reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
//===-- AVRInstrInfo.cpp - AVR Instruction Information --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AVR implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "AVRInstrInfo.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

#include "AVR.h"
#include "AVRMachineFunctionInfo.h"
#include "AVRRegisterInfo.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#define GET_INSTRINFO_CTOR_DTOR
#include "AVRGenInstrInfo.inc"

namespace llvm {

AVRInstrInfo::AVRInstrInfo()
    : AVRGenInstrInfo(AVR::ADJCALLSTACKDOWN, AVR::ADJCALLSTACKUP), RI() {}

void AVRInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator MI,
                               const DebugLoc &DL, unsigned DestReg,
                               unsigned SrcReg, bool KillSrc) const {
  const AVRSubtarget &STI = MBB.getParent()->getSubtarget<AVRSubtarget>();
  const AVRRegisterInfo &TRI = *STI.getRegisterInfo();
  unsigned Opc;

  // Not all AVR devices support the 16-bit `MOVW` instruction.
  if (AVR::DREGSRegClass.contains(DestReg, SrcReg)) {
    if (STI.hasMOVW()) {
      BuildMI(MBB, MI, DL, get(AVR::MOVWRdRr), DestReg)
          .addReg(SrcReg, getKillRegState(KillSrc));
    } else {
      unsigned DestLo, DestHi, SrcLo, SrcHi;

      TRI.splitReg(DestReg, DestLo, DestHi);
      TRI.splitReg(SrcReg,  SrcLo,  SrcHi);

      // Copy each individual register with the `MOV` instruction.
      BuildMI(MBB, MI, DL, get(AVR::MOVRdRr), DestLo)
        .addReg(SrcLo, getKillRegState(KillSrc));
      BuildMI(MBB, MI, DL, get(AVR::MOVRdRr), DestHi)
        .addReg(SrcHi, getKillRegState(KillSrc));
    }
  } else {
    if (AVR::GPR8RegClass.contains(DestReg, SrcReg)) {
      Opc = AVR::MOVRdRr;
    } else if (SrcReg == AVR::SP && AVR::DREGSRegClass.contains(DestReg)) {
      Opc = AVR::SPREAD;
    } else if (DestReg == AVR::SP && AVR::DREGSRegClass.contains(SrcReg)) {
      Opc = AVR::SPWRITE;
    } else {
      llvm_unreachable("Impossible reg-to-reg copy");
    }

    BuildMI(MBB, MI, DL, get(Opc), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc));
  }
}

unsigned AVRInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                           int &FrameIndex) const {
  switch (MI.getOpcode()) {
  case AVR::LDDRdPtrQ:
  case AVR::LDDWRdYQ: { //:FIXME: remove this once PR13375 gets fixed
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  }
  default:
    break;
  }

  return 0;
}

unsigned AVRInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  switch (MI.getOpcode()) {
  case AVR::STDPtrQRr:
  case AVR::STDWPtrQRr: {
    if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
        MI.getOperand(1).getImm() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return MI.getOperand(2).getReg();
    }
    break;
  }
  default:
    break;
  }

  return 0;
}

void AVRInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator MI,
                                       unsigned SrcReg, bool isKill,
                                       int FrameIndex,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();

  AFI->setHasSpills(true);

  DebugLoc DL;
  if (MI != MBB.end()) {
    DL = MI->getDebugLoc();
  }

  const MachineFrameInfo &MFI = MF.getFrameInfo();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIndex),
      MFI.getObjectAlignment(FrameIndex));

  unsigned Opcode = 0;
  if (TRI->isTypeLegalForClass(*RC, MVT::i8)) {
    Opcode = AVR::STDPtrQRr;
  } else if (TRI->isTypeLegalForClass(*RC, MVT::i16)) {
    Opcode = AVR::STDWPtrQRr;
  } else {
    llvm_unreachable("Cannot store this register into a stack slot!");
  }

  BuildMI(MBB, MI, DL, get(Opcode))
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addReg(SrcReg, getKillRegState(isKill))
      .addMemOperand(MMO);
}

void AVRInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator MI,
                                        unsigned DestReg, int FrameIndex,
                                        const TargetRegisterClass *RC,
                                        const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (MI != MBB.end()) {
    DL = MI->getDebugLoc();
  }

  MachineFunction &MF = *MBB.getParent();
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex),
      MFI.getObjectAlignment(FrameIndex));

  unsigned Opcode = 0;
  if (TRI->isTypeLegalForClass(*RC, MVT::i8)) {
    Opcode = AVR::LDDRdPtrQ;
  } else if (TRI->isTypeLegalForClass(*RC, MVT::i16)) {
    // Opcode = AVR::LDDWRdPtrQ;
    //:FIXME: remove this once PR13375 gets fixed
    Opcode = AVR::LDDWRdYQ;
  } else {
    llvm_unreachable("Cannot load this register from a stack slot!");
  }

  BuildMI(MBB, MI, DL, get(Opcode), DestReg)
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addMemOperand(MMO);
}

const MCInstrDesc &AVRInstrInfo::getBrCond(AVRCC::CondCodes CC) const {
  switch (CC) {
  default:
    llvm_unreachable("Unknown condition code!");
  case AVRCC::COND_EQ:
    return get(AVR::BREQk);
  case AVRCC::COND_NE:
    return get(AVR::BRNEk);
  case AVRCC::COND_GE:
    return get(AVR::BRGEk);
  case AVRCC::COND_LT:
    return get(AVR::BRLTk);
  case AVRCC::COND_SH:
    return get(AVR::BRSHk);
  case AVRCC::COND_LO:
    return get(AVR::BRLOk);
  case AVRCC::COND_MI:
    return get(AVR::BRMIk);
  case AVRCC::COND_PL:
    return get(AVR::BRPLk);
  }
}

AVRCC::CondCodes AVRInstrInfo::getCondFromBranchOpc(unsigned Opc) const {
  switch (Opc) {
  default:
    return AVRCC::COND_INVALID;
  case AVR::BREQk:
    return AVRCC::COND_EQ;
  case AVR::BRNEk:
    return AVRCC::COND_NE;
  case AVR::BRSHk:
    return AVRCC::COND_SH;
  case AVR::BRLOk:
    return AVRCC::COND_LO;
  case AVR::BRMIk:
    return AVRCC::COND_MI;
  case AVR::BRPLk:
    return AVRCC::COND_PL;
  case AVR::BRGEk:
    return AVRCC::COND_GE;
  case AVR::BRLTk:
    return AVRCC::COND_LT;
  }
}

AVRCC::CondCodes AVRInstrInfo::getOppositeCondition(AVRCC::CondCodes CC) const {
  switch (CC) {
  default:
    llvm_unreachable("Invalid condition!");
  case AVRCC::COND_EQ:
    return AVRCC::COND_NE;
  case AVRCC::COND_NE:
    return AVRCC::COND_EQ;
  case AVRCC::COND_SH:
    return AVRCC::COND_LO;
  case AVRCC::COND_LO:
    return AVRCC::COND_SH;
  case AVRCC::COND_GE:
    return AVRCC::COND_LT;
  case AVRCC::COND_LT:
    return AVRCC::COND_GE;
  case AVRCC::COND_MI:
    return AVRCC::COND_PL;
  case AVRCC::COND_PL:
    return AVRCC::COND_MI;
  }
}

bool AVRInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  // Start from the bottom of the block and work up, examining the
  // terminator instructions.
  MachineBasicBlock::iterator I = MBB.end();
  MachineBasicBlock::iterator UnCondBrIter = MBB.end();

  while (I != MBB.begin()) {
    --I;
    if (I->isDebugInstr()) {
      continue;
    }

    // Working from the bottom, when we see a non-terminator
    // instruction, we're done.
    if (!isUnpredicatedTerminator(*I)) {
      break;
    }

    // A terminator that isn't a branch can't easily be handled
    // by this analysis.
    if (!I->getDesc().isBranch()) {
      return true;
    }

    // Handle unconditional branches.
    //:TODO: add here jmp
    if (I->getOpcode() == AVR::RJMPk) {
      UnCondBrIter = I;

      if (!AllowModify) {
        TBB = I->getOperand(0).getMBB();
        continue;
      }

      // If the block has any instructions after a JMP, delete them.
      while (std::next(I) != MBB.end()) {
        std::next(I)->eraseFromParent();
      }

      Cond.clear();
      FBB = 0;

      // Delete the JMP if it's equivalent to a fall-through.
      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
        TBB = 0;
        I->eraseFromParent();
        I = MBB.end();
        UnCondBrIter = MBB.end();
        continue;
      }

      // TBB is used to indicate the unconditinal destination.
      TBB = I->getOperand(0).getMBB();
      continue;
    }

    // Handle conditional branches.
    AVRCC::CondCodes BranchCode = getCondFromBranchOpc(I->getOpcode());
    if (BranchCode == AVRCC::COND_INVALID) {
      return true; // Can't handle indirect branch.
    }

    // Working from the bottom, handle the first conditional branch.
    if (Cond.empty()) {
      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
      if (AllowModify && UnCondBrIter != MBB.end() &&
          MBB.isLayoutSuccessor(TargetBB)) {
        // If we can modify the code and it ends in something like:
        //
        //     jCC L1
        //     jmp L2
        //   L1:
        //     ...
        //   L2:
        //
        // Then we can change this to:
        //
        //     jnCC L2
        //   L1:
        //     ...
        //   L2:
        //
        // Which is a bit more efficient.
        // We conditionally jump to the fall-through block.
        BranchCode = getOppositeCondition(BranchCode);
        unsigned JNCC = getBrCond(BranchCode).getOpcode();
        MachineBasicBlock::iterator OldInst = I;

        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
            .addMBB(UnCondBrIter->getOperand(0).getMBB());
        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(AVR::RJMPk))
            .addMBB(TargetBB);

        OldInst->eraseFromParent();
        UnCondBrIter->eraseFromParent();

        // Restart the analysis.
        UnCondBrIter = MBB.end();
        I = MBB.end();
        continue;
      }

      FBB = TBB;
      TBB = I->getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(BranchCode));
      continue;
    }

    // Handle subsequent conditional branches. Only handle the case where all
    // conditional branches branch to the same destination.
    assert(Cond.size() == 1);
    assert(TBB);

    // Only handle the case where all conditional branches branch to
    // the same destination.
    if (TBB != I->getOperand(0).getMBB()) {
      return true;
    }

    AVRCC::CondCodes OldBranchCode = (AVRCC::CondCodes)Cond[0].getImm();
    // If the conditions are the same, we can leave them alone.
    if (OldBranchCode == BranchCode) {
      continue;
    }

    return true;
  }

  return false;
}

unsigned AVRInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    ArrayRef<MachineOperand> Cond,
                                    const DebugLoc &DL,
                                    int *BytesAdded) const {
  if (BytesAdded) *BytesAdded = 0;

  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 1 || Cond.size() == 0) &&
         "AVR branch conditions have one component!");

  if (Cond.empty()) {
    assert(!FBB && "Unconditional branch with multiple successors!");
    auto &MI = *BuildMI(&MBB, DL, get(AVR::RJMPk)).addMBB(TBB);
    if (BytesAdded)
      *BytesAdded += getInstSizeInBytes(MI);
    return 1;
  }

  // Conditional branch.
  unsigned Count = 0;
  AVRCC::CondCodes CC = (AVRCC::CondCodes)Cond[0].getImm();
  auto &CondMI = *BuildMI(&MBB, DL, getBrCond(CC)).addMBB(TBB);

  if (BytesAdded) *BytesAdded += getInstSizeInBytes(CondMI);
  ++Count;

  if (FBB) {
    // Two-way Conditional branch. Insert the second branch.
    auto &MI = *BuildMI(&MBB, DL, get(AVR::RJMPk)).addMBB(FBB);
    if (BytesAdded) *BytesAdded += getInstSizeInBytes(MI);
    ++Count;
  }

  return Count;
}

unsigned AVRInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                    int *BytesRemoved) const {
  if (BytesRemoved) *BytesRemoved = 0;

  MachineBasicBlock::iterator I = MBB.end();
  unsigned Count = 0;

  while (I != MBB.begin()) {
    --I;
    if (I->isDebugInstr()) {
      continue;
    }
    //:TODO: add here the missing jmp instructions once they are implemented
    // like jmp, {e}ijmp, and other cond branches, ...
    if (I->getOpcode() != AVR::RJMPk &&
        getCondFromBranchOpc(I->getOpcode()) == AVRCC::COND_INVALID) {
      break;
    }

    // Remove the branch.
    if (BytesRemoved) *BytesRemoved += getInstSizeInBytes(*I);
    I->eraseFromParent();
    I = MBB.end();
    ++Count;
  }

  return Count;
}

bool AVRInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert(Cond.size() == 1 && "Invalid AVR branch condition!");

  AVRCC::CondCodes CC = static_cast<AVRCC::CondCodes>(Cond[0].getImm());
  Cond[0].setImm(getOppositeCondition(CC));

  return false;
}

unsigned AVRInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  switch (Opcode) {
  // A regular instruction
  default: {
    const MCInstrDesc &Desc = get(Opcode);
    return Desc.getSize();
  }
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::DBG_VALUE:
    return 0;
  case TargetOpcode::INLINEASM:
  case TargetOpcode::INLINEASM_BR: {
    const MachineFunction &MF = *MI.getParent()->getParent();
    const AVRTargetMachine &TM = static_cast<const AVRTargetMachine&>(MF.getTarget());
    const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
    const TargetInstrInfo &TII = *STI.getInstrInfo();

    return TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
                                  *TM.getMCAsmInfo());
  }
  }
}

MachineBasicBlock *
AVRInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("unexpected opcode!");
  case AVR::JMPk:
  case AVR::CALLk:
  case AVR::RCALLk:
  case AVR::RJMPk:
  case AVR::BREQk:
  case AVR::BRNEk:
  case AVR::BRSHk:
  case AVR::BRLOk:
  case AVR::BRMIk:
  case AVR::BRPLk:
  case AVR::BRGEk:
  case AVR::BRLTk:
    return MI.getOperand(0).getMBB();
  case AVR::BRBSsk:
  case AVR::BRBCsk:
    return MI.getOperand(1).getMBB();
  case AVR::SBRCRrB:
  case AVR::SBRSRrB:
  case AVR::SBICAb:
  case AVR::SBISAb:
    llvm_unreachable("unimplemented branch instructions");
  }
}

bool AVRInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
                                         int64_t BrOffset) const {

  switch (BranchOp) {
  default:
    llvm_unreachable("unexpected opcode!");
  case AVR::JMPk:
  case AVR::CALLk:
    return true;
  case AVR::RCALLk:
  case AVR::RJMPk:
    return isIntN(13, BrOffset);
  case AVR::BRBSsk:
  case AVR::BRBCsk:
  case AVR::BREQk:
  case AVR::BRNEk:
  case AVR::BRSHk:
  case AVR::BRLOk:
  case AVR::BRMIk:
  case AVR::BRPLk:
  case AVR::BRGEk:
  case AVR::BRLTk:
    return isIntN(7, BrOffset);
  }
}

unsigned AVRInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
                                            MachineBasicBlock &NewDestBB,
                                            const DebugLoc &DL,
                                            int64_t BrOffset,
                                            RegScavenger *RS) const {
    // This method inserts a *direct* branch (JMP), despite its name.
    // LLVM calls this method to fixup unconditional branches; it never calls
    // insertBranch or some hypothetical "insertDirectBranch".
    // See lib/CodeGen/RegisterRelaxation.cpp for details.
    // We end up here when a jump is too long for a RJMP instruction.
    auto &MI = *BuildMI(&MBB, DL, get(AVR::JMPk)).addMBB(&NewDestBB);

    return getInstSizeInBytes(MI);
}

} // end of namespace llvm