reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
//===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass attempts to replace out argument usage with a return of a
/// struct.
///
/// We can support returning a lot of values directly in registers, but
/// idiomatic C code frequently uses a pointer argument to return a second value
/// rather than returning a struct by value. GPU stack access is also quite
/// painful, so we want to avoid that if possible. Passing a stack object
/// pointer to a function also requires an additional address expansion code
/// sequence to convert the pointer to be relative to the kernel's scratch wave
/// offset register since the callee doesn't know what stack frame the incoming
/// pointer is relative to.
///
/// The goal is to try rewriting code that looks like this:
///
///  int foo(int a, int b, int* out) {
///     *out = bar();
///     return a + b;
/// }
///
/// into something like this:
///
///  std::pair<int, int> foo(int a, int b) {
///     return std::make_pair(a + b, bar());
/// }
///
/// Typically the incoming pointer is a simple alloca for a temporary variable
/// to use the API, which if replaced with a struct return will be easily SROA'd
/// out when the stub function we create is inlined
///
/// This pass introduces the struct return, but leaves the unused pointer
/// arguments and introduces a new stub function calling the struct returning
/// body. DeadArgumentElimination should be run after this to clean these up.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>

#define DEBUG_TYPE "amdgpu-rewrite-out-arguments"

using namespace llvm;

static cl::opt<bool> AnyAddressSpace(
  "amdgpu-any-address-space-out-arguments",
  cl::desc("Replace pointer out arguments with "
           "struct returns for non-private address space"),
  cl::Hidden,
  cl::init(false));

static cl::opt<unsigned> MaxNumRetRegs(
  "amdgpu-max-return-arg-num-regs",
  cl::desc("Approximately limit number of return registers for replacing out arguments"),
  cl::Hidden,
  cl::init(16));

STATISTIC(NumOutArgumentsReplaced,
          "Number out arguments moved to struct return values");
STATISTIC(NumOutArgumentFunctionsReplaced,
          "Number of functions with out arguments moved to struct return values");

namespace {

class AMDGPURewriteOutArguments : public FunctionPass {
private:
  const DataLayout *DL = nullptr;
  MemoryDependenceResults *MDA = nullptr;

  bool checkArgumentUses(Value &Arg) const;
  bool isOutArgumentCandidate(Argument &Arg) const;

#ifndef NDEBUG
  bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const;
#endif

public:
  static char ID;

  AMDGPURewriteOutArguments() : FunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MemoryDependenceWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

  bool doInitialization(Module &M) override;
  bool runOnFunction(Function &F) override;
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE,
                      "AMDGPU Rewrite Out Arguments", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE,
                    "AMDGPU Rewrite Out Arguments", false, false)

char AMDGPURewriteOutArguments::ID = 0;

bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const {
  const int MaxUses = 10;
  int UseCount = 0;

  for (Use &U : Arg.uses()) {
    StoreInst *SI = dyn_cast<StoreInst>(U.getUser());
    if (UseCount > MaxUses)
      return false;

    if (!SI) {
      auto *BCI = dyn_cast<BitCastInst>(U.getUser());
      if (!BCI || !BCI->hasOneUse())
        return false;

      // We don't handle multiple stores currently, so stores to aggregate
      // pointers aren't worth the trouble since they are canonically split up.
      Type *DestEltTy = BCI->getType()->getPointerElementType();
      if (DestEltTy->isAggregateType())
        return false;

      // We could handle these if we had a convenient way to bitcast between
      // them.
      Type *SrcEltTy = Arg.getType()->getPointerElementType();
      if (SrcEltTy->isArrayTy())
        return false;

      // Special case handle structs with single members. It is useful to handle
      // some casts between structs and non-structs, but we can't bitcast
      // directly between them.  directly bitcast between them.  Blender uses
      // some casts that look like { <3 x float> }* to <4 x float>*
      if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1)))
        return false;

      // Clang emits OpenCL 3-vector type accesses with a bitcast to the
      // equivalent 4-element vector and accesses that, and we're looking for
      // this pointer cast.
      if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy))
        return false;

      return checkArgumentUses(*BCI);
    }

    if (!SI->isSimple() ||
        U.getOperandNo() != StoreInst::getPointerOperandIndex())
      return false;

    ++UseCount;
  }

  // Skip unused arguments.
  return UseCount > 0;
}

bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const {
  const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs;
  PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType());

  // TODO: It might be useful for any out arguments, not just privates.
  if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() &&
                 !AnyAddressSpace) ||
      Arg.hasByValAttr() || Arg.hasStructRetAttr() ||
      DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) {
    return false;
  }

  return checkArgumentUses(Arg);
}

bool AMDGPURewriteOutArguments::doInitialization(Module &M) {
  DL = &M.getDataLayout();
  return false;
}

#ifndef NDEBUG
bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const {
  VectorType *VT0 = dyn_cast<VectorType>(Ty0);
  VectorType *VT1 = dyn_cast<VectorType>(Ty1);
  if (!VT0 || !VT1)
    return false;

  if (VT0->getNumElements() != 3 ||
      VT1->getNumElements() != 4)
    return false;

  return DL->getTypeSizeInBits(VT0->getElementType()) ==
         DL->getTypeSizeInBits(VT1->getElementType());
}
#endif

bool AMDGPURewriteOutArguments::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  // TODO: Could probably handle variadic functions.
  if (F.isVarArg() || F.hasStructRetAttr() ||
      AMDGPU::isEntryFunctionCC(F.getCallingConv()))
    return false;

  MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();

  unsigned ReturnNumRegs = 0;
  SmallSet<int, 4> OutArgIndexes;
  SmallVector<Type *, 4> ReturnTypes;
  Type *RetTy = F.getReturnType();
  if (!RetTy->isVoidTy()) {
    ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4;

    if (ReturnNumRegs >= MaxNumRetRegs)
      return false;

    ReturnTypes.push_back(RetTy);
  }

  SmallVector<Argument *, 4> OutArgs;
  for (Argument &Arg : F.args()) {
    if (isOutArgumentCandidate(Arg)) {
      LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg
                        << " in function " << F.getName() << '\n');
      OutArgs.push_back(&Arg);
    }
  }

  if (OutArgs.empty())
    return false;

  using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>;

  DenseMap<ReturnInst *, ReplacementVec> Replacements;

  SmallVector<ReturnInst *, 4> Returns;
  for (BasicBlock &BB : F) {
    if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back()))
      Returns.push_back(RI);
  }

  if (Returns.empty())
    return false;

  bool Changing;

  do {
    Changing = false;

    // Keep retrying if we are able to successfully eliminate an argument. This
    // helps with cases with multiple arguments which may alias, such as in a
    // sincos implemntation. If we have 2 stores to arguments, on the first
    // attempt the MDA query will succeed for the second store but not the
    // first. On the second iteration we've removed that out clobbering argument
    // (by effectively moving it into another function) and will find the second
    // argument is OK to move.
    for (Argument *OutArg : OutArgs) {
      bool ThisReplaceable = true;
      SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores;

      Type *ArgTy = OutArg->getType()->getPointerElementType();

      // Skip this argument if converting it will push us over the register
      // count to return limit.

      // TODO: This is an approximation. When legalized this could be more. We
      // can ask TLI for exactly how many.
      unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4;
      if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs)
        continue;

      // An argument is convertible only if all exit blocks are able to replace
      // it.
      for (ReturnInst *RI : Returns) {
        BasicBlock *BB = RI->getParent();

        MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg),
                                                       true, BB->end(), BB, RI);
        StoreInst *SI = nullptr;
        if (Q.isDef())
          SI = dyn_cast<StoreInst>(Q.getInst());

        if (SI) {
          LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n');
          ReplaceableStores.emplace_back(RI, SI);
        } else {
          ThisReplaceable = false;
          break;
        }
      }

      if (!ThisReplaceable)
        continue; // Try the next argument candidate.

      for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) {
        Value *ReplVal = Store.second->getValueOperand();

        auto &ValVec = Replacements[Store.first];
        if (llvm::find_if(ValVec,
              [OutArg](const std::pair<Argument *, Value *> &Entry) {
                 return Entry.first == OutArg;}) != ValVec.end()) {
          LLVM_DEBUG(dbgs()
                     << "Saw multiple out arg stores" << *OutArg << '\n');
          // It is possible to see stores to the same argument multiple times,
          // but we expect these would have been optimized out already.
          ThisReplaceable = false;
          break;
        }

        ValVec.emplace_back(OutArg, ReplVal);
        Store.second->eraseFromParent();
      }

      if (ThisReplaceable) {
        ReturnTypes.push_back(ArgTy);
        OutArgIndexes.insert(OutArg->getArgNo());
        ++NumOutArgumentsReplaced;
        Changing = true;
      }
    }
  } while (Changing);

  if (Replacements.empty())
    return false;

  LLVMContext &Ctx = F.getParent()->getContext();
  StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName());

  FunctionType *NewFuncTy = FunctionType::get(NewRetTy,
                                              F.getFunctionType()->params(),
                                              F.isVarArg());

  LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n');

  Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage,
                                       F.getName() + ".body");
  F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc);
  NewFunc->copyAttributesFrom(&F);
  NewFunc->setComdat(F.getComdat());

  // We want to preserve the function and param attributes, but need to strip
  // off any return attributes, e.g. zeroext doesn't make sense with a struct.
  NewFunc->stealArgumentListFrom(F);

  AttrBuilder RetAttrs;
  RetAttrs.addAttribute(Attribute::SExt);
  RetAttrs.addAttribute(Attribute::ZExt);
  RetAttrs.addAttribute(Attribute::NoAlias);
  NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs);
  // TODO: How to preserve metadata?

  // Move the body of the function into the new rewritten function, and replace
  // this function with a stub.
  NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList());

  for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) {
    ReturnInst *RI = Replacement.first;
    IRBuilder<> B(RI);
    B.SetCurrentDebugLocation(RI->getDebugLoc());

    int RetIdx = 0;
    Value *NewRetVal = UndefValue::get(NewRetTy);

    Value *RetVal = RI->getReturnValue();
    if (RetVal)
      NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++);

    for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) {
      Argument *Arg = ReturnPoint.first;
      Value *Val = ReturnPoint.second;
      Type *EltTy = Arg->getType()->getPointerElementType();
      if (Val->getType() != EltTy) {
        Type *EffectiveEltTy = EltTy;
        if (StructType *CT = dyn_cast<StructType>(EltTy)) {
          assert(CT->getNumElements() == 1);
          EffectiveEltTy = CT->getElementType(0);
        }

        if (DL->getTypeSizeInBits(EffectiveEltTy) !=
            DL->getTypeSizeInBits(Val->getType())) {
          assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType()));
          Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()),
                                      { 0, 1, 2 });
        }

        Val = B.CreateBitCast(Val, EffectiveEltTy);

        // Re-create single element composite.
        if (EltTy != EffectiveEltTy)
          Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0);
      }

      NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++);
    }

    if (RetVal)
      RI->setOperand(0, NewRetVal);
    else {
      B.CreateRet(NewRetVal);
      RI->eraseFromParent();
    }
  }

  SmallVector<Value *, 16> StubCallArgs;
  for (Argument &Arg : F.args()) {
    if (OutArgIndexes.count(Arg.getArgNo())) {
      // It's easier to preserve the type of the argument list. We rely on
      // DeadArgumentElimination to take care of these.
      StubCallArgs.push_back(UndefValue::get(Arg.getType()));
    } else {
      StubCallArgs.push_back(&Arg);
    }
  }

  BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F);
  IRBuilder<> B(StubBB);
  CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs);

  int RetIdx = RetTy->isVoidTy() ? 0 : 1;
  for (Argument &Arg : F.args()) {
    if (!OutArgIndexes.count(Arg.getArgNo()))
      continue;

    PointerType *ArgType = cast<PointerType>(Arg.getType());

    auto *EltTy = ArgType->getElementType();
    unsigned Align = Arg.getParamAlignment();
    if (Align == 0)
      Align = DL->getABITypeAlignment(EltTy);

    Value *Val = B.CreateExtractValue(StubCall, RetIdx++);
    Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace());

    // We can peek through bitcasts, so the type may not match.
    Value *PtrVal = B.CreateBitCast(&Arg, PtrTy);

    B.CreateAlignedStore(Val, PtrVal, Align);
  }

  if (!RetTy->isVoidTy()) {
    B.CreateRet(B.CreateExtractValue(StubCall, 0));
  } else {
    B.CreateRetVoid();
  }

  // The function is now a stub we want to inline.
  F.addFnAttr(Attribute::AlwaysInline);

  ++NumOutArgumentFunctionsReplaced;
  return true;
}

FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() {
  return new AMDGPURewriteOutArguments();
}