Schedule);

  // { ScatterRead[] -> ScatterWrite[] }
  isl::map Relation;
  if (Reverse)
    Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace)
                           : isl::map::lex_le(ScatterSpace);
  else
    Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace)
                           : isl::map::lex_ge(ScatterSpace);

  // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] }
  isl::map RelationMap = Relation.range_map().reverse();

  // { Element[] -> ScatterWrite[] }
  isl::union_map WriteAction = Schedule.apply_domain(Writes);

  // { ScatterWrite[] -> Element[] }
  isl::union_map WriteActionRev = WriteAction.reverse();

  // { Element[] -> [ScatterUse[] -> ScatterWrite[]] }
  isl::union_map DefSchedRelation =
      isl::union_map(RelationMap).apply_domain(WriteActionRev);

  // For each element, at every point in time, map to the times of previous
  // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] }
  isl::union_map ReachableWrites = DefSchedRelation.uncurry();
  if (Reverse)
    ReachableWrites = ReachableWrites.lexmin();
  else
    ReachableWrites = ReachableWrites.lexmax();

  // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] }
  isl::union_map SelfUse = WriteAction.range_map();

  if (InclPrevDef && InclNextDef) {
    // Add the Def itself to the solution.
    ReachableWrites = ReachableWrites.unite(SelfUse).coalesce();
  } else if (!InclPrevDef && !InclNextDef) {
    // Remove Def itself from the solution.
    ReachableWrites = ReachableWrites.subtract(SelfUse);
  }

  // { [Element[] -> ScatterRead[]] -> Domain[] }
  return ReachableWrites.apply_range(Schedule.reverse());
}

isl::union_map
polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes,
                          isl::union_map Reads, bool ReadEltInSameInst,
                          bool IncludeLastRead, bool IncludeWrite) {
  // { Element[] -> Scatter[] }
  isl::union_map ReadActions = Schedule.apply_domain(Reads);
  isl::union_map WriteActions = Schedule.apply_domain(Writes);

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map EltDomWrites =
      Writes.reverse().range_map().apply_range(Schedule);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  isl::union_map ReachingOverwrite = computeReachingWrite(
      Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  isl::union_map ReadsOverwritten =
      ReachingOverwrite.intersect_domain(ReadActions.wrap());

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map ReadsOverwrittenRotated =
      reverseDomain(ReadsOverwritten).curry().reverse();
  isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax();

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map BetweenLastReadOverwrite = betweenScatter(
      LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  isl::union_map ReachingOverwriteZone = computeReachingWrite(
      Schedule, Writes, true, IncludeLastRead, IncludeWrite);

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map ReachingOverwriteRotated =
      reverseDomain(ReachingOverwriteZone).curry().reverse();

  // { [Element[] -> DomainWrite[]] -> Scatter[] }
  isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain(
      ReadsOverwrittenRotated.domain());

  return BetweenLastReadOverwrite.unite(WritesWithoutReads)
      .domain_factor_domain();
}

isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone,
                                              bool InclStart, bool InclEnd) {
  if (!InclStart && InclEnd)
    return Zone;

  auto ShiftedZone = shiftDim(Zone, -1, -1);
  if (InclStart && !InclEnd)
    return ShiftedZone;
  else if (!InclStart && !InclEnd)
    return Zone.intersect(ShiftedZone);

  assert(InclStart && InclEnd);
  return Zone.unite(ShiftedZone);
}

isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim,
                                              bool InclStart, bool InclEnd) {
  if (!InclStart && InclEnd)
    return Zone;

  auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
  if (InclStart && !InclEnd)
    return ShiftedZone;
  else if (!InclStart && !InclEnd)
    return Zone.intersect(ShiftedZone);

  assert(InclStart && InclEnd);
  return Zone.unite(ShiftedZone);
}

isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim,
                                        bool InclStart, bool InclEnd) {
  if (!InclStart && InclEnd)
    return Zone;

  auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
  if (InclStart && !InclEnd)
    return ShiftedZone;
  else if (!InclStart && !InclEnd)
    return Zone.intersect(ShiftedZone);

  assert(InclStart && InclEnd);
  return Zone.unite(ShiftedZone);
}

isl::map polly::distributeDomain(isl::map Map) {
  // Note that we cannot take Map apart into { Domain[] -> Range1[] } and {
  // Domain[] -> Range2[] } and combine again. We would loose any relation
  // between Range1[] and Range2[] that is not also a constraint to Domain[].

  isl::space Space = Map.get_space();
  isl::space DomainSpace = Space.domain();
  unsigned DomainDims = DomainSpace.dim(isl::dim::set);
  isl::space RangeSpace = Space.range().unwrap();
  isl::space Range1Space = RangeSpace.domain();
  unsigned Range1Dims = Range1Space.dim(isl::dim::set);
  isl::space Range2Space = RangeSpace.range();
  unsigned Range2Dims = Range2Space.dim(isl::dim::set);

  isl::space OutputSpace =
      DomainSpace.map_from_domain_and_range(Range1Space)
          .wrap()
          .map_from_domain_and_range(
              DomainSpace.map_from_domain_and_range(Range2Space).wrap());

  isl::basic_map Translator = isl::basic_map::universe(
      Space.wrap().map_from_domain_and_range(OutputSpace.wrap()));

  for (unsigned i = 0; i < DomainDims; i += 1) {
    Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i);
    Translator = Translator.equate(isl::dim::in, i, isl::dim::out,
                                   DomainDims + Range1Dims + i);
  }
  for (unsigned i = 0; i < Range1Dims; i += 1)
    Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out,
                                   DomainDims + i);
  for (unsigned i = 0; i < Range2Dims; i += 1)
    Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i,
                                   isl::dim::out,
                                   DomainDims + Range1Dims + DomainDims + i);

  return Map.wrap().apply(Translator).unwrap();
}

isl::union_map polly::distributeDomain(isl::union_map UMap) {
  isl::union_map Result = isl::union_map::empty(UMap.get_space());
  for (isl::map Map : UMap.get_map_list()) {
    auto Distributed = distributeDomain(Map);
    Result = Result.add_map(Distributed);
  }
  return Result;
}

isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) {

  // { Factor[] -> Factor[] }
  isl::union_map Factors = makeIdentityMap(Factor, true);

  return Factors.product(UMap);
}

isl::union_map polly::applyDomainRange(isl::union_map UMap,
                                       isl::union_map Func) {
  // This implementation creates unnecessary cross products of the
  // DomainDomain[] and Func. An alternative implementation could reverse
  // domain+uncurry,apply Func to what now is the domain, then undo the
  // preparing transformation. Another alternative implementation could create a
  // translator map for each piece.

  // { DomainDomain[] }
  isl::union_set DomainDomain = UMap.domain().unwrap().domain();

  // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]]
  // }
  isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain);

  return UMap.apply_domain(LifetedFunc);
}

isl::map polly::intersectRange(isl::map Map, isl::union_set Range) {
  isl::set RangeSet = Range.extract_set(Map.get_space().range());
  return Map.intersect_range(RangeSet);
}

isl::map polly::subtractParams(isl::map Map, isl::set Params) {
  auto MapSpace = Map.get_space();
  auto ParamsMap = isl::map::universe(MapSpace).intersect_params(Params);
  return Map.subtract(ParamsMap);
}

isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) {
  assert(!Max || !Min); // Cannot return min and max at the same time.
  isl::val Result;
  isl::stat Stat = PwAff.foreach_piece(
      [=, &Result](isl::set Set, isl::aff Aff) -> isl::stat {
        if (Result && Result.is_nan())
          return isl::stat::ok();

        // TODO: If Min/Max, we can also determine a minimum/maximum value if
        // Set is constant-bounded.
        if (!Aff.is_cst()) {
          Result = isl::val::nan(Aff.get_ctx());
          return isl::stat::error();
        }

        isl::val ThisVal = Aff.get_constant_val();
        if (!Result) {
          Result = ThisVal;
          return isl::stat::ok();
        }

        if (Result.eq(ThisVal))
          return isl::stat::ok();

        if (Max && ThisVal.gt(Result)) {
          Result = ThisVal;
          return isl::stat::ok();
        }

        if (Min && ThisVal.lt(Result)) {
          Result = ThisVal;
          return isl::stat::ok();
        }

        // Not compatible
        Result = isl::val::nan(Aff.get_ctx());
        return isl::stat::error();
      });

  if (Stat.is_error())
    return {};

  return Result;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void foreachPoint(const isl::set &Set,
                         const std::function<void(isl::point P)> &F) {
  Set.foreach_point([&](isl::point P) -> isl::stat {
    F(P);
    return isl::stat::ok();
  });
}

static void foreachPoint(isl::basic_set BSet,
                         const std::function<void(isl::point P)> &F) {
  foreachPoint(isl::set(BSet), F);
}

/// Determine the sorting order of the sets @p A and @p B without considering
/// the space structure.
///
/// Ordering is based on the lower bounds of the set's dimensions. First
/// dimensions are considered first.
static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) {
  unsigned ALen = A.dim(isl::dim::set);
  unsigned BLen = B.dim(isl::dim::set);
  unsigned Len = std::min(ALen, BLen);

  for (unsigned i = 0; i < Len; i += 1) {
    isl::basic_set ADim =
        A.project_out(isl::dim::param, 0, A.dim(isl::dim::param))
            .project_out(isl::dim::set, i + 1, ALen - i - 1)
            .project_out(isl::dim::set, 0, i);
    isl::basic_set BDim =
        B.project_out(isl::dim::param, 0, B.dim(isl::dim::param))
            .project_out(isl::dim::set, i + 1, BLen - i - 1)
            .project_out(isl::dim::set, 0, i);

    isl::basic_set AHull = isl::set(ADim).convex_hull();
    isl::basic_set BHull = isl::set(BDim).convex_hull();

    bool ALowerBounded =
        bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0));
    bool BLowerBounded =
        bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0));

    int BoundedCompare = BLowerBounded - ALowerBounded;
    if (BoundedCompare != 0)
      return BoundedCompare;

    if (!ALowerBounded || !BLowerBounded)
      continue;

    isl::pw_aff AMin = isl::set(ADim).dim_min(0);
    isl::pw_aff BMin = isl::set(BDim).dim_min(0);

    isl::val AMinVal = polly::getConstant(AMin, false, true);
    isl::val BMinVal = polly::getConstant(BMin, false, true);

    int MinCompare = AMinVal.sub(BMinVal).sgn();
    if (MinCompare != 0)
      return MinCompare;
  }

  // If all the dimensions' lower bounds are equal or incomparable, sort based
  // on the number of dimensions.
  return ALen - BLen;
}

/// Compare the sets @p A and @p B according to their nested space structure.
/// Returns 0 if the structure is considered equal.
/// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are
/// ignored, i.e. a tuple with the same name but different number of dimensions
/// are considered equal.
static int structureCompare(const isl::space &ASpace, const isl::space &BSpace,
                            bool ConsiderTupleLen) {
  int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping());
  if (WrappingCompare != 0)
    return WrappingCompare;

  if (ASpace.is_wrapping() && BSpace.is_wrapping()) {
    isl::space AMap = ASpace.unwrap();
    isl::space BMap = BSpace.unwrap();

    int FirstResult =
        structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen);
    if (FirstResult != 0)
      return FirstResult;

    return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen);
  }

  std::string AName;
  if (ASpace.has_tuple_name(isl::dim::set))
    AName = ASpace.get_tuple_name(isl::dim::set);

  std::string BName;
  if (BSpace.has_tuple_name(isl::dim::set))
    BName = BSpace.get_tuple_name(isl::dim::set);

  int NameCompare = AName.compare(BName);
  if (NameCompare != 0)
    return NameCompare;

  if (ConsiderTupleLen) {
    int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set);
    if (LenCompare != 0)
      return LenCompare;
  }

  return 0;
}

/// Compare the sets @p A and @p B according to their nested space structure. If
/// the structure is the same, sort using the dimension lower bounds.
/// Returns an std::sort compatible bool.
static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) {
  isl::space ASpace = A.get_space();
  isl::space BSpace = B.get_space();

  // Ignoring number of dimensions first ensures that structures with same tuple
  // names, but different number of dimensions are still sorted close together.
  int TupleNestingCompare = structureCompare(ASpace, BSpace, false);
  if (TupleNestingCompare != 0)
    return TupleNestingCompare < 0;

  int TupleCompare = structureCompare(ASpace, BSpace, true);
  if (TupleCompare != 0)
    return TupleCompare < 0;

  return flatCompare(A, B) < 0;
}

/// Print a string representation of @p USet to @p OS.
///
/// The pieces of @p USet are printed in a sorted order. Spaces with equal or
/// similar nesting structure are printed together. Compared to isl's own
/// printing function the uses the structure itself as base of the sorting, not
/// a hash of it. It ensures that e.g. maps spaces with same domain structure
/// are printed together. Set pieces with same structure are printed in order of
/// their lower bounds.
///
/// @param USet     Polyhedra to print.
/// @param OS       Target stream.
/// @param Simplify Whether to simplify the polyhedron before printing.
/// @param IsMap    Whether @p USet is a wrapped map. If true, sets are
///                 unwrapped before printing to again appear as a map.
static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS,
                                 bool Simplify, bool IsMap) {
  if (!USet) {
    OS << "<null>\n";
    return;
  }

  if (Simplify)
    simplify(USet);

  // Get all the polyhedra.
  std::vector<isl::basic_set> BSets;

  for (isl::set Set : USet.get_set_list()) {
    for (isl::basic_set BSet : Set.get_basic_set_list()) {
      BSets.push_back(BSet);
    }
  }

  if (BSets.empty()) {
    OS << "{\n}\n";
    return;
  }

  // Sort the polyhedra.
  llvm::sort(BSets, orderComparer);

  // Print the polyhedra.
  bool First = true;
  for (const isl::basic_set &BSet : BSets) {
    std::string Str;
    if (IsMap)
      Str = isl::map(BSet.unwrap()).to_str();
    else
      Str = isl::set(BSet).to_str();
    size_t OpenPos = Str.find_first_of('{');
    assert(OpenPos != std::string::npos);
    size_t ClosePos = Str.find_last_of('}');
    assert(ClosePos != std::string::npos);

    if (First)
      OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n ";
    else
      OS << ";\n ";

    OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2);
    First = false;
  }
  assert(!First);
  OS << "\n}\n";
}

static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) {
  int Dims = BSet.dim(isl::dim::set);
  if (Dim >= Dims) {
    Expanded = Expanded.unite(BSet);
    return;
  }

  isl::basic_set DimOnly =
      BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param))
          .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1)
          .project_out(isl::dim::set, 0, Dim);
  if (!DimOnly.is_bounded()) {
    recursiveExpand(BSet, Dim + 1, Expanded);
    return;
  }

  foreachPoint(DimOnly, [&, Dim](isl::point P) {
    isl::val Val = P.get_coordinate_val(isl::dim::set, 0);
    isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val);
    recursiveExpand(FixBSet, Dim + 1, Expanded);
  });
}

/// Make each point of a set explicit.
///
/// "Expanding" makes each point a set contains explicit. That is, the result is
/// a set of singleton polyhedra. Unbounded dimensions are not expanded.
///
/// Example:
///   { [i] : 0 <= i < 2 }
/// is expanded to:
///   { [0]; [1] }
static isl::set expand(const isl::set &Set) {
  isl::set Expanded = isl::set::empty(Set.get_space());
  for (isl::basic_set BSet : Set.get_basic_set_list())
    recursiveExpand(BSet, 0, Expanded);
  return Expanded;
}

/// Expand all points of a union set explicit.
///
/// @see expand(const isl::set)
static isl::union_set expand(const isl::union_set &USet) {
  isl::union_set Expanded = isl::union_set::empty(USet.get_space());
  for (isl::set Set : USet.get_set_list()) {
    isl::set SetExpanded = expand(Set);
    Expanded = Expanded.add_set(SetExpanded);
  }
  return Expanded;
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) {
  printSortedPolyhedra(Set, llvm::errs(), true, false);
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) {
  printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true);
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) {
  printSortedPolyhedra(USet, llvm::errs(), true, false);
}

LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) {
  printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true);
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) {
  dumpPw(isl::manage_copy(Set));
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) {
  dumpPw(isl::manage_copy(Map));
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) {
  dumpPw(isl::manage_copy(USet));
}

LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) {
  dumpPw(isl::manage_copy(UMap));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) {
  printSortedPolyhedra(expand(Set), llvm::errs(), false, false);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) {
  printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) {
  printSortedPolyhedra(expand(USet), llvm::errs(), false, false);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) {
  printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true);
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) {
  dumpExpanded(isl::manage_copy(Set));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) {
  dumpExpanded(isl::manage_copy(Map));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) {
  dumpExpanded(isl::manage_copy(USet));
}

LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) {
  dumpExpanded(isl::manage_copy(UMap));
}
#endif