reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
//===--- RDFDeadCode.cpp --------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RDF-based generic dead code elimination.

#include "RDFDeadCode.h"
#include "RDFGraph.h"
#include "RDFLiveness.h"

#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"

#include <queue>

using namespace llvm;
using namespace rdf;

// This drastically improves execution time in "collect" over using
// SetVector as a work queue, and popping the first element from it.
template<typename T> struct DeadCodeElimination::SetQueue {
  SetQueue() : Set(), Queue() {}

  bool empty() const {
    return Queue.empty();
  }
  T pop_front() {
    T V = Queue.front();
    Queue.pop();
    Set.erase(V);
    return V;
  }
  void push_back(T V) {
    if (Set.count(V))
      return;
    Queue.push(V);
    Set.insert(V);
  }

private:
  DenseSet<T> Set;
  std::queue<T> Queue;
};


// Check if the given instruction has observable side-effects, i.e. if
// it should be considered "live". It is safe for this function to be
// overly conservative (i.e. return "true" for all instructions), but it
// is not safe to return "false" for an instruction that should not be
// considered removable.
bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
  if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
    return true;
  if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() ||
      MI->isPosition())
    return true;
  if (MI->isPHI())
    return false;
  for (auto &Op : MI->operands()) {
    if (Op.isReg() && MRI.isReserved(Op.getReg()))
      return true;
    if (Op.isRegMask()) {
      const uint32_t *BM = Op.getRegMask();
      for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) {
        if (BM[R/32] & (1u << (R%32)))
          continue;
        if (MRI.isReserved(R))
          return true;
      }
    }
  }
  return false;
}

void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
      SetQueue<NodeId> &WorkQ) {
  if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
    return;
  if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
    return;
  for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
    if (!LiveNodes.count(RA.Id))
      WorkQ.push_back(RA.Id);
  }
}

void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
      SetQueue<NodeId> &WorkQ) {
  NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
  for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
    if (!LiveNodes.count(UA.Id))
      WorkQ.push_back(UA.Id);
  }
  for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
    LiveNodes.insert(TA.Id);
}

void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
      SetQueue<NodeId> &WorkQ) {
  for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
    if (!LiveNodes.count(DA.Id))
      WorkQ.push_back(DA.Id);
  }
}

// Traverse the DFG and collect the set dead RefNodes and the set of
// dead instructions. Return "true" if any of these sets is non-empty,
// "false" otherwise.
bool DeadCodeElimination::collect() {
  // This function works by first finding all live nodes. The dead nodes
  // are then the complement of the set of live nodes.
  //
  // Assume that all nodes are dead. Identify instructions which must be
  // considered live, i.e. instructions with observable side-effects, such
  // as calls and stores. All arguments of such instructions are considered
  // live. For each live def, all operands used in the corresponding
  // instruction are considered live. For each live use, all its reaching
  // defs are considered live.
  LiveNodes.clear();
  SetQueue<NodeId> WorkQ;
  for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
    for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
      scanInstr(IA, WorkQ);

  while (!WorkQ.empty()) {
    NodeId N = WorkQ.pop_front();
    LiveNodes.insert(N);
    auto RA = DFG.addr<RefNode*>(N);
    if (DFG.IsDef(RA))
      processDef(RA, WorkQ);
    else
      processUse(RA, WorkQ);
  }

  if (trace()) {
    dbgs() << "Live nodes:\n";
    for (NodeId N : LiveNodes) {
      auto RA = DFG.addr<RefNode*>(N);
      dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
    }
  }

  auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
    for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
      if (LiveNodes.count(DA.Id))
        return false;
    return true;
  };

  for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
    for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
      for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
        if (!LiveNodes.count(RA.Id))
          DeadNodes.insert(RA.Id);
      if (DFG.IsCode<NodeAttrs::Stmt>(IA))
        if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
          continue;
      if (IsDead(IA)) {
        DeadInstrs.insert(IA.Id);
        if (trace())
          dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
      }
    }
  }

  return !DeadNodes.empty();
}

// Erase the nodes given in the Nodes set from DFG. In addition to removing
// them from the DFG, if a node corresponds to a statement, the corresponding
// machine instruction is erased from the function.
bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
  if (Nodes.empty())
    return false;

  // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
  // are included directly, for each InstrNode in Nodes, include the set
  // of all RefNodes from it.
  NodeList DRNs, DINs;
  for (auto I : Nodes) {
    auto BA = DFG.addr<NodeBase*>(I);
    uint16_t Type = BA.Addr->getType();
    if (Type == NodeAttrs::Ref) {
      DRNs.push_back(DFG.addr<RefNode*>(I));
      continue;
    }

    // If it's a code node, add all ref nodes from it.
    uint16_t Kind = BA.Addr->getKind();
    if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
      for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
        DRNs.push_back(N);
      DINs.push_back(DFG.addr<InstrNode*>(I));
    } else {
      llvm_unreachable("Unexpected code node");
      return false;
    }
  }

  // Sort the list so that use nodes are removed first. This makes the
  // "unlink" functions a bit faster.
  auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
    uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
    if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
      return true;
    if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
      return false;
    return A.Id < B.Id;
  };
  llvm::sort(DRNs, UsesFirst);

  if (trace())
    dbgs() << "Removing dead ref nodes:\n";
  for (NodeAddr<RefNode*> RA : DRNs) {
    if (trace())
      dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
    if (DFG.IsUse(RA))
      DFG.unlinkUse(RA, true);
    else if (DFG.IsDef(RA))
      DFG.unlinkDef(RA, true);
  }

  // Now, remove all dead instruction nodes.
  for (NodeAddr<InstrNode*> IA : DINs) {
    NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
    BA.Addr->removeMember(IA, DFG);
    if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
      continue;

    MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
    if (trace())
      dbgs() << "erasing: " << *MI;
    MI->eraseFromParent();
  }
  return true;
}