reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
//===- R600MCCodeEmitter.cpp - Code Emitter for R600->Cayman GPU families -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The R600 code emitter produces machine code that can be executed
/// directly on the GPU device.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/AMDGPUFixupKinds.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "R600Defines.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

namespace {

class R600MCCodeEmitter : public MCCodeEmitter {
  const MCRegisterInfo &MRI;
  const MCInstrInfo &MCII;

public:
  R600MCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri)
    : MRI(mri), MCII(mcii) {}
  R600MCCodeEmitter(const R600MCCodeEmitter &) = delete;
  R600MCCodeEmitter &operator=(const R600MCCodeEmitter &) = delete;

  /// Encode the instruction and write it to the OS.
  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const;

  /// \returns the encoding for an MCOperand.
  uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
                             SmallVectorImpl<MCFixup> &Fixups,
                             const MCSubtargetInfo &STI) const;

private:

  void Emit(uint32_t value, raw_ostream &OS) const;
  void Emit(uint64_t value, raw_ostream &OS) const;

  unsigned getHWReg(unsigned regNo) const;

  uint64_t getBinaryCodeForInstr(const MCInst &MI,
                                 SmallVectorImpl<MCFixup> &Fixups,
                                 const MCSubtargetInfo &STI) const;
  FeatureBitset computeAvailableFeatures(const FeatureBitset &FB) const;
  void
  verifyInstructionPredicates(const MCInst &MI,
                              const FeatureBitset &AvailableFeatures) const;

};

} // end anonymous namespace

enum RegElement {
  ELEMENT_X = 0,
  ELEMENT_Y,
  ELEMENT_Z,
  ELEMENT_W
};

enum FCInstr {
  FC_IF_PREDICATE = 0,
  FC_ELSE,
  FC_ENDIF,
  FC_BGNLOOP,
  FC_ENDLOOP,
  FC_BREAK_PREDICATE,
  FC_CONTINUE
};

MCCodeEmitter *llvm::createR600MCCodeEmitter(const MCInstrInfo &MCII,
                                             const MCRegisterInfo &MRI,
                                             MCContext &Ctx) {
  return new R600MCCodeEmitter(MCII, MRI);
}

void R600MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
                                       SmallVectorImpl<MCFixup> &Fixups,
                                       const MCSubtargetInfo &STI) const {
  verifyInstructionPredicates(MI,
                              computeAvailableFeatures(STI.getFeatureBits()));

  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
  if (MI.getOpcode() == R600::RETURN ||
    MI.getOpcode() == R600::FETCH_CLAUSE ||
    MI.getOpcode() == R600::ALU_CLAUSE ||
    MI.getOpcode() == R600::BUNDLE ||
    MI.getOpcode() == R600::KILL) {
    return;
  } else if (IS_VTX(Desc)) {
    uint64_t InstWord01 = getBinaryCodeForInstr(MI, Fixups, STI);
    uint32_t InstWord2 = MI.getOperand(2).getImm(); // Offset
    if (!(STI.getFeatureBits()[R600::FeatureCaymanISA])) {
      InstWord2 |= 1 << 19; // Mega-Fetch bit
    }

    Emit(InstWord01, OS);
    Emit(InstWord2, OS);
    Emit((uint32_t) 0, OS);
  } else if (IS_TEX(Desc)) {
      int64_t Sampler = MI.getOperand(14).getImm();

      int64_t SrcSelect[4] = {
        MI.getOperand(2).getImm(),
        MI.getOperand(3).getImm(),
        MI.getOperand(4).getImm(),
        MI.getOperand(5).getImm()
      };
      int64_t Offsets[3] = {
        MI.getOperand(6).getImm() & 0x1F,
        MI.getOperand(7).getImm() & 0x1F,
        MI.getOperand(8).getImm() & 0x1F
      };

      uint64_t Word01 = getBinaryCodeForInstr(MI, Fixups, STI);
      uint32_t Word2 = Sampler << 15 | SrcSelect[ELEMENT_X] << 20 |
          SrcSelect[ELEMENT_Y] << 23 | SrcSelect[ELEMENT_Z] << 26 |
          SrcSelect[ELEMENT_W] << 29 | Offsets[0] << 0 | Offsets[1] << 5 |
          Offsets[2] << 10;

      Emit(Word01, OS);
      Emit(Word2, OS);
      Emit((uint32_t) 0, OS);
  } else {
    uint64_t Inst = getBinaryCodeForInstr(MI, Fixups, STI);
    if ((STI.getFeatureBits()[R600::FeatureR600ALUInst]) &&
       ((Desc.TSFlags & R600_InstFlag::OP1) ||
         Desc.TSFlags & R600_InstFlag::OP2)) {
      uint64_t ISAOpCode = Inst & (0x3FFULL << 39);
      Inst &= ~(0x3FFULL << 39);
      Inst |= ISAOpCode << 1;
    }
    Emit(Inst, OS);
  }
}

void R600MCCodeEmitter::Emit(uint32_t Value, raw_ostream &OS) const {
  support::endian::write(OS, Value, support::little);
}

void R600MCCodeEmitter::Emit(uint64_t Value, raw_ostream &OS) const {
  support::endian::write(OS, Value, support::little);
}

unsigned R600MCCodeEmitter::getHWReg(unsigned RegNo) const {
  return MRI.getEncodingValue(RegNo) & HW_REG_MASK;
}

uint64_t R600MCCodeEmitter::getMachineOpValue(const MCInst &MI,
                                              const MCOperand &MO,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const {
  if (MO.isReg()) {
    if (HAS_NATIVE_OPERANDS(MCII.get(MI.getOpcode()).TSFlags))
      return MRI.getEncodingValue(MO.getReg());
    return getHWReg(MO.getReg());
  }

  if (MO.isExpr()) {
    // We put rodata at the end of code section, then map the entire
    // code secetion as vtx buf. Thus the section relative address is the
    // correct one.
    // Each R600 literal instruction has two operands
    // We can't easily get the order of the current one, so compare against
    // the first one and adjust offset.
    const unsigned offset = (&MO == &MI.getOperand(0)) ? 0 : 4;
    Fixups.push_back(MCFixup::create(offset, MO.getExpr(), FK_SecRel_4, MI.getLoc()));
    return 0;
  }

  assert(MO.isImm());
  return MO.getImm();
}

#define ENABLE_INSTR_PREDICATE_VERIFIER
#include "R600GenMCCodeEmitter.inc"