reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
//===- SparsePropagation.cpp - Unit tests for the generic solver ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/SparsePropagation.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/IRBuilder.h"
#include "gtest/gtest.h"
using namespace llvm;

namespace {
/// To enable interprocedural analysis, we assign LLVM values to the following
/// groups. The register group represents SSA registers, the return group
/// represents the return values of functions, and the memory group represents
/// in-memory values. An LLVM Value can technically be in more than one group.
/// It's necessary to distinguish these groups so we can, for example, track a
/// global variable separately from the value stored at its location.
enum class IPOGrouping { Register, Return, Memory };

/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
/// The PointerIntPair header provides a DenseMapInfo specialization, so using
/// these as LatticeKeys is fine.
using TestLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
} // namespace

namespace llvm {
/// A specialization of LatticeKeyInfo for TestLatticeKeys. The generic solver
/// must translate between LatticeKeys and LLVM Values when adding Values to
/// its work list and inspecting the state of control-flow related values.
template <> struct LatticeKeyInfo<TestLatticeKey> {
  static inline Value *getValueFromLatticeKey(TestLatticeKey Key) {
    return Key.getPointer();
  }
  static inline TestLatticeKey getLatticeKeyFromValue(Value *V) {
    return TestLatticeKey(V, IPOGrouping::Register);
  }
};
} // namespace llvm

namespace {
/// This class defines a simple test lattice value that could be used for
/// solving problems similar to constant propagation. The value is maintained
/// as a PointerIntPair.
class TestLatticeVal {
public:
  /// The states of the lattices value. Only the ConstantVal state is
  /// interesting; the rest are special states used by the generic solver. The
  /// UntrackedVal state differs from the other three in that the generic
  /// solver uses it to avoid doing unnecessary work. In particular, when a
  /// value moves to the UntrackedVal state, it's users are not notified.
  enum TestLatticeStateTy {
    UndefinedVal,
    ConstantVal,
    OverdefinedVal,
    UntrackedVal
  };

  TestLatticeVal() : LatticeVal(nullptr, UndefinedVal) {}
  TestLatticeVal(Constant *C, TestLatticeStateTy State)
      : LatticeVal(C, State) {}

  /// Return true if this lattice value is in the Constant state. This is used
  /// for checking the solver results.
  bool isConstant() const { return LatticeVal.getInt() == ConstantVal; }

  /// Return true if this lattice value is in the Overdefined state. This is
  /// used for checking the solver results.
  bool isOverdefined() const { return LatticeVal.getInt() == OverdefinedVal; }

  bool operator==(const TestLatticeVal &RHS) const {
    return LatticeVal == RHS.LatticeVal;
  }

  bool operator!=(const TestLatticeVal &RHS) const {
    return LatticeVal != RHS.LatticeVal;
  }

private:
  /// A simple lattice value type for problems similar to constant propagation.
  /// It holds the constant value and the lattice state.
  PointerIntPair<const Constant *, 2, TestLatticeStateTy> LatticeVal;
};

/// This class defines a simple test lattice function that could be used for
/// solving problems similar to constant propagation. The test lattice differs
/// from a "real" lattice in a few ways. First, it initializes all return
/// values, values stored in global variables, and arguments in the undefined
/// state. This means that there are no limitations on what we can track
/// interprocedurally. For simplicity, all global values in the tests will be
/// given internal linkage, since this is not something this lattice function
/// tracks. Second, it only handles the few instructions necessary for the
/// tests.
class TestLatticeFunc
    : public AbstractLatticeFunction<TestLatticeKey, TestLatticeVal> {
public:
  /// Construct a new test lattice function with special values for the
  /// Undefined, Overdefined, and Untracked states.
  TestLatticeFunc()
      : AbstractLatticeFunction(
            TestLatticeVal(nullptr, TestLatticeVal::UndefinedVal),
            TestLatticeVal(nullptr, TestLatticeVal::OverdefinedVal),
            TestLatticeVal(nullptr, TestLatticeVal::UntrackedVal)) {}

  /// Compute and return a TestLatticeVal for the given TestLatticeKey. For the
  /// test analysis, a LatticeKey will begin in the undefined state, unless it
  /// represents an LLVM Constant in the register grouping.
  TestLatticeVal ComputeLatticeVal(TestLatticeKey Key) override {
    if (Key.getInt() == IPOGrouping::Register)
      if (auto *C = dyn_cast<Constant>(Key.getPointer()))
        return TestLatticeVal(C, TestLatticeVal::ConstantVal);
    return getUndefVal();
  }

  /// Merge the two given lattice values. This merge should be equivalent to
  /// what is done for constant propagation. That is, the resulting lattice
  /// value is constant only if the two given lattice values are constant and
  /// hold the same value.
  TestLatticeVal MergeValues(TestLatticeVal X, TestLatticeVal Y) override {
    if (X == getUntrackedVal() || Y == getUntrackedVal())
      return getUntrackedVal();
    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
      return getOverdefinedVal();
    if (X == getUndefVal() && Y == getUndefVal())
      return getUndefVal();
    if (X == getUndefVal())
      return Y;
    if (Y == getUndefVal())
      return X;
    if (X == Y)
      return X;
    return getOverdefinedVal();
  }

  /// Compute the lattice values that change as a result of executing the given
  /// instruction. We only handle the few instructions needed for the tests.
  void ComputeInstructionState(
      Instruction &I, DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
      SparseSolver<TestLatticeKey, TestLatticeVal> &SS) override {
    switch (I.getOpcode()) {
    case Instruction::Call:
      return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
    case Instruction::Ret:
      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
    case Instruction::Store:
      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
    default:
      return visitInst(I, ChangedValues, SS);
    }
  }

private:
  /// Handle call sites. The state of a called function's argument is the merge
  /// of the current formal argument state with the call site's corresponding
  /// actual argument state. The call site state is the merge of the call site
  /// state with the returned value state of the called function.
  void visitCallSite(CallSite CS,
                     DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                     SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    Function *F = CS.getCalledFunction();
    Instruction *I = CS.getInstruction();
    auto RegI = TestLatticeKey(I, IPOGrouping::Register);
    if (!F) {
      ChangedValues[RegI] = getOverdefinedVal();
      return;
    }
    SS.MarkBlockExecutable(&F->front());
    for (Argument &A : F->args()) {
      auto RegFormal = TestLatticeKey(&A, IPOGrouping::Register);
      auto RegActual =
          TestLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
      ChangedValues[RegFormal] =
          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
    }
    auto RetF = TestLatticeKey(F, IPOGrouping::Return);
    ChangedValues[RegI] =
        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
  }

  /// Handle return instructions. The function's return state is the merge of
  /// the returned value state and the function's current return state.
  void visitReturn(ReturnInst &I,
                   DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                   SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    Function *F = I.getParent()->getParent();
    if (F->getReturnType()->isVoidTy())
      return;
    auto RegR = TestLatticeKey(I.getReturnValue(), IPOGrouping::Register);
    auto RetF = TestLatticeKey(F, IPOGrouping::Return);
    ChangedValues[RetF] =
        MergeValues(SS.getValueState(RegR), SS.getValueState(RetF));
  }

  /// Handle store instructions. If the pointer operand of the store is a
  /// global variable, we attempt to track the value. The global variable state
  /// is the merge of the stored value state with the current global variable
  /// state.
  void visitStore(StoreInst &I,
                  DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                  SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
    if (!GV)
      return;
    auto RegVal = TestLatticeKey(I.getValueOperand(), IPOGrouping::Register);
    auto MemPtr = TestLatticeKey(GV, IPOGrouping::Memory);
    ChangedValues[MemPtr] =
        MergeValues(SS.getValueState(RegVal), SS.getValueState(MemPtr));
  }

  /// Handle all other instructions. All other instructions are marked
  /// overdefined.
  void visitInst(Instruction &I,
                 DenseMap<TestLatticeKey, TestLatticeVal> &ChangedValues,
                 SparseSolver<TestLatticeKey, TestLatticeVal> &SS) {
    auto RegI = TestLatticeKey(&I, IPOGrouping::Register);
    ChangedValues[RegI] = getOverdefinedVal();
  }
};

/// This class defines the common data used for all of the tests. The tests
/// should add code to the module and then run the solver.
class SparsePropagationTest : public testing::Test {
protected:
  LLVMContext Context;
  Module M;
  IRBuilder<> Builder;
  TestLatticeFunc Lattice;
  SparseSolver<TestLatticeKey, TestLatticeVal> Solver;

public:
  SparsePropagationTest()
      : M("", Context), Builder(Context), Solver(&Lattice) {}
};
} // namespace

/// Test that we mark discovered functions executable.
///
/// define internal void @f() {
///   call void @g()
///   ret void
/// }
///
/// define internal void @g() {
///   call void @f()
///   ret void
/// }
///
/// For this test, we initially mark "f" executable, and the solver discovers
/// "g" because of the call in "f". The mutually recursive call in "g" also
/// tests that we don't add a block to the basic block work list if it is
/// already executable. Doing so would put the solver into an infinite loop.
TEST_F(SparsePropagationTest, MarkBlockExecutable) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateCall(G);
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateCall(F);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.Solve();

  EXPECT_TRUE(Solver.isBlockExecutable(GEntry));
}

/// Test that we propagate information through global variables.
///
/// @gv = internal global i64
///
/// define internal void @f() {
///   store i64 1, i64* @gv
///   ret void
/// }
///
/// define internal void @g() {
///   store i64 1, i64* @gv
///   ret void
/// }
///
/// For this test, we initially mark both "f" and "g" executable, and the
/// solver computes the lattice state of the global variable as constant.
TEST_F(SparsePropagationTest, GlobalVariableConstant) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  GlobalVariable *GV =
      new GlobalVariable(M, Builder.getInt64Ty(), false,
                         GlobalValue::InternalLinkage, nullptr, "gv");
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateStore(Builder.getInt64(1), GV);
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateStore(Builder.getInt64(1), GV);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.MarkBlockExecutable(GEntry);
  Solver.Solve();

  auto MemGV = TestLatticeKey(GV, IPOGrouping::Memory);
  EXPECT_TRUE(Solver.getExistingValueState(MemGV).isConstant());
}

/// Test that we propagate information through global variables.
///
/// @gv = internal global i64
///
/// define internal void @f() {
///   store i64 0, i64* @gv
///   ret void
/// }
///
/// define internal void @g() {
///   store i64 1, i64* @gv
///   ret void
/// }
///
/// For this test, we initially mark both "f" and "g" executable, and the
/// solver computes the lattice state of the global variable as overdefined.
TEST_F(SparsePropagationTest, GlobalVariableOverDefined) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  GlobalVariable *GV =
      new GlobalVariable(M, Builder.getInt64Ty(), false,
                         GlobalValue::InternalLinkage, nullptr, "gv");
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateStore(Builder.getInt64(0), GV);
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateStore(Builder.getInt64(1), GV);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.MarkBlockExecutable(GEntry);
  Solver.Solve();

  auto MemGV = TestLatticeKey(GV, IPOGrouping::Memory);
  EXPECT_TRUE(Solver.getExistingValueState(MemGV).isOverdefined());
}

/// Test that we propagate information through function returns.
///
/// define internal i64 @f(i1* %cond) {
/// if:
///   %0 = load i1, i1* %cond
///   br i1 %0, label %then, label %else
///
/// then:
///   ret i64 1
///
/// else:
///   ret i64 1
/// }
///
/// For this test, we initially mark "f" executable, and the solver computes
/// the return value of the function as constant.
TEST_F(SparsePropagationTest, FunctionDefined) {
  Function *F =
      Function::Create(FunctionType::get(Builder.getInt64Ty(),
                                         {Type::getInt1PtrTy(Context)}, false),
                       GlobalValue::InternalLinkage, "f", &M);
  BasicBlock *If = BasicBlock::Create(Context, "if", F);
  BasicBlock *Then = BasicBlock::Create(Context, "then", F);
  BasicBlock *Else = BasicBlock::Create(Context, "else", F);
  F->arg_begin()->setName("cond");
  Builder.SetInsertPoint(If);
  LoadInst *Cond = Builder.CreateLoad(Type::getInt1Ty(Context), F->arg_begin());
  Builder.CreateCondBr(Cond, Then, Else);
  Builder.SetInsertPoint(Then);
  Builder.CreateRet(Builder.getInt64(1));
  Builder.SetInsertPoint(Else);
  Builder.CreateRet(Builder.getInt64(1));

  Solver.MarkBlockExecutable(If);
  Solver.Solve();

  auto RetF = TestLatticeKey(F, IPOGrouping::Return);
  EXPECT_TRUE(Solver.getExistingValueState(RetF).isConstant());
}

/// Test that we propagate information through function returns.
///
/// define internal i64 @f(i1* %cond) {
/// if:
///   %0 = load i1, i1* %cond
///   br i1 %0, label %then, label %else
///
/// then:
///   ret i64 0
///
/// else:
///   ret i64 1
/// }
///
/// For this test, we initially mark "f" executable, and the solver computes
/// the return value of the function as overdefined.
TEST_F(SparsePropagationTest, FunctionOverDefined) {
  Function *F =
      Function::Create(FunctionType::get(Builder.getInt64Ty(),
                                         {Type::getInt1PtrTy(Context)}, false),
                       GlobalValue::InternalLinkage, "f", &M);
  BasicBlock *If = BasicBlock::Create(Context, "if", F);
  BasicBlock *Then = BasicBlock::Create(Context, "then", F);
  BasicBlock *Else = BasicBlock::Create(Context, "else", F);
  F->arg_begin()->setName("cond");
  Builder.SetInsertPoint(If);
  LoadInst *Cond = Builder.CreateLoad(Type::getInt1Ty(Context), F->arg_begin());
  Builder.CreateCondBr(Cond, Then, Else);
  Builder.SetInsertPoint(Then);
  Builder.CreateRet(Builder.getInt64(0));
  Builder.SetInsertPoint(Else);
  Builder.CreateRet(Builder.getInt64(1));

  Solver.MarkBlockExecutable(If);
  Solver.Solve();

  auto RetF = TestLatticeKey(F, IPOGrouping::Return);
  EXPECT_TRUE(Solver.getExistingValueState(RetF).isOverdefined());
}

/// Test that we propagate information through arguments.
///
/// define internal void @f() {
///   call void @g(i64 0, i64 1)
///   call void @g(i64 1, i64 1)
///   ret void
/// }
///
/// define internal void @g(i64 %a, i64 %b) {
///   ret void
/// }
///
/// For this test, we initially mark "f" executable, and the solver discovers
/// "g" because of the calls in "f". The solver computes the state of argument
/// "a" as overdefined and the state of "b" as constant.
///
/// In addition, this test demonstrates that ComputeInstructionState can alter
/// the state of multiple lattice values, in addition to the one associated
/// with the instruction definition. Each call instruction in this test updates
/// the state of arguments "a" and "b".
TEST_F(SparsePropagationTest, ComputeInstructionState) {
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Function *G = Function::Create(
      FunctionType::get(Builder.getVoidTy(),
                        {Builder.getInt64Ty(), Builder.getInt64Ty()}, false),
      GlobalValue::InternalLinkage, "g", &M);
  Argument *A = G->arg_begin();
  Argument *B = std::next(G->arg_begin());
  A->setName("a");
  B->setName("b");
  BasicBlock *FEntry = BasicBlock::Create(Context, "", F);
  BasicBlock *GEntry = BasicBlock::Create(Context, "", G);
  Builder.SetInsertPoint(FEntry);
  Builder.CreateCall(G, {Builder.getInt64(0), Builder.getInt64(1)});
  Builder.CreateCall(G, {Builder.getInt64(1), Builder.getInt64(1)});
  Builder.CreateRetVoid();
  Builder.SetInsertPoint(GEntry);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(FEntry);
  Solver.Solve();

  auto RegA = TestLatticeKey(A, IPOGrouping::Register);
  auto RegB = TestLatticeKey(B, IPOGrouping::Register);
  EXPECT_TRUE(Solver.getExistingValueState(RegA).isOverdefined());
  EXPECT_TRUE(Solver.getExistingValueState(RegB).isConstant());
}

/// Test that we can handle exceptional terminator instructions.
///
/// declare internal void @p()
///
/// declare internal void @g()
///
/// define internal void @f() personality i8* bitcast (void ()* @p to i8*) {
/// entry:
///   invoke void @g()
///           to label %exit unwind label %catch.pad
///
/// catch.pad:
///   %0 = catchswitch within none [label %catch.body] unwind to caller
///
/// catch.body:
///   %1 = catchpad within %0 []
///   catchret from %1 to label %exit
///
/// exit:
///   ret void
/// }
///
/// For this test, we initially mark the entry block executable. The solver
/// then discovers the rest of the blocks in the function are executable.
TEST_F(SparsePropagationTest, ExceptionalTerminatorInsts) {
  Function *P = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "p", &M);
  Function *G = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "g", &M);
  Function *F = Function::Create(FunctionType::get(Builder.getVoidTy(), false),
                                 GlobalValue::InternalLinkage, "f", &M);
  Constant *C =
      ConstantExpr::getCast(Instruction::BitCast, P, Builder.getInt8PtrTy());
  F->setPersonalityFn(C);
  BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
  BasicBlock *Pad = BasicBlock::Create(Context, "catch.pad", F);
  BasicBlock *Body = BasicBlock::Create(Context, "catch.body", F);
  BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
  Builder.SetInsertPoint(Entry);
  Builder.CreateInvoke(G, Exit, Pad);
  Builder.SetInsertPoint(Pad);
  CatchSwitchInst *CatchSwitch =
      Builder.CreateCatchSwitch(ConstantTokenNone::get(Context), nullptr, 1);
  CatchSwitch->addHandler(Body);
  Builder.SetInsertPoint(Body);
  CatchPadInst *CatchPad = Builder.CreateCatchPad(CatchSwitch, {});
  Builder.CreateCatchRet(CatchPad, Exit);
  Builder.SetInsertPoint(Exit);
  Builder.CreateRetVoid();

  Solver.MarkBlockExecutable(Entry);
  Solver.Solve();

  EXPECT_TRUE(Solver.isBlockExecutable(Pad));
  EXPECT_TRUE(Solver.isBlockExecutable(Body));
  EXPECT_TRUE(Solver.isBlockExecutable(Exit));
}