reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/ARMAsmBackend.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMAsmBackendDarwin.h"
#include "MCTargetDesc/ARMAsmBackendELF.h"
#include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
#include "MCTargetDesc/ARMFixupKinds.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
class ARMELFObjectWriter : public MCELFObjectTargetWriter {
public:
  ARMELFObjectWriter(uint8_t OSABI)
      : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
                                /*HasRelocationAddend*/ false) {}
};
} // end anonymous namespace

Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
  if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE")
    return FK_NONE;

  return MCAsmBackend::getFixupKind(Name);
}

const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
  const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
      // This table *must* be in the order that the fixup_* kinds are defined in
      // ARMFixupKinds.h.
      //
      // Name                      Offset (bits) Size (bits)     Flags
      {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_ldst_pcrel_12", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_10", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_9", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_thumb_adr_pcrel_10", 0, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_adr_pcrel_12", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_blx", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_cp", 0, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
      // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
      // - 19.
      {"fixup_arm_movt_hi16", 0, 20, 0},
      {"fixup_arm_movw_lo16", 0, 20, 0},
      {"fixup_t2_movt_hi16", 0, 20, 0},
      {"fixup_t2_movw_lo16", 0, 20, 0},
      {"fixup_arm_mod_imm", 0, 12, 0},
      {"fixup_t2_so_imm", 0, 26, 0},
      {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfcsel_else_target", 0, 32, 0},
      {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
  };
  const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
      // This table *must* be in the order that the fixup_* kinds are defined in
      // ARMFixupKinds.h.
      //
      // Name                      Offset (bits) Size (bits)     Flags
      {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_ldst_pcrel_12", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_10", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_pcrel_9", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_thumb_adr_pcrel_10", 8, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_adr_pcrel_12", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_blx", 0, 32,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_arm_thumb_cp", 8, 8,
       MCFixupKindInfo::FKF_IsPCRel |
           MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
      {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
      // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
      // - 19.
      {"fixup_arm_movt_hi16", 12, 20, 0},
      {"fixup_arm_movw_lo16", 12, 20, 0},
      {"fixup_t2_movt_hi16", 12, 20, 0},
      {"fixup_t2_movw_lo16", 12, 20, 0},
      {"fixup_arm_mod_imm", 20, 12, 0},
      {"fixup_t2_so_imm", 26, 6, 0},
      {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_bfcsel_else_target", 0, 32, 0},
      {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
      {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
  };

  if (Kind < FirstTargetFixupKind)
    return MCAsmBackend::getFixupKindInfo(Kind);

  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
         "Invalid kind!");
  return (Endian == support::little ? InfosLE
                                    : InfosBE)[Kind - FirstTargetFixupKind];
}

void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
  switch (Flag) {
  default:
    break;
  case MCAF_Code16:
    setIsThumb(true);
    break;
  case MCAF_Code32:
    setIsThumb(false);
    break;
  }
}

unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
                                         const MCSubtargetInfo &STI) const {
  bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
  bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];

  switch (Op) {
  default:
    return Op;
  case ARM::tBcc:
    return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
  case ARM::tLDRpci:
    return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
  case ARM::tADR:
    return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
  case ARM::tB:
    return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
  case ARM::tCBZ:
    return ARM::tHINT;
  case ARM::tCBNZ:
    return ARM::tHINT;
  }
}

bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
                                      const MCSubtargetInfo &STI) const {
  if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
    return true;
  return false;
}

static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
  int64_t Offset = int64_t(Value) - 4;
  if (Offset < Min || Offset > Max)
    return "out of range pc-relative fixup value";
  return nullptr;
}

const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
                                                    uint64_t Value) const {
  switch (Fixup.getTargetKind()) {
  case ARM::fixup_arm_thumb_br: {
    // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
    // low bit being an implied zero. There's an implied +4 offset for the
    // branch, so we adjust the other way here to determine what's
    // encodable.
    //
    // Relax if the value is too big for a (signed) i8.
    int64_t Offset = int64_t(Value) - 4;
    if (Offset > 2046 || Offset < -2048)
      return "out of range pc-relative fixup value";
    break;
  }
  case ARM::fixup_arm_thumb_bcc: {
    // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
    // low bit being an implied zero. There's an implied +4 offset for the
    // branch, so we adjust the other way here to determine what's
    // encodable.
    //
    // Relax if the value is too big for a (signed) i8.
    int64_t Offset = int64_t(Value) - 4;
    if (Offset > 254 || Offset < -256)
      return "out of range pc-relative fixup value";
    break;
  }
  case ARM::fixup_thumb_adr_pcrel_10:
  case ARM::fixup_arm_thumb_cp: {
    // If the immediate is negative, greater than 1020, or not a multiple
    // of four, the wide version of the instruction must be used.
    int64_t Offset = int64_t(Value) - 4;
    if (Offset & 3)
      return "misaligned pc-relative fixup value";
    else if (Offset > 1020 || Offset < 0)
      return "out of range pc-relative fixup value";
    break;
  }
  case ARM::fixup_arm_thumb_cb: {
    // If we have a Thumb CBZ or CBNZ instruction and its target is the next
    // instruction it is actually out of range for the instruction.
    // It will be changed to a NOP.
    int64_t Offset = (Value & ~1);
    if (Offset == 2)
      return "will be converted to nop";
    break;
  }
  case ARM::fixup_bf_branch:
    return checkPCRelOffset(Value, 0, 30);
  case ARM::fixup_bf_target:
    return checkPCRelOffset(Value, -0x10000, +0xfffe);
  case ARM::fixup_bfl_target:
    return checkPCRelOffset(Value, -0x40000, +0x3fffe);
  case ARM::fixup_bfc_target:
    return checkPCRelOffset(Value, -0x1000, +0xffe);
  case ARM::fixup_wls:
    return checkPCRelOffset(Value, 0, +0xffe);
  case ARM::fixup_le:
    // The offset field in the LE and LETP instructions is an 11-bit
    // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
    // interpreted as a negative offset from the value read from pc,
    // i.e. from instruction_address+4.
    //
    // So an LE instruction can in principle address the instruction
    // immediately after itself, or (not very usefully) the address
    // half way through the 4-byte LE.
    return checkPCRelOffset(Value, -0xffe, 0);
  case ARM::fixup_bfcsel_else_target: {
    if (Value != 2 && Value != 4)
      return "out of range label-relative fixup value";
    break;
  }

  default:
    llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
  }
  return nullptr;
}

bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
                                         const MCRelaxableFragment *DF,
                                         const MCAsmLayout &Layout) const {
  return reasonForFixupRelaxation(Fixup, Value);
}

void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
                                     const MCSubtargetInfo &STI,
                                     MCInst &Res) const {
  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);

  // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
  if (RelaxedOp == Inst.getOpcode()) {
    SmallString<256> Tmp;
    raw_svector_ostream OS(Tmp);
    Inst.dump_pretty(OS);
    OS << "\n";
    report_fatal_error("unexpected instruction to relax: " + OS.str());
  }

  // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
  // have to change the operands too.
  if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
      RelaxedOp == ARM::tHINT) {
    Res.setOpcode(RelaxedOp);
    Res.addOperand(MCOperand::createImm(0));
    Res.addOperand(MCOperand::createImm(14));
    Res.addOperand(MCOperand::createReg(0));
    return;
  }

  // The rest of instructions we're relaxing have the same operands.
  // We just need to update to the proper opcode.
  Res = Inst;
  Res.setOpcode(RelaxedOp);
}

bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
  const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
  const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
  const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
  const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
  if (isThumb()) {
    const uint16_t nopEncoding =
        hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
    uint64_t NumNops = Count / 2;
    for (uint64_t i = 0; i != NumNops; ++i)
      support::endian::write(OS, nopEncoding, Endian);
    if (Count & 1)
      OS << '\0';
    return true;
  }
  // ARM mode
  const uint32_t nopEncoding =
      hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
  uint64_t NumNops = Count / 4;
  for (uint64_t i = 0; i != NumNops; ++i)
    support::endian::write(OS, nopEncoding, Endian);
  // FIXME: should this function return false when unable to write exactly
  // 'Count' bytes with NOP encodings?
  switch (Count % 4) {
  default:
    break; // No leftover bytes to write
  case 1:
    OS << '\0';
    break;
  case 2:
    OS.write("\0\0", 2);
    break;
  case 3:
    OS.write("\0\0\xa0", 3);
    break;
  }

  return true;
}

static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
  if (IsLittleEndian) {
    // Note that the halfwords are stored high first and low second in thumb;
    // so we need to swap the fixup value here to map properly.
    uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
    Swapped |= (Value & 0x0000FFFF) << 16;
    return Swapped;
  } else
    return Value;
}

static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
                              bool IsLittleEndian) {
  uint32_t Value;

  if (IsLittleEndian) {
    Value = (SecondHalf & 0xFFFF) << 16;
    Value |= (FirstHalf & 0xFFFF);
  } else {
    Value = (SecondHalf & 0xFFFF);
    Value |= (FirstHalf & 0xFFFF) << 16;
  }

  return Value;
}

unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
                                         const MCFixup &Fixup,
                                         const MCValue &Target, uint64_t Value,
                                         bool IsResolved, MCContext &Ctx,
                                         const MCSubtargetInfo* STI) const {
  unsigned Kind = Fixup.getKind();

  // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
  // and .word relocations they put the Thumb bit into the addend if possible.
  // Other relocation types don't want this bit though (branches couldn't encode
  // it if it *was* present, and no other relocations exist) and it can
  // interfere with checking valid expressions.
  if (const MCSymbolRefExpr *A = Target.getSymA()) {
    if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
        A->getSymbol().isExternal() &&
        (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
         Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
         Kind == ARM::fixup_t2_movt_hi16))
      Value |= 1;
  }

  switch (Kind) {
  default:
    Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
    return 0;
  case FK_NONE:
  case FK_Data_1:
  case FK_Data_2:
  case FK_Data_4:
    return Value;
  case FK_SecRel_2:
    return Value;
  case FK_SecRel_4:
    return Value;
  case ARM::fixup_arm_movt_hi16:
    assert(STI != nullptr);
    if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
      Value >>= 16;
    LLVM_FALLTHROUGH;
  case ARM::fixup_arm_movw_lo16: {
    unsigned Hi4 = (Value & 0xF000) >> 12;
    unsigned Lo12 = Value & 0x0FFF;
    // inst{19-16} = Hi4;
    // inst{11-0} = Lo12;
    Value = (Hi4 << 16) | (Lo12);
    return Value;
  }
  case ARM::fixup_t2_movt_hi16:
    assert(STI != nullptr);
    if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
      Value >>= 16;
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_movw_lo16: {
    unsigned Hi4 = (Value & 0xF000) >> 12;
    unsigned i = (Value & 0x800) >> 11;
    unsigned Mid3 = (Value & 0x700) >> 8;
    unsigned Lo8 = Value & 0x0FF;
    // inst{19-16} = Hi4;
    // inst{26} = i;
    // inst{14-12} = Mid3;
    // inst{7-0} = Lo8;
    Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
    return swapHalfWords(Value, Endian == support::little);
  }
  case ARM::fixup_arm_ldst_pcrel_12:
    // ARM PC-relative values are offset by 8.
    Value -= 4;
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_ldst_pcrel_12: {
    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    Value -= 4;
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    if (Value >= 4096) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value |= isAdd << 23;

    // Same addressing mode as fixup_arm_pcrel_10,
    // but with 16-bit halfwords swapped.
    if (Kind == ARM::fixup_t2_ldst_pcrel_12)
      return swapHalfWords(Value, Endian == support::little);

    return Value;
  }
  case ARM::fixup_arm_adr_pcrel_12: {
    // ARM PC-relative values are offset by 8.
    Value -= 8;
    unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
    if ((int64_t)Value < 0) {
      Value = -Value;
      opc = 2; // 0b0010
    }
    if (ARM_AM::getSOImmVal(Value) == -1) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    // Encode the immediate and shift the opcode into place.
    return ARM_AM::getSOImmVal(Value) | (opc << 21);
  }

  case ARM::fixup_t2_adr_pcrel_12: {
    Value -= 4;
    unsigned opc = 0;
    if ((int64_t)Value < 0) {
      Value = -Value;
      opc = 5;
    }

    uint32_t out = (opc << 21);
    out |= (Value & 0x800) << 15;
    out |= (Value & 0x700) << 4;
    out |= (Value & 0x0FF);

    return swapHalfWords(out, Endian == support::little);
  }

  case ARM::fixup_arm_condbranch:
  case ARM::fixup_arm_uncondbranch:
  case ARM::fixup_arm_uncondbl:
  case ARM::fixup_arm_condbl:
  case ARM::fixup_arm_blx:
    // These values don't encode the low two bits since they're always zero.
    // Offset by 8 just as above.
    if (const MCSymbolRefExpr *SRE =
            dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
      if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
        return 0;
    return 0xffffff & ((Value - 8) >> 2);
  case ARM::fixup_t2_uncondbranch: {
    Value = Value - 4;
    if (!isInt<25>(Value)) {
      Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
      return 0;
    }

    Value >>= 1; // Low bit is not encoded.

    uint32_t out = 0;
    bool I = Value & 0x800000;
    bool J1 = Value & 0x400000;
    bool J2 = Value & 0x200000;
    J1 ^= I;
    J2 ^= I;

    out |= I << 26;                 // S bit
    out |= !J1 << 13;               // J1 bit
    out |= !J2 << 11;               // J2 bit
    out |= (Value & 0x1FF800) << 5; // imm6 field
    out |= (Value & 0x0007FF);      // imm11 field

    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_t2_condbranch: {
    Value = Value - 4;
    if (!isInt<21>(Value)) {
      Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
      return 0;
    }

    Value >>= 1; // Low bit is not encoded.

    uint64_t out = 0;
    out |= (Value & 0x80000) << 7; // S bit
    out |= (Value & 0x40000) >> 7; // J2 bit
    out |= (Value & 0x20000) >> 4; // J1 bit
    out |= (Value & 0x1F800) << 5; // imm6 field
    out |= (Value & 0x007FF);      // imm11 field

    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_arm_thumb_bl: {
    if (!isInt<25>(Value - 4) ||
        (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
         !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
         !STI->getFeatureBits()[ARM::HasV6MOps] &&
         !isInt<23>(Value - 4))) {
      Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
      return 0;
    }

    // The value doesn't encode the low bit (always zero) and is offset by
    // four. The 32-bit immediate value is encoded as
    //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
    // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    // The value is encoded into disjoint bit positions in the destination
    // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    // J = either J1 or J2 bit
    //
    //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
    //
    // Note that the halfwords are stored high first, low second; so we need
    // to transpose the fixup value here to map properly.
    uint32_t offset = (Value - 4) >> 1;
    uint32_t signBit = (offset & 0x800000) >> 23;
    uint32_t I1Bit = (offset & 0x400000) >> 22;
    uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    uint32_t I2Bit = (offset & 0x200000) >> 21;
    uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
    uint32_t imm11Bits = (offset & 0x000007FF);

    uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
    uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
                           (uint16_t)imm11Bits);
    return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
  }
  case ARM::fixup_arm_thumb_blx: {
    // The value doesn't encode the low two bits (always zero) and is offset by
    // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
    //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
    // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    // The value is encoded into disjoint bit positions in the destination
    // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    // J = either J1 or J2 bit, 0 = zero.
    //
    //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
    //
    // Note that the halfwords are stored high first, low second; so we need
    // to transpose the fixup value here to map properly.
    if (Value % 4 != 0) {
      Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
      return 0;
    }

    uint32_t offset = (Value - 4) >> 2;
    if (const MCSymbolRefExpr *SRE =
            dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
      if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
        offset = 0;
    uint32_t signBit = (offset & 0x400000) >> 22;
    uint32_t I1Bit = (offset & 0x200000) >> 21;
    uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    uint32_t I2Bit = (offset & 0x100000) >> 20;
    uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
    uint32_t imm10LBits = (offset & 0x3FF);

    uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
    uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
                           ((uint16_t)imm10LBits) << 1);
    return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
  }
  case ARM::fixup_thumb_adr_pcrel_10:
  case ARM::fixup_arm_thumb_cp:
    // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
    // could have an error on our hands.
    assert(STI != nullptr);
    if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
      const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
      if (FixupDiagnostic) {
        Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
        return 0;
      }
    }
    // Offset by 4, and don't encode the low two bits.
    return ((Value - 4) >> 2) & 0xff;
  case ARM::fixup_arm_thumb_cb: {
    // CB instructions can only branch to offsets in [4, 126] in multiples of 2
    // so ensure that the raw value LSB is zero and it lies in [2, 130].
    // An offset of 2 will be relaxed to a NOP.
    if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    // Offset by 4 and don't encode the lower bit, which is always 0.
    // FIXME: diagnose if no Thumb2
    uint32_t Binary = (Value - 4) >> 1;
    return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
  }
  case ARM::fixup_arm_thumb_br:
    // Offset by 4 and don't encode the lower bit, which is always 0.
    assert(STI != nullptr);
    if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
        !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
      const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
      if (FixupDiagnostic) {
        Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
        return 0;
      }
    }
    return ((Value - 4) >> 1) & 0x7ff;
  case ARM::fixup_arm_thumb_bcc:
    // Offset by 4 and don't encode the lower bit, which is always 0.
    assert(STI != nullptr);
    if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
      const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
      if (FixupDiagnostic) {
        Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
        return 0;
      }
    }
    return ((Value - 4) >> 1) & 0xff;
  case ARM::fixup_arm_pcrel_10_unscaled: {
    Value = Value - 8; // ARM fixups offset by an additional word and don't
                       // need to adjust for the half-word ordering.
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
    if (Value >= 256) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value = (Value & 0xf) | ((Value & 0xf0) << 4);
    return Value | (isAdd << 23);
  }
  case ARM::fixup_arm_pcrel_10:
    Value = Value - 4; // ARM fixups offset by an additional word and don't
                       // need to adjust for the half-word ordering.
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_pcrel_10: {
    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    Value = Value - 4;
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    // These values don't encode the low two bits since they're always zero.
    Value >>= 2;
    if (Value >= 256) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value |= isAdd << 23;

    // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
    // swapped.
    if (Kind == ARM::fixup_t2_pcrel_10)
      return swapHalfWords(Value, Endian == support::little);

    return Value;
  }
  case ARM::fixup_arm_pcrel_9:
    Value = Value - 4; // ARM fixups offset by an additional word and don't
                       // need to adjust for the half-word ordering.
    LLVM_FALLTHROUGH;
  case ARM::fixup_t2_pcrel_9: {
    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    Value = Value - 4;
    bool isAdd = true;
    if ((int64_t)Value < 0) {
      Value = -Value;
      isAdd = false;
    }
    // These values don't encode the low bit since it's always zero.
    if (Value & 1) {
      Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
      return 0;
    }
    Value >>= 1;
    if (Value >= 256) {
      Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
      return 0;
    }
    Value |= isAdd << 23;

    // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
    // swapped.
    if (Kind == ARM::fixup_t2_pcrel_9)
      return swapHalfWords(Value, Endian == support::little);

    return Value;
  }
  case ARM::fixup_arm_mod_imm:
    Value = ARM_AM::getSOImmVal(Value);
    if (Value >> 12) {
      Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
      return 0;
    }
    return Value;
  case ARM::fixup_t2_so_imm: {
    Value = ARM_AM::getT2SOImmVal(Value);
    if ((int64_t)Value < 0) {
      Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
      return 0;
    }
    // Value will contain a 12-bit value broken up into a 4-bit shift in bits
    // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
    // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
    // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
    // half-word.
    uint64_t EncValue = 0;
    EncValue |= (Value & 0x800) << 15;
    EncValue |= (Value & 0x700) << 4;
    EncValue |= (Value & 0xff);
    return swapHalfWords(EncValue, Endian == support::little);
  }
  case ARM::fixup_bf_branch: {
    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_bf_target:
  case ARM::fixup_bfl_target:
  case ARM::fixup_bfc_target: {
    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint32_t out = 0;
    uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
                            Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
    out |= (((Value - 4) >> 1) & 0x1) << 11;
    out |= (((Value - 4) >> 1) & 0x7fe);
    out |= (((Value - 4) >> 1) & HighBitMask) << 5;
    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_bfcsel_else_target: {
    // If this is a fixup of a branch future's else target then it should be a
    // constant MCExpr representing the distance between the branch targetted
    // and the instruction after that same branch.
    Value = Target.getConstant();

    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint32_t out = ((Value >> 2) & 1) << 17;
    return swapHalfWords(out, Endian == support::little);
  }
  case ARM::fixup_wls:
  case ARM::fixup_le: {
    const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    if (FixupDiagnostic) {
      Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
      return 0;
    }
    uint64_t real_value = Value - 4;
    uint32_t out = 0;
    if (Kind == ARM::fixup_le)
      real_value = -real_value;
    out |= ((real_value >> 1) & 0x1) << 11;
    out |= ((real_value >> 1) & 0x7fe);
    return swapHalfWords(out, Endian == support::little);
  }
  }
}

bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
                                          const MCFixup &Fixup,
                                          const MCValue &Target) {
  const MCSymbolRefExpr *A = Target.getSymA();
  const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
  const unsigned FixupKind = Fixup.getKind();
  if (FixupKind == FK_NONE)
    return true;
  if (FixupKind == ARM::fixup_arm_thumb_bl) {
    assert(Sym && "How did we resolve this?");

    // If the symbol is external the linker will handle it.
    // FIXME: Should we handle it as an optimization?

    // If the symbol is out of range, produce a relocation and hope the
    // linker can handle it. GNU AS produces an error in this case.
    if (Sym->isExternal())
      return true;
  }
  // Create relocations for unconditional branches to function symbols with
  // different execution mode in ELF binaries.
  if (Sym && Sym->isELF()) {
    unsigned Type = cast<MCSymbolELF>(Sym)->getType();
    if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
      if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
        return true;
      if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
                                    FixupKind == ARM::fixup_arm_thumb_bl ||
                                    FixupKind == ARM::fixup_t2_condbranch ||
                                    FixupKind == ARM::fixup_t2_uncondbranch))
        return true;
    }
  }
  // We must always generate a relocation for BL/BLX instructions if we have
  // a symbol to reference, as the linker relies on knowing the destination
  // symbol's thumb-ness to get interworking right.
  if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
            FixupKind == ARM::fixup_arm_blx ||
            FixupKind == ARM::fixup_arm_uncondbl ||
            FixupKind == ARM::fixup_arm_condbl))
    return true;
  return false;
}

/// getFixupKindNumBytes - The number of bytes the fixup may change.
static unsigned getFixupKindNumBytes(unsigned Kind) {
  switch (Kind) {
  default:
    llvm_unreachable("Unknown fixup kind!");

  case FK_NONE:
    return 0;

  case FK_Data_1:
  case ARM::fixup_arm_thumb_bcc:
  case ARM::fixup_arm_thumb_cp:
  case ARM::fixup_thumb_adr_pcrel_10:
    return 1;

  case FK_Data_2:
  case ARM::fixup_arm_thumb_br:
  case ARM::fixup_arm_thumb_cb:
  case ARM::fixup_arm_mod_imm:
    return 2;

  case ARM::fixup_arm_pcrel_10_unscaled:
  case ARM::fixup_arm_ldst_pcrel_12:
  case ARM::fixup_arm_pcrel_10:
  case ARM::fixup_arm_pcrel_9:
  case ARM::fixup_arm_adr_pcrel_12:
  case ARM::fixup_arm_uncondbl:
  case ARM::fixup_arm_condbl:
  case ARM::fixup_arm_blx:
  case ARM::fixup_arm_condbranch:
  case ARM::fixup_arm_uncondbranch:
    return 3;

  case FK_Data_4:
  case ARM::fixup_t2_ldst_pcrel_12:
  case ARM::fixup_t2_condbranch:
  case ARM::fixup_t2_uncondbranch:
  case ARM::fixup_t2_pcrel_10:
  case ARM::fixup_t2_pcrel_9:
  case ARM::fixup_t2_adr_pcrel_12:
  case ARM::fixup_arm_thumb_bl:
  case ARM::fixup_arm_thumb_blx:
  case ARM::fixup_arm_movt_hi16:
  case ARM::fixup_arm_movw_lo16:
  case ARM::fixup_t2_movt_hi16:
  case ARM::fixup_t2_movw_lo16:
  case ARM::fixup_t2_so_imm:
  case ARM::fixup_bf_branch:
  case ARM::fixup_bf_target:
  case ARM::fixup_bfl_target:
  case ARM::fixup_bfc_target:
  case ARM::fixup_bfcsel_else_target:
  case ARM::fixup_wls:
  case ARM::fixup_le:
    return 4;

  case FK_SecRel_2:
    return 2;
  case FK_SecRel_4:
    return 4;
  }
}

/// getFixupKindContainerSizeBytes - The number of bytes of the
/// container involved in big endian.
static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
  switch (Kind) {
  default:
    llvm_unreachable("Unknown fixup kind!");

  case FK_NONE:
    return 0;

  case FK_Data_1:
    return 1;
  case FK_Data_2:
    return 2;
  case FK_Data_4:
    return 4;

  case ARM::fixup_arm_thumb_bcc:
  case ARM::fixup_arm_thumb_cp:
  case ARM::fixup_thumb_adr_pcrel_10:
  case ARM::fixup_arm_thumb_br:
  case ARM::fixup_arm_thumb_cb:
    // Instruction size is 2 bytes.
    return 2;

  case ARM::fixup_arm_pcrel_10_unscaled:
  case ARM::fixup_arm_ldst_pcrel_12:
  case ARM::fixup_arm_pcrel_10:
  case ARM::fixup_arm_pcrel_9:
  case ARM::fixup_arm_adr_pcrel_12:
  case ARM::fixup_arm_uncondbl:
  case ARM::fixup_arm_condbl:
  case ARM::fixup_arm_blx:
  case ARM::fixup_arm_condbranch:
  case ARM::fixup_arm_uncondbranch:
  case ARM::fixup_t2_ldst_pcrel_12:
  case ARM::fixup_t2_condbranch:
  case ARM::fixup_t2_uncondbranch:
  case ARM::fixup_t2_pcrel_10:
  case ARM::fixup_t2_adr_pcrel_12:
  case ARM::fixup_arm_thumb_bl:
  case ARM::fixup_arm_thumb_blx:
  case ARM::fixup_arm_movt_hi16:
  case ARM::fixup_arm_movw_lo16:
  case ARM::fixup_t2_movt_hi16:
  case ARM::fixup_t2_movw_lo16:
  case ARM::fixup_arm_mod_imm:
  case ARM::fixup_t2_so_imm:
  case ARM::fixup_bf_branch:
  case ARM::fixup_bf_target:
  case ARM::fixup_bfl_target:
  case ARM::fixup_bfc_target:
  case ARM::fixup_bfcsel_else_target:
  case ARM::fixup_wls:
  case ARM::fixup_le:
    // Instruction size is 4 bytes.
    return 4;
  }
}

void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
                               const MCValue &Target,
                               MutableArrayRef<char> Data, uint64_t Value,
                               bool IsResolved,
                               const MCSubtargetInfo* STI) const {
  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
  MCContext &Ctx = Asm.getContext();
  Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
  if (!Value)
    return; // Doesn't change encoding.

  unsigned Offset = Fixup.getOffset();
  assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");

  // Used to point to big endian bytes.
  unsigned FullSizeBytes;
  if (Endian == support::big) {
    FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
    assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
    assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
  }

  // For each byte of the fragment that the fixup touches, mask in the bits from
  // the fixup value. The Value has been "split up" into the appropriate
  // bitfields above.
  for (unsigned i = 0; i != NumBytes; ++i) {
    unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
    Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
  }
}

namespace CU {

/// Compact unwind encoding values.
enum CompactUnwindEncodings {
  UNWIND_ARM_MODE_MASK                         = 0x0F000000,
  UNWIND_ARM_MODE_FRAME                        = 0x01000000,
  UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
  UNWIND_ARM_MODE_DWARF                        = 0x04000000,

  UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,

  UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
  UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
  UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,

  UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
  UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
  UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
  UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
  UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,

  UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,

  UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
};

} // end CU namespace

/// Generate compact unwind encoding for the function based on the CFI
/// instructions. If the CFI instructions describe a frame that cannot be
/// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
/// tells the runtime to fallback and unwind using dwarf.
uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
    ArrayRef<MCCFIInstruction> Instrs) const {
  DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
  // Only armv7k uses CFI based unwinding.
  if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
    return 0;
  // No .cfi directives means no frame.
  if (Instrs.empty())
    return 0;
  // Start off assuming CFA is at SP+0.
  unsigned CFARegister = ARM::SP;
  int CFARegisterOffset = 0;
  // Mark savable registers as initially unsaved
  DenseMap<unsigned, int> RegOffsets;
  int FloatRegCount = 0;
  // Process each .cfi directive and build up compact unwind info.
  for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
    unsigned Reg;
    const MCCFIInstruction &Inst = Instrs[i];
    switch (Inst.getOperation()) {
    case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
      CFARegisterOffset = -Inst.getOffset();
      CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
      break;
    case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
      CFARegisterOffset = -Inst.getOffset();
      break;
    case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
      CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
      break;
    case MCCFIInstruction::OpOffset: // DW_CFA_offset
      Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
        RegOffsets[Reg] = Inst.getOffset();
      else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
        RegOffsets[Reg] = Inst.getOffset();
        ++FloatRegCount;
      } else {
        DEBUG_WITH_TYPE("compact-unwind",
                        llvm::dbgs() << ".cfi_offset on unknown register="
                                     << Inst.getRegister() << "\n");
        return CU::UNWIND_ARM_MODE_DWARF;
      }
      break;
    case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
      // Ignore
      break;
    default:
      // Directive not convertable to compact unwind, bail out.
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs()
                          << "CFI directive not compatiable with comact "
                             "unwind encoding, opcode=" << Inst.getOperation()
                          << "\n");
      return CU::UNWIND_ARM_MODE_DWARF;
      break;
    }
  }

  // If no frame set up, return no unwind info.
  if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
    return 0;

  // Verify standard frame (lr/r7) was used.
  if (CFARegister != ARM::R7) {
    DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
                                                   << CFARegister
                                                   << " instead of r7\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }
  int StackAdjust = CFARegisterOffset - 8;
  if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
    DEBUG_WITH_TYPE("compact-unwind",
                    llvm::dbgs()
                        << "LR not saved as standard frame, StackAdjust="
                        << StackAdjust
                        << ", CFARegisterOffset=" << CFARegisterOffset
                        << ", lr save at offset=" << RegOffsets[14] << "\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }
  if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
    DEBUG_WITH_TYPE("compact-unwind",
                    llvm::dbgs() << "r7 not saved as standard frame\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }
  uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;

  // If var-args are used, there may be a stack adjust required.
  switch (StackAdjust) {
  case 0:
    break;
  case 4:
    CompactUnwindEncoding |= 0x00400000;
    break;
  case 8:
    CompactUnwindEncoding |= 0x00800000;
    break;
  case 12:
    CompactUnwindEncoding |= 0x00C00000;
    break;
  default:
    DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
                                          << ".cfi_def_cfa stack adjust ("
                                          << StackAdjust << ") out of range\n");
    return CU::UNWIND_ARM_MODE_DWARF;
  }

  // If r6 is saved, it must be right below r7.
  static struct {
    unsigned Reg;
    unsigned Encoding;
  } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
                   {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
                   {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
                   {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
                   {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
                   {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
                   {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
                   {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};

  int CurOffset = -8 - StackAdjust;
  for (auto CSReg : GPRCSRegs) {
    auto Offset = RegOffsets.find(CSReg.Reg);
    if (Offset == RegOffsets.end())
      continue;

    int RegOffset = Offset->second;
    if (RegOffset != CurOffset - 4) {
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
                                   << RegOffset << " but only supported at "
                                   << CurOffset << "\n");
      return CU::UNWIND_ARM_MODE_DWARF;
    }
    CompactUnwindEncoding |= CSReg.Encoding;
    CurOffset -= 4;
  }

  // If no floats saved, we are done.
  if (FloatRegCount == 0)
    return CompactUnwindEncoding;

  // Switch mode to include D register saving.
  CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
  CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;

  // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
  // but needs coordination with the linker and libunwind.
  if (FloatRegCount > 4) {
    DEBUG_WITH_TYPE("compact-unwind",
                    llvm::dbgs() << "unsupported number of D registers saved ("
                                 << FloatRegCount << ")\n");
      return CU::UNWIND_ARM_MODE_DWARF;
  }

  // Floating point registers must either be saved sequentially, or we defer to
  // DWARF. No gaps allowed here so check that each saved d-register is
  // precisely where it should be.
  static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
  for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
    auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
    if (Offset == RegOffsets.end()) {
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs() << FloatRegCount << " D-regs saved, but "
                                   << MRI.getName(FPRCSRegs[Idx])
                                   << " not saved\n");
      return CU::UNWIND_ARM_MODE_DWARF;
    } else if (Offset->second != CurOffset - 8) {
      DEBUG_WITH_TYPE("compact-unwind",
                      llvm::dbgs() << FloatRegCount << " D-regs saved, but "
                                   << MRI.getName(FPRCSRegs[Idx])
                                   << " saved at " << Offset->second
                                   << ", expected at " << CurOffset - 8
                                   << "\n");
      return CU::UNWIND_ARM_MODE_DWARF;
    }
    CurOffset -= 8;
  }

  return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
}

static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
  ARM::ArchKind AK = ARM::parseArch(Arch);
  switch (AK) {
  default:
    return MachO::CPU_SUBTYPE_ARM_V7;
  case ARM::ArchKind::ARMV4T:
    return MachO::CPU_SUBTYPE_ARM_V4T;
  case ARM::ArchKind::ARMV5T:
  case ARM::ArchKind::ARMV5TE:
  case ARM::ArchKind::ARMV5TEJ:
    return MachO::CPU_SUBTYPE_ARM_V5;
  case ARM::ArchKind::ARMV6:
  case ARM::ArchKind::ARMV6K:
    return MachO::CPU_SUBTYPE_ARM_V6;
  case ARM::ArchKind::ARMV7A:
    return MachO::CPU_SUBTYPE_ARM_V7;
  case ARM::ArchKind::ARMV7S:
    return MachO::CPU_SUBTYPE_ARM_V7S;
  case ARM::ArchKind::ARMV7K:
    return MachO::CPU_SUBTYPE_ARM_V7K;
  case ARM::ArchKind::ARMV6M:
    return MachO::CPU_SUBTYPE_ARM_V6M;
  case ARM::ArchKind::ARMV7M:
    return MachO::CPU_SUBTYPE_ARM_V7M;
  case ARM::ArchKind::ARMV7EM:
    return MachO::CPU_SUBTYPE_ARM_V7EM;
  }
}

static MCAsmBackend *createARMAsmBackend(const Target &T,
                                         const MCSubtargetInfo &STI,
                                         const MCRegisterInfo &MRI,
                                         const MCTargetOptions &Options,
                                         support::endianness Endian) {
  const Triple &TheTriple = STI.getTargetTriple();
  switch (TheTriple.getObjectFormat()) {
  default:
    llvm_unreachable("unsupported object format");
  case Triple::MachO: {
    MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
    return new ARMAsmBackendDarwin(T, STI, MRI, CS);
  }
  case Triple::COFF:
    assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
    return new ARMAsmBackendWinCOFF(T, STI);
  case Triple::ELF:
    assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
    uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
    return new ARMAsmBackendELF(T, STI, OSABI, Endian);
  }
}

MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
                                          const MCSubtargetInfo &STI,
                                          const MCRegisterInfo &MRI,
                                          const MCTargetOptions &Options) {
  return createARMAsmBackend(T, STI, MRI, Options, support::little);
}

MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
                                          const MCSubtargetInfo &STI,
                                          const MCRegisterInfo &MRI,
                                          const MCTargetOptions &Options) {
  return createARMAsmBackend(T, STI, MRI, Options, support::big);
}