reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
//===- llvm/InlineAsm.h - Class to represent inline asm strings -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class represents the inline asm strings, which are Value*'s that are
// used as the callee operand of call instructions.  InlineAsm's are uniqued
// like constants, and created via InlineAsm::get(...).
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_INLINEASM_H
#define LLVM_IR_INLINEASM_H

#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Value.h"
#include <cassert>
#include <string>
#include <vector>

namespace llvm {

class FunctionType;
class PointerType;
template <class ConstantClass> class ConstantUniqueMap;

class InlineAsm final : public Value {
public:
  enum AsmDialect {
    AD_ATT,
    AD_Intel
  };

private:
  friend struct InlineAsmKeyType;
  friend class ConstantUniqueMap<InlineAsm>;

  std::string AsmString, Constraints;
  FunctionType *FTy;
  bool HasSideEffects;
  bool IsAlignStack;
  AsmDialect Dialect;

  InlineAsm(FunctionType *Ty, const std::string &AsmString,
            const std::string &Constraints, bool hasSideEffects,
            bool isAlignStack, AsmDialect asmDialect);

  /// When the ConstantUniqueMap merges two types and makes two InlineAsms
  /// identical, it destroys one of them with this method.
  void destroyConstant();

public:
  InlineAsm(const InlineAsm &) = delete;
  InlineAsm &operator=(const InlineAsm &) = delete;

  /// InlineAsm::get - Return the specified uniqued inline asm string.
  ///
  static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
                        StringRef Constraints, bool hasSideEffects,
                        bool isAlignStack = false,
                        AsmDialect asmDialect = AD_ATT);

  bool hasSideEffects() const { return HasSideEffects; }
  bool isAlignStack() const { return IsAlignStack; }
  AsmDialect getDialect() const { return Dialect; }

  /// getType - InlineAsm's are always pointers.
  ///
  PointerType *getType() const {
    return reinterpret_cast<PointerType*>(Value::getType());
  }

  /// getFunctionType - InlineAsm's are always pointers to functions.
  ///
  FunctionType *getFunctionType() const;

  const std::string &getAsmString() const { return AsmString; }
  const std::string &getConstraintString() const { return Constraints; }

  /// Verify - This static method can be used by the parser to check to see if
  /// the specified constraint string is legal for the type.  This returns true
  /// if legal, false if not.
  ///
  static bool Verify(FunctionType *Ty, StringRef Constraints);

  // Constraint String Parsing
  enum ConstraintPrefix {
    isInput,            // 'x'
    isOutput,           // '=x'
    isClobber           // '~x'
  };

  using ConstraintCodeVector = std::vector<std::string>;

  struct SubConstraintInfo {
    /// MatchingInput - If this is not -1, this is an output constraint where an
    /// input constraint is required to match it (e.g. "0").  The value is the
    /// constraint number that matches this one (for example, if this is
    /// constraint #0 and constraint #4 has the value "0", this will be 4).
    int MatchingInput = -1;

    /// Code - The constraint code, either the register name (in braces) or the
    /// constraint letter/number.
    ConstraintCodeVector Codes;

    /// Default constructor.
    SubConstraintInfo() = default;
  };

  using SubConstraintInfoVector = std::vector<SubConstraintInfo>;
  struct ConstraintInfo;
  using ConstraintInfoVector = std::vector<ConstraintInfo>;

  struct ConstraintInfo {
    /// Type - The basic type of the constraint: input/output/clobber
    ///
    ConstraintPrefix Type = isInput;

    /// isEarlyClobber - "&": output operand writes result before inputs are all
    /// read.  This is only ever set for an output operand.
    bool isEarlyClobber = false;

    /// MatchingInput - If this is not -1, this is an output constraint where an
    /// input constraint is required to match it (e.g. "0").  The value is the
    /// constraint number that matches this one (for example, if this is
    /// constraint #0 and constraint #4 has the value "0", this will be 4).
    int MatchingInput = -1;

    /// hasMatchingInput - Return true if this is an output constraint that has
    /// a matching input constraint.
    bool hasMatchingInput() const { return MatchingInput != -1; }

    /// isCommutative - This is set to true for a constraint that is commutative
    /// with the next operand.
    bool isCommutative = false;

    /// isIndirect - True if this operand is an indirect operand.  This means
    /// that the address of the source or destination is present in the call
    /// instruction, instead of it being returned or passed in explicitly.  This
    /// is represented with a '*' in the asm string.
    bool isIndirect = false;

    /// Code - The constraint code, either the register name (in braces) or the
    /// constraint letter/number.
    ConstraintCodeVector Codes;

    /// isMultipleAlternative - '|': has multiple-alternative constraints.
    bool isMultipleAlternative = false;

    /// multipleAlternatives - If there are multiple alternative constraints,
    /// this array will contain them.  Otherwise it will be empty.
    SubConstraintInfoVector multipleAlternatives;

    /// The currently selected alternative constraint index.
    unsigned currentAlternativeIndex = 0;

    /// Default constructor.
    ConstraintInfo() = default;

    /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
    /// fields in this structure.  If the constraint string is not understood,
    /// return true, otherwise return false.
    bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);

    /// selectAlternative - Point this constraint to the alternative constraint
    /// indicated by the index.
    void selectAlternative(unsigned index);
  };

  /// ParseConstraints - Split up the constraint string into the specific
  /// constraints and their prefixes.  If this returns an empty vector, and if
  /// the constraint string itself isn't empty, there was an error parsing.
  static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);

  /// ParseConstraints - Parse the constraints of this inlineasm object,
  /// returning them the same way that ParseConstraints(str) does.
  ConstraintInfoVector ParseConstraints() const {
    return ParseConstraints(Constraints);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Value *V) {
    return V->getValueID() == Value::InlineAsmVal;
  }

  // These are helper methods for dealing with flags in the INLINEASM SDNode
  // in the backend.
  //
  // The encoding of the flag word is currently:
  //   Bits 2-0 - A Kind_* value indicating the kind of the operand.
  //   Bits 15-3 - The number of SDNode operands associated with this inline
  //               assembly operand.
  //   If bit 31 is set:
  //     Bit 30-16 - The operand number that this operand must match.
  //                 When bits 2-0 are Kind_Mem, the Constraint_* value must be
  //                 obtained from the flags for this operand number.
  //   Else if bits 2-0 are Kind_Mem:
  //     Bit 30-16 - A Constraint_* value indicating the original constraint
  //                 code.
  //   Else:
  //     Bit 30-16 - The register class ID to use for the operand.

  enum : uint32_t {
    // Fixed operands on an INLINEASM SDNode.
    Op_InputChain = 0,
    Op_AsmString = 1,
    Op_MDNode = 2,
    Op_ExtraInfo = 3,    // HasSideEffects, IsAlignStack, AsmDialect.
    Op_FirstOperand = 4,

    // Fixed operands on an INLINEASM MachineInstr.
    MIOp_AsmString = 0,
    MIOp_ExtraInfo = 1,    // HasSideEffects, IsAlignStack, AsmDialect.
    MIOp_FirstOperand = 2,

    // Interpretation of the MIOp_ExtraInfo bit field.
    Extra_HasSideEffects = 1,
    Extra_IsAlignStack = 2,
    Extra_AsmDialect = 4,
    Extra_MayLoad = 8,
    Extra_MayStore = 16,
    Extra_IsConvergent = 32,

    // Inline asm operands map to multiple SDNode / MachineInstr operands.
    // The first operand is an immediate describing the asm operand, the low
    // bits is the kind:
    Kind_RegUse = 1,             // Input register, "r".
    Kind_RegDef = 2,             // Output register, "=r".
    Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
    Kind_Clobber = 4,            // Clobbered register, "~r".
    Kind_Imm = 5,                // Immediate.
    Kind_Mem = 6,                // Memory operand, "m".

    // Memory constraint codes.
    // These could be tablegenerated but there's little need to do that since
    // there's plenty of space in the encoding to support the union of all
    // constraint codes for all targets.
    Constraint_Unknown = 0,
    Constraint_es,
    Constraint_i,
    Constraint_m,
    Constraint_o,
    Constraint_v,
    Constraint_A,
    Constraint_Q,
    Constraint_R,
    Constraint_S,
    Constraint_T,
    Constraint_Um,
    Constraint_Un,
    Constraint_Uq,
    Constraint_Us,
    Constraint_Ut,
    Constraint_Uv,
    Constraint_Uy,
    Constraint_X,
    Constraint_Z,
    Constraint_ZC,
    Constraint_Zy,
    Constraints_Max = Constraint_Zy,
    Constraints_ShiftAmount = 16,

    Flag_MatchingOperand = 0x80000000
  };

  static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
    assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
    assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind");
    return Kind | (NumOps << 3);
  }

  static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
  static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
  static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
  static bool isRegDefEarlyClobberKind(unsigned Flag) {
    return getKind(Flag) == Kind_RegDefEarlyClobber;
  }
  static bool isClobberKind(unsigned Flag) {
    return getKind(Flag) == Kind_Clobber;
  }

  /// getFlagWordForMatchingOp - Augment an existing flag word returned by
  /// getFlagWord with information indicating that this input operand is tied
  /// to a previous output operand.
  static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
                                           unsigned MatchedOperandNo) {
    assert(MatchedOperandNo <= 0x7fff && "Too big matched operand");
    assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
  }

  /// getFlagWordForRegClass - Augment an existing flag word returned by
  /// getFlagWord with the required register class for the following register
  /// operands.
  /// A tied use operand cannot have a register class, use the register class
  /// from the def operand instead.
  static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) {
    // Store RC + 1, reserve the value 0 to mean 'no register class'.
    ++RC;
    assert(!isImmKind(InputFlag) && "Immediates cannot have a register class");
    assert(!isMemKind(InputFlag) && "Memory operand cannot have a register class");
    assert(RC <= 0x7fff && "Too large register class ID");
    assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    return InputFlag | (RC << 16);
  }

  /// Augment an existing flag word returned by getFlagWord with the constraint
  /// code for a memory constraint.
  static unsigned getFlagWordForMem(unsigned InputFlag, unsigned Constraint) {
    assert(isMemKind(InputFlag) && "InputFlag is not a memory constraint!");
    assert(Constraint <= 0x7fff && "Too large a memory constraint ID");
    assert(Constraint <= Constraints_Max && "Unknown constraint ID");
    assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
    return InputFlag | (Constraint << Constraints_ShiftAmount);
  }

  static unsigned convertMemFlagWordToMatchingFlagWord(unsigned InputFlag) {
    assert(isMemKind(InputFlag));
    return InputFlag & ~(0x7fff << Constraints_ShiftAmount);
  }

  static unsigned getKind(unsigned Flags) {
    return Flags & 7;
  }

  static unsigned getMemoryConstraintID(unsigned Flag) {
    assert(isMemKind(Flag));
    return (Flag >> Constraints_ShiftAmount) & 0x7fff;
  }

  /// getNumOperandRegisters - Extract the number of registers field from the
  /// inline asm operand flag.
  static unsigned getNumOperandRegisters(unsigned Flag) {
    return (Flag & 0xffff) >> 3;
  }

  /// isUseOperandTiedToDef - Return true if the flag of the inline asm
  /// operand indicates it is an use operand that's matched to a def operand.
  static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
    if ((Flag & Flag_MatchingOperand) == 0)
      return false;
    Idx = (Flag & ~Flag_MatchingOperand) >> 16;
    return true;
  }

  /// hasRegClassConstraint - Returns true if the flag contains a register
  /// class constraint.  Sets RC to the register class ID.
  static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) {
    if (Flag & Flag_MatchingOperand)
      return false;
    unsigned High = Flag >> 16;
    // getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
    // stores RC + 1.
    if (!High)
      return false;
    RC = High - 1;
    return true;
  }
};

} // end namespace llvm

#endif // LLVM_IR_INLINEASM_H