reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
//===-- AArch64ConditionalCompares.cpp --- CCMP formation for AArch64 -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64ConditionalCompares pass which reduces
// branching and code size by using the conditional compare instructions CCMP,
// CCMN, and FCMP.
//
// The CFG transformations for forming conditional compares are very similar to
// if-conversion, and this pass should run immediately before the early
// if-conversion pass.
//
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-ccmp"

// Absolute maximum number of instructions allowed per speculated block.
// This bypasses all other heuristics, so it should be set fairly high.
static cl::opt<unsigned> BlockInstrLimit(
    "aarch64-ccmp-limit", cl::init(30), cl::Hidden,
    cl::desc("Maximum number of instructions per speculated block."));

// Stress testing mode - disable heuristics.
static cl::opt<bool> Stress("aarch64-stress-ccmp", cl::Hidden,
                            cl::desc("Turn all knobs to 11"));

STATISTIC(NumConsidered, "Number of ccmps considered");
STATISTIC(NumPhiRejs, "Number of ccmps rejected (PHI)");
STATISTIC(NumPhysRejs, "Number of ccmps rejected (Physregs)");
STATISTIC(NumPhi2Rejs, "Number of ccmps rejected (PHI2)");
STATISTIC(NumHeadBranchRejs, "Number of ccmps rejected (Head branch)");
STATISTIC(NumCmpBranchRejs, "Number of ccmps rejected (CmpBB branch)");
STATISTIC(NumCmpTermRejs, "Number of ccmps rejected (CmpBB is cbz...)");
STATISTIC(NumImmRangeRejs, "Number of ccmps rejected (Imm out of range)");
STATISTIC(NumLiveDstRejs, "Number of ccmps rejected (Cmp dest live)");
STATISTIC(NumMultNZCVUses, "Number of ccmps rejected (NZCV used)");
STATISTIC(NumUnknNZCVDefs, "Number of ccmps rejected (NZCV def unknown)");

STATISTIC(NumSpeculateRejs, "Number of ccmps rejected (Can't speculate)");

STATISTIC(NumConverted, "Number of ccmp instructions created");
STATISTIC(NumCompBranches, "Number of cbz/cbnz branches converted");

//===----------------------------------------------------------------------===//
//                                 SSACCmpConv
//===----------------------------------------------------------------------===//
//
// The SSACCmpConv class performs ccmp-conversion on SSA form machine code
// after determining if it is possible. The class contains no heuristics;
// external code should be used to determine when ccmp-conversion is a good
// idea.
//
// CCmp-formation works on a CFG representing chained conditions, typically
// from C's short-circuit || and && operators:
//
//   From:         Head            To:         Head
//                 / |                         CmpBB
//                /  |                         / |
//               |  CmpBB                     /  |
//               |  / |                    Tail  |
//               | /  |                      |   |
//              Tail  |                      |   |
//                |   |                      |   |
//               ... ...                    ... ...
//
// The Head block is terminated by a br.cond instruction, and the CmpBB block
// contains compare + br.cond. Tail must be a successor of both.
//
// The cmp-conversion turns the compare instruction in CmpBB into a conditional
// compare, and merges CmpBB into Head, speculatively executing its
// instructions. The AArch64 conditional compare instructions have an immediate
// operand that specifies the NZCV flag values when the condition is false and
// the compare isn't executed. This makes it possible to chain compares with
// different condition codes.
//
// Example:
//
//    if (a == 5 || b == 17)
//      foo();
//
//    Head:
//       cmp  w0, #5
//       b.eq Tail
//    CmpBB:
//       cmp  w1, #17
//       b.eq Tail
//    ...
//    Tail:
//      bl _foo
//
//  Becomes:
//
//    Head:
//       cmp  w0, #5
//       ccmp w1, #17, 4, ne  ; 4 = nZcv
//       b.eq Tail
//    ...
//    Tail:
//      bl _foo
//
// The ccmp condition code is the one that would cause the Head terminator to
// branch to CmpBB.
//
// FIXME: It should also be possible to speculate a block on the critical edge
// between Head and Tail, just like if-converting a diamond.
//
// FIXME: Handle PHIs in Tail by turning them into selects (if-conversion).

namespace {
class SSACCmpConv {
  MachineFunction *MF;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  MachineRegisterInfo *MRI;
  const MachineBranchProbabilityInfo *MBPI;

public:
  /// The first block containing a conditional branch, dominating everything
  /// else.
  MachineBasicBlock *Head;

  /// The block containing cmp+br.cond with a successor shared with Head.
  MachineBasicBlock *CmpBB;

  /// The common successor for Head and CmpBB.
  MachineBasicBlock *Tail;

  /// The compare instruction in CmpBB that can be converted to a ccmp.
  MachineInstr *CmpMI;

private:
  /// The branch condition in Head as determined by AnalyzeBranch.
  SmallVector<MachineOperand, 4> HeadCond;

  /// The condition code that makes Head branch to CmpBB.
  AArch64CC::CondCode HeadCmpBBCC;

  /// The branch condition in CmpBB.
  SmallVector<MachineOperand, 4> CmpBBCond;

  /// The condition code that makes CmpBB branch to Tail.
  AArch64CC::CondCode CmpBBTailCC;

  /// Check if the Tail PHIs are trivially convertible.
  bool trivialTailPHIs();

  /// Remove CmpBB from the Tail PHIs.
  void updateTailPHIs();

  /// Check if an operand defining DstReg is dead.
  bool isDeadDef(unsigned DstReg);

  /// Find the compare instruction in MBB that controls the conditional branch.
  /// Return NULL if a convertible instruction can't be found.
  MachineInstr *findConvertibleCompare(MachineBasicBlock *MBB);

  /// Return true if all non-terminator instructions in MBB can be safely
  /// speculated.
  bool canSpeculateInstrs(MachineBasicBlock *MBB, const MachineInstr *CmpMI);

public:
  /// runOnMachineFunction - Initialize per-function data structures.
  void runOnMachineFunction(MachineFunction &MF,
                            const MachineBranchProbabilityInfo *MBPI) {
    this->MF = &MF;
    this->MBPI = MBPI;
    TII = MF.getSubtarget().getInstrInfo();
    TRI = MF.getSubtarget().getRegisterInfo();
    MRI = &MF.getRegInfo();
  }

  /// If the sub-CFG headed by MBB can be cmp-converted, initialize the
  /// internal state, and return true.
  bool canConvert(MachineBasicBlock *MBB);

  /// Cmo-convert the last block passed to canConvertCmp(), assuming
  /// it is possible. Add any erased blocks to RemovedBlocks.
  void convert(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks);

  /// Return the expected code size delta if the conversion into a
  /// conditional compare is performed.
  int expectedCodeSizeDelta() const;
};
} // end anonymous namespace

// Check that all PHIs in Tail are selecting the same value from Head and CmpBB.
// This means that no if-conversion is required when merging CmpBB into Head.
bool SSACCmpConv::trivialTailPHIs() {
  for (auto &I : *Tail) {
    if (!I.isPHI())
      break;
    unsigned HeadReg = 0, CmpBBReg = 0;
    // PHI operands come in (VReg, MBB) pairs.
    for (unsigned oi = 1, oe = I.getNumOperands(); oi != oe; oi += 2) {
      MachineBasicBlock *MBB = I.getOperand(oi + 1).getMBB();
      Register Reg = I.getOperand(oi).getReg();
      if (MBB == Head) {
        assert((!HeadReg || HeadReg == Reg) && "Inconsistent PHI operands");
        HeadReg = Reg;
      }
      if (MBB == CmpBB) {
        assert((!CmpBBReg || CmpBBReg == Reg) && "Inconsistent PHI operands");
        CmpBBReg = Reg;
      }
    }
    if (HeadReg != CmpBBReg)
      return false;
  }
  return true;
}

// Assuming that trivialTailPHIs() is true, update the Tail PHIs by simply
// removing the CmpBB operands. The Head operands will be identical.
void SSACCmpConv::updateTailPHIs() {
  for (auto &I : *Tail) {
    if (!I.isPHI())
      break;
    // I is a PHI. It can have multiple entries for CmpBB.
    for (unsigned oi = I.getNumOperands(); oi > 2; oi -= 2) {
      // PHI operands are (Reg, MBB) at (oi-2, oi-1).
      if (I.getOperand(oi - 1).getMBB() == CmpBB) {
        I.RemoveOperand(oi - 1);
        I.RemoveOperand(oi - 2);
      }
    }
  }
}

// This pass runs before the AArch64DeadRegisterDefinitions pass, so compares
// are still writing virtual registers without any uses.
bool SSACCmpConv::isDeadDef(unsigned DstReg) {
  // Writes to the zero register are dead.
  if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
    return true;
  if (!Register::isVirtualRegister(DstReg))
    return false;
  // A virtual register def without any uses will be marked dead later, and
  // eventually replaced by the zero register.
  return MRI->use_nodbg_empty(DstReg);
}

// Parse a condition code returned by AnalyzeBranch, and compute the CondCode
// corresponding to TBB.
// Return
static bool parseCond(ArrayRef<MachineOperand> Cond, AArch64CC::CondCode &CC) {
  // A normal br.cond simply has the condition code.
  if (Cond[0].getImm() != -1) {
    assert(Cond.size() == 1 && "Unknown Cond array format");
    CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
    return true;
  }
  // For tbz and cbz instruction, the opcode is next.
  switch (Cond[1].getImm()) {
  default:
    // This includes tbz / tbnz branches which can't be converted to
    // ccmp + br.cond.
    return false;
  case AArch64::CBZW:
  case AArch64::CBZX:
    assert(Cond.size() == 3 && "Unknown Cond array format");
    CC = AArch64CC::EQ;
    return true;
  case AArch64::CBNZW:
  case AArch64::CBNZX:
    assert(Cond.size() == 3 && "Unknown Cond array format");
    CC = AArch64CC::NE;
    return true;
  }
}

MachineInstr *SSACCmpConv::findConvertibleCompare(MachineBasicBlock *MBB) {
  MachineBasicBlock::iterator I = MBB->getFirstTerminator();
  if (I == MBB->end())
    return nullptr;
  // The terminator must be controlled by the flags.
  if (!I->readsRegister(AArch64::NZCV)) {
    switch (I->getOpcode()) {
    case AArch64::CBZW:
    case AArch64::CBZX:
    case AArch64::CBNZW:
    case AArch64::CBNZX:
      // These can be converted into a ccmp against #0.
      return &*I;
    }
    ++NumCmpTermRejs;
    LLVM_DEBUG(dbgs() << "Flags not used by terminator: " << *I);
    return nullptr;
  }

  // Now find the instruction controlling the terminator.
  for (MachineBasicBlock::iterator B = MBB->begin(); I != B;) {
    --I;
    assert(!I->isTerminator() && "Spurious terminator");
    switch (I->getOpcode()) {
    // cmp is an alias for subs with a dead destination register.
    case AArch64::SUBSWri:
    case AArch64::SUBSXri:
    // cmn is an alias for adds with a dead destination register.
    case AArch64::ADDSWri:
    case AArch64::ADDSXri:
      // Check that the immediate operand is within range, ccmp wants a uimm5.
      // Rd = SUBSri Rn, imm, shift
      if (I->getOperand(3).getImm() || !isUInt<5>(I->getOperand(2).getImm())) {
        LLVM_DEBUG(dbgs() << "Immediate out of range for ccmp: " << *I);
        ++NumImmRangeRejs;
        return nullptr;
      }
      LLVM_FALLTHROUGH;
    case AArch64::SUBSWrr:
    case AArch64::SUBSXrr:
    case AArch64::ADDSWrr:
    case AArch64::ADDSXrr:
      if (isDeadDef(I->getOperand(0).getReg()))
        return &*I;
      LLVM_DEBUG(dbgs() << "Can't convert compare with live destination: "
                        << *I);
      ++NumLiveDstRejs;
      return nullptr;
    case AArch64::FCMPSrr:
    case AArch64::FCMPDrr:
    case AArch64::FCMPESrr:
    case AArch64::FCMPEDrr:
      return &*I;
    }

    // Check for flag reads and clobbers.
    MIOperands::PhysRegInfo PRI =
        MIOperands(*I).analyzePhysReg(AArch64::NZCV, TRI);

    if (PRI.Read) {
      // The ccmp doesn't produce exactly the same flags as the original
      // compare, so reject the transform if there are uses of the flags
      // besides the terminators.
      LLVM_DEBUG(dbgs() << "Can't create ccmp with multiple uses: " << *I);
      ++NumMultNZCVUses;
      return nullptr;
    }

    if (PRI.Defined || PRI.Clobbered) {
      LLVM_DEBUG(dbgs() << "Not convertible compare: " << *I);
      ++NumUnknNZCVDefs;
      return nullptr;
    }
  }
  LLVM_DEBUG(dbgs() << "Flags not defined in " << printMBBReference(*MBB)
                    << '\n');
  return nullptr;
}

/// Determine if all the instructions in MBB can safely
/// be speculated. The terminators are not considered.
///
/// Only CmpMI is allowed to clobber the flags.
///
bool SSACCmpConv::canSpeculateInstrs(MachineBasicBlock *MBB,
                                     const MachineInstr *CmpMI) {
  // Reject any live-in physregs. It's probably NZCV/EFLAGS, and very hard to
  // get right.
  if (!MBB->livein_empty()) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
    return false;
  }

  unsigned InstrCount = 0;

  // Check all instructions, except the terminators. It is assumed that
  // terminators never have side effects or define any used register values.
  for (auto &I : make_range(MBB->begin(), MBB->getFirstTerminator())) {
    if (I.isDebugInstr())
      continue;

    if (++InstrCount > BlockInstrLimit && !Stress) {
      LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
                        << BlockInstrLimit << " instructions.\n");
      return false;
    }

    // There shouldn't normally be any phis in a single-predecessor block.
    if (I.isPHI()) {
      LLVM_DEBUG(dbgs() << "Can't hoist: " << I);
      return false;
    }

    // Don't speculate loads. Note that it may be possible and desirable to
    // speculate GOT or constant pool loads that are guaranteed not to trap,
    // but we don't support that for now.
    if (I.mayLoad()) {
      LLVM_DEBUG(dbgs() << "Won't speculate load: " << I);
      return false;
    }

    // We never speculate stores, so an AA pointer isn't necessary.
    bool DontMoveAcrossStore = true;
    if (!I.isSafeToMove(nullptr, DontMoveAcrossStore)) {
      LLVM_DEBUG(dbgs() << "Can't speculate: " << I);
      return false;
    }

    // Only CmpMI is allowed to clobber the flags.
    if (&I != CmpMI && I.modifiesRegister(AArch64::NZCV, TRI)) {
      LLVM_DEBUG(dbgs() << "Clobbers flags: " << I);
      return false;
    }
  }
  return true;
}

/// Analyze the sub-cfg rooted in MBB, and return true if it is a potential
/// candidate for cmp-conversion. Fill out the internal state.
///
bool SSACCmpConv::canConvert(MachineBasicBlock *MBB) {
  Head = MBB;
  Tail = CmpBB = nullptr;

  if (Head->succ_size() != 2)
    return false;
  MachineBasicBlock *Succ0 = Head->succ_begin()[0];
  MachineBasicBlock *Succ1 = Head->succ_begin()[1];

  // CmpBB can only have a single predecessor. Tail is allowed many.
  if (Succ0->pred_size() != 1)
    std::swap(Succ0, Succ1);

  // Succ0 is our candidate for CmpBB.
  if (Succ0->pred_size() != 1 || Succ0->succ_size() != 2)
    return false;

  CmpBB = Succ0;
  Tail = Succ1;

  if (!CmpBB->isSuccessor(Tail))
    return false;

  // The CFG topology checks out.
  LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
                    << printMBBReference(*CmpBB) << " -> "
                    << printMBBReference(*Tail) << '\n');
  ++NumConsidered;

  // Tail is allowed to have many predecessors, but we can't handle PHIs yet.
  //
  // FIXME: Real PHIs could be if-converted as long as the CmpBB values are
  // defined before The CmpBB cmp clobbers the flags. Alternatively, it should
  // always be safe to sink the ccmp down to immediately before the CmpBB
  // terminators.
  if (!trivialTailPHIs()) {
    LLVM_DEBUG(dbgs() << "Can't handle phis in Tail.\n");
    ++NumPhiRejs;
    return false;
  }

  if (!Tail->livein_empty()) {
    LLVM_DEBUG(dbgs() << "Can't handle live-in physregs in Tail.\n");
    ++NumPhysRejs;
    return false;
  }

  // CmpBB should never have PHIs since Head is its only predecessor.
  // FIXME: Clean them up if it happens.
  if (!CmpBB->empty() && CmpBB->front().isPHI()) {
    LLVM_DEBUG(dbgs() << "Can't handle phis in CmpBB.\n");
    ++NumPhi2Rejs;
    return false;
  }

  if (!CmpBB->livein_empty()) {
    LLVM_DEBUG(dbgs() << "Can't handle live-in physregs in CmpBB.\n");
    ++NumPhysRejs;
    return false;
  }

  // The branch we're looking to eliminate must be analyzable.
  HeadCond.clear();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  if (TII->analyzeBranch(*Head, TBB, FBB, HeadCond)) {
    LLVM_DEBUG(dbgs() << "Head branch not analyzable.\n");
    ++NumHeadBranchRejs;
    return false;
  }

  // This is weird, probably some sort of degenerate CFG, or an edge to a
  // landing pad.
  if (!TBB || HeadCond.empty()) {
    LLVM_DEBUG(
        dbgs() << "AnalyzeBranch didn't find conditional branch in Head.\n");
    ++NumHeadBranchRejs;
    return false;
  }

  if (!parseCond(HeadCond, HeadCmpBBCC)) {
    LLVM_DEBUG(dbgs() << "Unsupported branch type on Head\n");
    ++NumHeadBranchRejs;
    return false;
  }

  // Make sure the branch direction is right.
  if (TBB != CmpBB) {
    assert(TBB == Tail && "Unexpected TBB");
    HeadCmpBBCC = AArch64CC::getInvertedCondCode(HeadCmpBBCC);
  }

  CmpBBCond.clear();
  TBB = FBB = nullptr;
  if (TII->analyzeBranch(*CmpBB, TBB, FBB, CmpBBCond)) {
    LLVM_DEBUG(dbgs() << "CmpBB branch not analyzable.\n");
    ++NumCmpBranchRejs;
    return false;
  }

  if (!TBB || CmpBBCond.empty()) {
    LLVM_DEBUG(
        dbgs() << "AnalyzeBranch didn't find conditional branch in CmpBB.\n");
    ++NumCmpBranchRejs;
    return false;
  }

  if (!parseCond(CmpBBCond, CmpBBTailCC)) {
    LLVM_DEBUG(dbgs() << "Unsupported branch type on CmpBB\n");
    ++NumCmpBranchRejs;
    return false;
  }

  if (TBB != Tail)
    CmpBBTailCC = AArch64CC::getInvertedCondCode(CmpBBTailCC);

  LLVM_DEBUG(dbgs() << "Head->CmpBB on "
                    << AArch64CC::getCondCodeName(HeadCmpBBCC)
                    << ", CmpBB->Tail on "
                    << AArch64CC::getCondCodeName(CmpBBTailCC) << '\n');

  CmpMI = findConvertibleCompare(CmpBB);
  if (!CmpMI)
    return false;

  if (!canSpeculateInstrs(CmpBB, CmpMI)) {
    ++NumSpeculateRejs;
    return false;
  }
  return true;
}

void SSACCmpConv::convert(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks) {
  LLVM_DEBUG(dbgs() << "Merging " << printMBBReference(*CmpBB) << " into "
                    << printMBBReference(*Head) << ":\n"
                    << *CmpBB);

  // All CmpBB instructions are moved into Head, and CmpBB is deleted.
  // Update the CFG first.
  updateTailPHIs();

  // Save successor probabilties before removing CmpBB and Tail from their
  // parents.
  BranchProbability Head2CmpBB = MBPI->getEdgeProbability(Head, CmpBB);
  BranchProbability CmpBB2Tail = MBPI->getEdgeProbability(CmpBB, Tail);

  Head->removeSuccessor(CmpBB);
  CmpBB->removeSuccessor(Tail);

  // If Head and CmpBB had successor probabilties, udpate the probabilities to
  // reflect the ccmp-conversion.
  if (Head->hasSuccessorProbabilities() && CmpBB->hasSuccessorProbabilities()) {

    // Head is allowed two successors. We've removed CmpBB, so the remaining
    // successor is Tail. We need to increase the successor probability for
    // Tail to account for the CmpBB path we removed.
    //
    // Pr(Tail|Head) += Pr(CmpBB|Head) * Pr(Tail|CmpBB).
    assert(*Head->succ_begin() == Tail && "Head successor is not Tail");
    BranchProbability Head2Tail = MBPI->getEdgeProbability(Head, Tail);
    Head->setSuccProbability(Head->succ_begin(),
                             Head2Tail + Head2CmpBB * CmpBB2Tail);

    // We will transfer successors of CmpBB to Head in a moment without
    // normalizing the successor probabilities. Set the successor probabilites
    // before doing so.
    //
    // Pr(I|Head) = Pr(CmpBB|Head) * Pr(I|CmpBB).
    for (auto I = CmpBB->succ_begin(), E = CmpBB->succ_end(); I != E; ++I) {
      BranchProbability CmpBB2I = MBPI->getEdgeProbability(CmpBB, *I);
      CmpBB->setSuccProbability(I, Head2CmpBB * CmpBB2I);
    }
  }

  Head->transferSuccessorsAndUpdatePHIs(CmpBB);
  DebugLoc TermDL = Head->getFirstTerminator()->getDebugLoc();
  TII->removeBranch(*Head);

  // If the Head terminator was one of the cbz / tbz branches with built-in
  // compare, we need to insert an explicit compare instruction in its place.
  if (HeadCond[0].getImm() == -1) {
    ++NumCompBranches;
    unsigned Opc = 0;
    switch (HeadCond[1].getImm()) {
    case AArch64::CBZW:
    case AArch64::CBNZW:
      Opc = AArch64::SUBSWri;
      break;
    case AArch64::CBZX:
    case AArch64::CBNZX:
      Opc = AArch64::SUBSXri;
      break;
    default:
      llvm_unreachable("Cannot convert Head branch");
    }
    const MCInstrDesc &MCID = TII->get(Opc);
    // Create a dummy virtual register for the SUBS def.
    Register DestReg =
        MRI->createVirtualRegister(TII->getRegClass(MCID, 0, TRI, *MF));
    // Insert a SUBS Rn, #0 instruction instead of the cbz / cbnz.
    BuildMI(*Head, Head->end(), TermDL, MCID)
        .addReg(DestReg, RegState::Define | RegState::Dead)
        .add(HeadCond[2])
        .addImm(0)
        .addImm(0);
    // SUBS uses the GPR*sp register classes.
    MRI->constrainRegClass(HeadCond[2].getReg(),
                           TII->getRegClass(MCID, 1, TRI, *MF));
  }

  Head->splice(Head->end(), CmpBB, CmpBB->begin(), CmpBB->end());

  // Now replace CmpMI with a ccmp instruction that also considers the incoming
  // flags.
  unsigned Opc = 0;
  unsigned FirstOp = 1;   // First CmpMI operand to copy.
  bool isZBranch = false; // CmpMI is a cbz/cbnz instruction.
  switch (CmpMI->getOpcode()) {
  default:
    llvm_unreachable("Unknown compare opcode");
  case AArch64::SUBSWri:    Opc = AArch64::CCMPWi; break;
  case AArch64::SUBSWrr:    Opc = AArch64::CCMPWr; break;
  case AArch64::SUBSXri:    Opc = AArch64::CCMPXi; break;
  case AArch64::SUBSXrr:    Opc = AArch64::CCMPXr; break;
  case AArch64::ADDSWri:    Opc = AArch64::CCMNWi; break;
  case AArch64::ADDSWrr:    Opc = AArch64::CCMNWr; break;
  case AArch64::ADDSXri:    Opc = AArch64::CCMNXi; break;
  case AArch64::ADDSXrr:    Opc = AArch64::CCMNXr; break;
  case AArch64::FCMPSrr:    Opc = AArch64::FCCMPSrr; FirstOp = 0; break;
  case AArch64::FCMPDrr:    Opc = AArch64::FCCMPDrr; FirstOp = 0; break;
  case AArch64::FCMPESrr:   Opc = AArch64::FCCMPESrr; FirstOp = 0; break;
  case AArch64::FCMPEDrr:   Opc = AArch64::FCCMPEDrr; FirstOp = 0; break;
  case AArch64::CBZW:
  case AArch64::CBNZW:
    Opc = AArch64::CCMPWi;
    FirstOp = 0;
    isZBranch = true;
    break;
  case AArch64::CBZX:
  case AArch64::CBNZX:
    Opc = AArch64::CCMPXi;
    FirstOp = 0;
    isZBranch = true;
    break;
  }

  // The ccmp instruction should set the flags according to the comparison when
  // Head would have branched to CmpBB.
  // The NZCV immediate operand should provide flags for the case where Head
  // would have branched to Tail. These flags should cause the new Head
  // terminator to branch to tail.
  unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(CmpBBTailCC);
  const MCInstrDesc &MCID = TII->get(Opc);
  MRI->constrainRegClass(CmpMI->getOperand(FirstOp).getReg(),
                         TII->getRegClass(MCID, 0, TRI, *MF));
  if (CmpMI->getOperand(FirstOp + 1).isReg())
    MRI->constrainRegClass(CmpMI->getOperand(FirstOp + 1).getReg(),
                           TII->getRegClass(MCID, 1, TRI, *MF));
  MachineInstrBuilder MIB = BuildMI(*Head, CmpMI, CmpMI->getDebugLoc(), MCID)
                                .add(CmpMI->getOperand(FirstOp)); // Register Rn
  if (isZBranch)
    MIB.addImm(0); // cbz/cbnz Rn -> ccmp Rn, #0
  else
    MIB.add(CmpMI->getOperand(FirstOp + 1)); // Register Rm / Immediate
  MIB.addImm(NZCV).addImm(HeadCmpBBCC);

  // If CmpMI was a terminator, we need a new conditional branch to replace it.
  // This now becomes a Head terminator.
  if (isZBranch) {
    bool isNZ = CmpMI->getOpcode() == AArch64::CBNZW ||
                CmpMI->getOpcode() == AArch64::CBNZX;
    BuildMI(*Head, CmpMI, CmpMI->getDebugLoc(), TII->get(AArch64::Bcc))
        .addImm(isNZ ? AArch64CC::NE : AArch64CC::EQ)
        .add(CmpMI->getOperand(1)); // Branch target.
  }
  CmpMI->eraseFromParent();
  Head->updateTerminator();

  RemovedBlocks.push_back(CmpBB);
  CmpBB->eraseFromParent();
  LLVM_DEBUG(dbgs() << "Result:\n" << *Head);
  ++NumConverted;
}

int SSACCmpConv::expectedCodeSizeDelta() const {
  int delta = 0;
  // If the Head terminator was one of the cbz / tbz branches with built-in
  // compare, we need to insert an explicit compare instruction in its place
  // plus a branch instruction.
  if (HeadCond[0].getImm() == -1) {
    switch (HeadCond[1].getImm()) {
    case AArch64::CBZW:
    case AArch64::CBNZW:
    case AArch64::CBZX:
    case AArch64::CBNZX:
      // Therefore delta += 1
      delta = 1;
      break;
    default:
      llvm_unreachable("Cannot convert Head branch");
    }
  }
  // If the Cmp terminator was one of the cbz / tbz branches with
  // built-in compare, it will be turned into a compare instruction
  // into Head, but we do not save any instruction.
  // Otherwise, we save the branch instruction.
  switch (CmpMI->getOpcode()) {
  default:
    --delta;
    break;
  case AArch64::CBZW:
  case AArch64::CBNZW:
  case AArch64::CBZX:
  case AArch64::CBNZX:
    break;
  }
  return delta;
}

//===----------------------------------------------------------------------===//
//                       AArch64ConditionalCompares Pass
//===----------------------------------------------------------------------===//

namespace {
class AArch64ConditionalCompares : public MachineFunctionPass {
  const MachineBranchProbabilityInfo *MBPI;
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  MCSchedModel SchedModel;
  // Does the proceeded function has Oz attribute.
  bool MinSize;
  MachineRegisterInfo *MRI;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineTraceMetrics *Traces;
  MachineTraceMetrics::Ensemble *MinInstr;
  SSACCmpConv CmpConv;

public:
  static char ID;
  AArch64ConditionalCompares() : MachineFunctionPass(ID) {
    initializeAArch64ConditionalComparesPass(*PassRegistry::getPassRegistry());
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;
  StringRef getPassName() const override {
    return "AArch64 Conditional Compares";
  }

private:
  bool tryConvert(MachineBasicBlock *);
  void updateDomTree(ArrayRef<MachineBasicBlock *> Removed);
  void updateLoops(ArrayRef<MachineBasicBlock *> Removed);
  void invalidateTraces();
  bool shouldConvert();
};
} // end anonymous namespace

char AArch64ConditionalCompares::ID = 0;

INITIALIZE_PASS_BEGIN(AArch64ConditionalCompares, "aarch64-ccmp",
                      "AArch64 CCMP Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
INITIALIZE_PASS_END(AArch64ConditionalCompares, "aarch64-ccmp",
                    "AArch64 CCMP Pass", false, false)

FunctionPass *llvm::createAArch64ConditionalCompares() {
  return new AArch64ConditionalCompares();
}

void AArch64ConditionalCompares::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineBranchProbabilityInfo>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineTraceMetrics>();
  AU.addPreserved<MachineTraceMetrics>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// Update the dominator tree after if-conversion erased some blocks.
void AArch64ConditionalCompares::updateDomTree(
    ArrayRef<MachineBasicBlock *> Removed) {
  // convert() removes CmpBB which was previously dominated by Head.
  // CmpBB children should be transferred to Head.
  MachineDomTreeNode *HeadNode = DomTree->getNode(CmpConv.Head);
  for (MachineBasicBlock *RemovedMBB : Removed) {
    MachineDomTreeNode *Node = DomTree->getNode(RemovedMBB);
    assert(Node != HeadNode && "Cannot erase the head node");
    assert(Node->getIDom() == HeadNode && "CmpBB should be dominated by Head");
    while (Node->getNumChildren())
      DomTree->changeImmediateDominator(Node->getChildren().back(), HeadNode);
    DomTree->eraseNode(RemovedMBB);
  }
}

/// Update LoopInfo after if-conversion.
void
AArch64ConditionalCompares::updateLoops(ArrayRef<MachineBasicBlock *> Removed) {
  if (!Loops)
    return;
  for (MachineBasicBlock *RemovedMBB : Removed)
    Loops->removeBlock(RemovedMBB);
}

/// Invalidate MachineTraceMetrics before if-conversion.
void AArch64ConditionalCompares::invalidateTraces() {
  Traces->invalidate(CmpConv.Head);
  Traces->invalidate(CmpConv.CmpBB);
}

/// Apply cost model and heuristics to the if-conversion in IfConv.
/// Return true if the conversion is a good idea.
///
bool AArch64ConditionalCompares::shouldConvert() {
  // Stress testing mode disables all cost considerations.
  if (Stress)
    return true;
  if (!MinInstr)
    MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);

  // Head dominates CmpBB, so it is always included in its trace.
  MachineTraceMetrics::Trace Trace = MinInstr->getTrace(CmpConv.CmpBB);

  // If code size is the main concern
  if (MinSize) {
    int CodeSizeDelta = CmpConv.expectedCodeSizeDelta();
    LLVM_DEBUG(dbgs() << "Code size delta:  " << CodeSizeDelta << '\n');
    // If we are minimizing the code size, do the conversion whatever
    // the cost is.
    if (CodeSizeDelta < 0)
      return true;
    if (CodeSizeDelta > 0) {
      LLVM_DEBUG(dbgs() << "Code size is increasing, give up on this one.\n");
      return false;
    }
    // CodeSizeDelta == 0, continue with the regular heuristics
  }

  // Heuristic: The compare conversion delays the execution of the branch
  // instruction because we must wait for the inputs to the second compare as
  // well. The branch has no dependent instructions, but delaying it increases
  // the cost of a misprediction.
  //
  // Set a limit on the delay we will accept.
  unsigned DelayLimit = SchedModel.MispredictPenalty * 3 / 4;

  // Instruction depths can be computed for all trace instructions above CmpBB.
  unsigned HeadDepth =
      Trace.getInstrCycles(*CmpConv.Head->getFirstTerminator()).Depth;
  unsigned CmpBBDepth =
      Trace.getInstrCycles(*CmpConv.CmpBB->getFirstTerminator()).Depth;
  LLVM_DEBUG(dbgs() << "Head depth:  " << HeadDepth
                    << "\nCmpBB depth: " << CmpBBDepth << '\n');
  if (CmpBBDepth > HeadDepth + DelayLimit) {
    LLVM_DEBUG(dbgs() << "Branch delay would be larger than " << DelayLimit
                      << " cycles.\n");
    return false;
  }

  // Check the resource depth at the bottom of CmpBB - these instructions will
  // be speculated.
  unsigned ResDepth = Trace.getResourceDepth(true);
  LLVM_DEBUG(dbgs() << "Resources:   " << ResDepth << '\n');

  // Heuristic: The speculatively executed instructions must all be able to
  // merge into the Head block. The Head critical path should dominate the
  // resource cost of the speculated instructions.
  if (ResDepth > HeadDepth) {
    LLVM_DEBUG(dbgs() << "Too many instructions to speculate.\n");
    return false;
  }
  return true;
}

bool AArch64ConditionalCompares::tryConvert(MachineBasicBlock *MBB) {
  bool Changed = false;
  while (CmpConv.canConvert(MBB) && shouldConvert()) {
    invalidateTraces();
    SmallVector<MachineBasicBlock *, 4> RemovedBlocks;
    CmpConv.convert(RemovedBlocks);
    Changed = true;
    updateDomTree(RemovedBlocks);
    updateLoops(RemovedBlocks);
  }
  return Changed;
}

bool AArch64ConditionalCompares::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** AArch64 Conditional Compares **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  if (skipFunction(MF.getFunction()))
    return false;

  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  SchedModel = MF.getSubtarget().getSchedModel();
  MRI = &MF.getRegInfo();
  DomTree = &getAnalysis<MachineDominatorTree>();
  Loops = getAnalysisIfAvailable<MachineLoopInfo>();
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  Traces = &getAnalysis<MachineTraceMetrics>();
  MinInstr = nullptr;
  MinSize = MF.getFunction().hasMinSize();

  bool Changed = false;
  CmpConv.runOnMachineFunction(MF, MBPI);

  // Visit blocks in dominator tree pre-order. The pre-order enables multiple
  // cmp-conversions from the same head block.
  // Note that updateDomTree() modifies the children of the DomTree node
  // currently being visited. The df_iterator supports that; it doesn't look at
  // child_begin() / child_end() until after a node has been visited.
  for (auto *I : depth_first(DomTree))
    if (tryConvert(I->getBlock()))
      Changed = true;

  return Changed;
}