reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
//===- RandomIRBuilderTest.cpp - Tests for injector strategy --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"

#include "gtest/gtest.h"

using namespace llvm;

static constexpr int Seed = 5;

namespace {

std::unique_ptr<Module> parseAssembly(
    const char *Assembly, LLVMContext &Context) {

  SMDiagnostic Error;
  std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);

  std::string ErrMsg;
  raw_string_ostream OS(ErrMsg);
  Error.print("", OS);

  assert(M && !verifyModule(*M, &errs()));
  return M;
}

TEST(RandomIRBuilderTest, ShuffleVectorIncorrectOperands) {
  // Test that we don't create load instruction as a source for the shuffle
  // vector operation.

  LLVMContext Ctx;
  const char *Source =
      "define <2 x i32> @test(<2 x i1> %cond, <2 x i32> %a) {\n"
      "  %A = alloca <2 x i32>\n"
      "  %I = insertelement <2 x i32> %a, i32 1, i32 1\n"
      "  ret <2 x i32> undef\n"
      "}";
  auto M = parseAssembly(Source, Ctx);

  fuzzerop::OpDescriptor Descr = fuzzerop::shuffleVectorDescriptor(1);

  // Empty known types since we ShuffleVector descriptor doesn't care about them
  RandomIRBuilder IB(Seed, {});

  // Get first basic block of the first function
  Function &F = *M->begin();
  BasicBlock &BB = *F.begin();

  SmallVector<Instruction *, 32> Insts;
  for (auto I = BB.getFirstInsertionPt(), E = BB.end(); I != E; ++I)
    Insts.push_back(&*I);

  // Pick first and second sources
  SmallVector<Value *, 2> Srcs;
  ASSERT_TRUE(Descr.SourcePreds[0].matches(Srcs, Insts[1]));
  Srcs.push_back(Insts[1]);
  ASSERT_TRUE(Descr.SourcePreds[1].matches(Srcs, Insts[1]));
  Srcs.push_back(Insts[1]);

  // Create new source. Check that it always matches with the descriptor.
  // Run some iterations to account for random decisions.
  for (int i = 0; i < 10; ++i) {
    Value *LastSrc = IB.newSource(BB, Insts, Srcs, Descr.SourcePreds[2]);
    ASSERT_TRUE(Descr.SourcePreds[2].matches(Srcs, LastSrc));
  }
}

TEST(RandomIRBuilderTest, InsertValueIndexes) {
  // Check that we will generate correct indexes for the insertvalue operation

  LLVMContext Ctx;
  const char *Source =
      "%T = type {i8, i32, i64}\n"
      "define void @test() {\n"
      "  %A = alloca %T\n"
      "  %L = load %T, %T* %A"
      "  ret void\n"
      "}";
  auto M = parseAssembly(Source, Ctx);

  fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1);

  std::vector<Type *> Types =
      {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx), Type::getInt64Ty(Ctx)};
  RandomIRBuilder IB(Seed, Types);

  // Get first basic block of the first function
  Function &F = *M->begin();
  BasicBlock &BB = *F.begin();

  // Pick first source
  Instruction *Src = &*std::next(BB.begin());

  SmallVector<Value *, 2> Srcs(2);
  ASSERT_TRUE(IVDescr.SourcePreds[0].matches({}, Src));
  Srcs[0] = Src;

  // Generate constants for each of the types and check that we pick correct
  // index for the given type
  for (auto *T: Types) {
    // Loop to account for possible random decisions
    for (int i = 0; i < 10; ++i) {
      // Create value we want to insert. Only it's type matters.
      Srcs[1] = ConstantInt::get(T, 5);

      // Try to pick correct index
      Value *Src = IB.findOrCreateSource(
          BB, &*BB.begin(), Srcs, IVDescr.SourcePreds[2]);
      ASSERT_TRUE(IVDescr.SourcePreds[2].matches(Srcs, Src));
    }
  }
}

TEST(RandomIRBuilderTest, ShuffleVectorSink) {
  // Check that we will never use shuffle vector mask as a sink form the
  // unrelated operation.

  LLVMContext Ctx;
  const char *SourceCode =
      "define void @test(<4 x i32> %a) {\n"
      "  %S1 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n"
      "  %S2 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n"
      "  ret void\n"
      "}";
  auto M = parseAssembly(SourceCode, Ctx);

  fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1);

  RandomIRBuilder IB(Seed, {});

  // Get first basic block of the first function
  Function &F = *M->begin();
  BasicBlock &BB = *F.begin();

  // Source is %S1
  Instruction *Source = &*BB.begin();
  // Sink is %S2
  SmallVector<Instruction *, 1> Sinks = {&*std::next(BB.begin())};

  // Loop to account for random decisions
  for (int i = 0; i < 10; ++i) {
    // Try to connect S1 to S2. We should always create new sink.
    IB.connectToSink(BB, Sinks, Source);
    ASSERT_TRUE(!verifyModule(*M, &errs()));
  }
}

TEST(RandomIRBuilderTest, InsertValueArray) {
  // Check that we can generate insertvalue for the vector operations

  LLVMContext Ctx;
  const char *SourceCode =
      "define void @test() {\n"
      "  %A = alloca [8 x i32]\n"
      "  %L = load [8 x i32], [8 x i32]* %A"
      "  ret void\n"
      "}";
  auto M = parseAssembly(SourceCode, Ctx);

  fuzzerop::OpDescriptor Descr = fuzzerop::insertValueDescriptor(1);

  std::vector<Type *> Types =
      {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx), Type::getInt64Ty(Ctx)};
  RandomIRBuilder IB(Seed, Types);

  // Get first basic block of the first function
  Function &F = *M->begin();
  BasicBlock &BB = *F.begin();

  // Pick first source
  Instruction *Source = &*std::next(BB.begin());
  ASSERT_TRUE(Descr.SourcePreds[0].matches({}, Source));

  SmallVector<Value *, 2> Srcs(2);

  // Check that we can always pick the last two operands.
  for (int i = 0; i < 10; ++i) {
    Srcs[0] = Source;
    Srcs[1] = IB.findOrCreateSource(BB, {Source}, Srcs, Descr.SourcePreds[1]);
    IB.findOrCreateSource(BB, {}, Srcs, Descr.SourcePreds[2]);
  }
}

TEST(RandomIRBuilderTest, Invokes) {
  // Check that we never generate load or store after invoke instruction

  LLVMContext Ctx;
  const char *SourceCode =
      "declare i32* @f()"
      "declare i32 @personality_function()"
      "define i32* @test() personality i32 ()* @personality_function {\n"
      "entry:\n"
      "  %val = invoke i32* @f()\n"
      "          to label %normal unwind label %exceptional\n"
      "normal:\n"
      "  ret i32* %val\n"
      "exceptional:\n"
      "  %landing_pad4 = landingpad token cleanup\n"
      "  ret i32* undef\n"
      "}";
  auto M = parseAssembly(SourceCode, Ctx);


  std::vector<Type *> Types = {Type::getInt8Ty(Ctx)};
  RandomIRBuilder IB(Seed, Types);

  // Get first basic block of the test function
  Function &F = *M->getFunction("test");
  BasicBlock &BB = *F.begin();

  Instruction *Invoke = &*BB.begin();

  // Find source but never insert new load after invoke
  for (int i = 0; i < 10; ++i) {
    (void)IB.findOrCreateSource(BB, {Invoke}, {}, fuzzerop::anyIntType());
    ASSERT_TRUE(!verifyModule(*M, &errs()));
  }
}

TEST(RandomIRBuilderTest, FirstClassTypes) {
  // Check that we never insert new source as a load from non first class
  // or unsized type.

  LLVMContext Ctx;
  const char *SourceCode = "%Opaque = type opaque\n"
                           "define void @test(i8* %ptr) {\n"
                           "entry:\n"
                           "  %tmp = bitcast i8* %ptr to i32* (i32*)*\n"
                           "  %tmp1 = bitcast i8* %ptr to %Opaque*\n"
                           "  ret void\n"
                           "}";
  auto M = parseAssembly(SourceCode, Ctx);

  std::vector<Type *> Types = {Type::getInt8Ty(Ctx)};
  RandomIRBuilder IB(Seed, Types);

  Function &F = *M->getFunction("test");
  BasicBlock &BB = *F.begin();
  // Non first class type
  Instruction *FuncPtr = &*BB.begin();
  // Unsized type
  Instruction *OpaquePtr = &*std::next(BB.begin());

  for (int i = 0; i < 10; ++i) {
    Value *V = IB.findOrCreateSource(BB, {FuncPtr, OpaquePtr});
    ASSERT_FALSE(isa<LoadInst>(V));
  }
}

TEST(RandomIRBuilderTest, SwiftError) {
  // Check that we never pick swifterror value as a source for operation
  // other than load, store and call.

  LLVMContext Ctx;
  const char *SourceCode = "declare void @use(i8** swifterror %err)"
                           "define void @test() {\n"
                           "entry:\n"
                           "  %err = alloca swifterror i8*, align 8\n"
                           "  call void @use(i8** swifterror %err)\n"
                           "  ret void\n"
                           "}";
  auto M = parseAssembly(SourceCode, Ctx);

  std::vector<Type *> Types = {Type::getInt8Ty(Ctx)};
  RandomIRBuilder IB(Seed, Types);

  // Get first basic block of the test function
  Function &F = *M->getFunction("test");
  BasicBlock &BB = *F.begin();
  Instruction *Alloca = &*BB.begin();

  fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);

  for (int i = 0; i < 10; ++i) {
    Value *V = IB.findOrCreateSource(BB, {Alloca}, {}, Descr.SourcePreds[0]);
    ASSERT_FALSE(isa<AllocaInst>(V));
  }
}

}