reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
//===- DependenceGraphBuilder.cpp ------------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements common steps of the build algorithm for construction
// of dependence graphs such as DDG and PDG.
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DependenceGraphBuilder.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DDG.h"

using namespace llvm;

#define DEBUG_TYPE "dgb"

STATISTIC(TotalGraphs, "Number of dependence graphs created.");
STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
STATISTIC(TotalConfusedEdges,
          "Number of confused memory dependencies between two nodes.");
STATISTIC(TotalEdgeReversals,
          "Number of times the source and sink of dependence was reversed to "
          "expose cycles in the graph.");

using InstructionListType = SmallVector<Instruction *, 2>;

//===--------------------------------------------------------------------===//
// AbstractDependenceGraphBuilder implementation
//===--------------------------------------------------------------------===//

template <class G>
void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
  ++TotalGraphs;
  assert(IMap.empty() && "Expected empty instruction map at start");
  for (BasicBlock *BB : BBList)
    for (Instruction &I : *BB) {
      auto &NewNode = createFineGrainedNode(I);
      IMap.insert(std::make_pair(&I, &NewNode));
      ++TotalFineGrainedNodes;
    }
}

template <class G>
void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
  // Create a root node that connects to every connected component of the graph.
  // This is done to allow graph iterators to visit all the disjoint components
  // of the graph, in a single walk.
  //
  // This algorithm works by going through each node of the graph and for each
  // node N, do a DFS starting from N. A rooted edge is established between the
  // root node and N (if N is not yet visited). All the nodes reachable from N
  // are marked as visited and are skipped in the DFS of subsequent nodes.
  //
  // Note: This algorithm tries to limit the number of edges out of the root
  // node to some extent, but there may be redundant edges created depending on
  // the iteration order. For example for a graph {A -> B}, an edge from the
  // root node is added to both nodes if B is visited before A. While it does
  // not result in minimal number of edges, this approach saves compile-time
  // while keeping the number of edges in check.
  auto &RootNode = createRootNode();
  df_iterator_default_set<const NodeType *, 4> Visited;
  for (auto *N : Graph) {
    if (*N == RootNode)
      continue;
    for (auto I : depth_first_ext(N, Visited))
      if (I == N)
        createRootedEdge(RootNode, *N);
  }
}

template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
  for (NodeType *N : Graph) {
    InstructionListType SrcIList;
    N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);

    // Use a set to mark the targets that we link to N, so we don't add
    // duplicate def-use edges when more than one instruction in a target node
    // use results of instructions that are contained in N.
    SmallPtrSet<NodeType *, 4> VisitedTargets;

    for (Instruction *II : SrcIList) {
      for (User *U : II->users()) {
        Instruction *UI = dyn_cast<Instruction>(U);
        if (!UI)
          continue;
        NodeType *DstNode = nullptr;
        if (IMap.find(UI) != IMap.end())
          DstNode = IMap.find(UI)->second;

        // In the case of loops, the scope of the subgraph is all the
        // basic blocks (and instructions within them) belonging to the loop. We
        // simply ignore all the edges coming from (or going into) instructions
        // or basic blocks outside of this range.
        if (!DstNode) {
          LLVM_DEBUG(
              dbgs()
              << "skipped def-use edge since the sink" << *UI
              << " is outside the range of instructions being considered.\n");
          continue;
        }

        // Self dependencies are ignored because they are redundant and
        // uninteresting.
        if (DstNode == N) {
          LLVM_DEBUG(dbgs()
                     << "skipped def-use edge since the sink and the source ("
                     << N << ") are the same.\n");
          continue;
        }

        if (VisitedTargets.insert(DstNode).second) {
          createDefUseEdge(*N, *DstNode);
          ++TotalDefUseEdges;
        }
      }
    }
  }
}

template <class G>
void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
  using DGIterator = typename G::iterator;
  auto isMemoryAccess = [](const Instruction *I) {
    return I->mayReadOrWriteMemory();
  };
  for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
    InstructionListType SrcIList;
    (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
    if (SrcIList.empty())
      continue;

    for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
      if (**SrcIt == **DstIt)
        continue;
      InstructionListType DstIList;
      (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
      if (DstIList.empty())
        continue;
      bool ForwardEdgeCreated = false;
      bool BackwardEdgeCreated = false;
      for (Instruction *ISrc : SrcIList) {
        for (Instruction *IDst : DstIList) {
          auto D = DI.depends(ISrc, IDst, true);
          if (!D)
            continue;

          // If we have a dependence with its left-most non-'=' direction
          // being '>' we need to reverse the direction of the edge, because
          // the source of the dependence cannot occur after the sink. For
          // confused dependencies, we will create edges in both directions to
          // represent the possibility of a cycle.

          auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
            if (!ForwardEdgeCreated) {
              createMemoryEdge(Src, Dst);
              ++TotalMemoryEdges;
            }
            if (!BackwardEdgeCreated) {
              createMemoryEdge(Dst, Src);
              ++TotalMemoryEdges;
            }
            ForwardEdgeCreated = BackwardEdgeCreated = true;
            ++TotalConfusedEdges;
          };

          auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
            if (!ForwardEdgeCreated) {
              createMemoryEdge(Src, Dst);
              ++TotalMemoryEdges;
            }
            ForwardEdgeCreated = true;
          };

          auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
            if (!BackwardEdgeCreated) {
              createMemoryEdge(Dst, Src);
              ++TotalMemoryEdges;
            }
            BackwardEdgeCreated = true;
          };

          if (D->isConfused())
            createConfusedEdges(**SrcIt, **DstIt);
          else if (D->isOrdered() && !D->isLoopIndependent()) {
            bool ReversedEdge = false;
            for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
              if (D->getDirection(Level) == Dependence::DVEntry::EQ)
                continue;
              else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
                createBackwardEdge(**SrcIt, **DstIt);
                ReversedEdge = true;
                ++TotalEdgeReversals;
                break;
              } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
                break;
              else {
                createConfusedEdges(**SrcIt, **DstIt);
                break;
              }
            }
            if (!ReversedEdge)
              createForwardEdge(**SrcIt, **DstIt);
          } else
            createForwardEdge(**SrcIt, **DstIt);

          // Avoid creating duplicate edges.
          if (ForwardEdgeCreated && BackwardEdgeCreated)
            break;
        }

        // If we've created edges in both directions, there is no more
        // unique edge that we can create between these two nodes, so we
        // can exit early.
        if (ForwardEdgeCreated && BackwardEdgeCreated)
          break;
      }
    }
  }
}

template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
template class llvm::DependenceGraphInfo<DDGNode>;