reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
//===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target-independent, SSA-based data flow graph for register data flow (RDF)
// for a non-SSA program representation (e.g. post-RA machine code).
//
//
// *** Introduction
//
// The RDF graph is a collection of nodes, each of which denotes some element
// of the program. There are two main types of such elements: code and refe-
// rences. Conceptually, "code" is something that represents the structure
// of the program, e.g. basic block or a statement, while "reference" is an
// instance of accessing a register, e.g. a definition or a use. Nodes are
// connected with each other based on the structure of the program (such as
// blocks, instructions, etc.), and based on the data flow (e.g. reaching
// definitions, reached uses, etc.). The single-reaching-definition principle
// of SSA is generally observed, although, due to the non-SSA representation
// of the program, there are some differences between the graph and a "pure"
// SSA representation.
//
//
// *** Implementation remarks
//
// Since the graph can contain a large number of nodes, memory consumption
// was one of the major design considerations. As a result, there is a single
// base class NodeBase which defines all members used by all possible derived
// classes. The members are arranged in a union, and a derived class cannot
// add any data members of its own. Each derived class only defines the
// functional interface, i.e. member functions. NodeBase must be a POD,
// which implies that all of its members must also be PODs.
// Since nodes need to be connected with other nodes, pointers have been
// replaced with 32-bit identifiers: each node has an id of type NodeId.
// There are mapping functions in the graph that translate between actual
// memory addresses and the corresponding identifiers.
// A node id of 0 is equivalent to nullptr.
//
//
// *** Structure of the graph
//
// A code node is always a collection of other nodes. For example, a code
// node corresponding to a basic block will contain code nodes corresponding
// to instructions. In turn, a code node corresponding to an instruction will
// contain a list of reference nodes that correspond to the definitions and
// uses of registers in that instruction. The members are arranged into a
// circular list, which is yet another consequence of the effort to save
// memory: for each member node it should be possible to obtain its owner,
// and it should be possible to access all other members. There are other
// ways to accomplish that, but the circular list seemed the most natural.
//
// +- CodeNode -+
// |            | <---------------------------------------------------+
// +-+--------+-+                                                     |
//   |FirstM  |LastM                                                  |
//   |        +-------------------------------------+                 |
//   |                                              |                 |
//   V                                              V                 |
//  +----------+ Next +----------+ Next       Next +----------+ Next  |
//  |          |----->|          |-----> ... ----->|          |----->-+
//  +- Member -+      +- Member -+                 +- Member -+
//
// The order of members is such that related reference nodes (see below)
// should be contiguous on the member list.
//
// A reference node is a node that encapsulates an access to a register,
// in other words, data flowing into or out of a register. There are two
// major kinds of reference nodes: defs and uses. A def node will contain
// the id of the first reached use, and the id of the first reached def.
// Each def and use will contain the id of the reaching def, and also the
// id of the next reached def (for def nodes) or use (for use nodes).
// The "next node sharing the same reaching def" is denoted as "sibling".
// In summary:
// - Def node contains: reaching def, sibling, first reached def, and first
// reached use.
// - Use node contains: reaching def and sibling.
//
// +-- DefNode --+
// | R2 = ...    | <---+--------------------+
// ++---------+--+     |                    |
//  |Reached  |Reached |                    |
//  |Def      |Use     |                    |
//  |         |        |Reaching            |Reaching
//  |         V        |Def                 |Def
//  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
//  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
//  |      +-------------+      +-------------+
//  V
// +-- DefNode --+ Sib
// | R2 = ...    |----> ...
// ++---------+--+
//  |         |
//  |         |
// ...       ...
//
// To get a full picture, the circular lists connecting blocks within a
// function, instructions within a block, etc. should be superimposed with
// the def-def, def-use links shown above.
// To illustrate this, consider a small example in a pseudo-assembly:
// foo:
//   add r2, r0, r1   ; r2 = r0+r1
//   addi r0, r2, 1   ; r0 = r2+1
//   ret r0           ; return value in r0
//
// The graph (in a format used by the debugging functions) would look like:
//
//   DFG dump:[
//   f1: Function foo
//   b2: === %bb.0 === preds(0), succs(0):
//   p3: phi [d4<r0>(,d12,u9):]
//   p5: phi [d6<r1>(,,u10):]
//   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
//   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
//   s14: ret [u15<r0>(d12):]
//   ]
//
// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
// ment, d - def, u - use).
// The format of a def node is:
//   dN<R>(rd,d,u):sib,
// where
//   N   - numeric node id,
//   R   - register being defined
//   rd  - reaching def,
//   d   - reached def,
//   u   - reached use,
//   sib - sibling.
// The format of a use node is:
//   uN<R>[!](rd):sib,
// where
//   N   - numeric node id,
//   R   - register being used,
//   rd  - reaching def,
//   sib - sibling.
// Possible annotations (usually preceding the node id):
//   +   - preserving def,
//   ~   - clobbering def,
//   "   - shadow ref (follows the node id),
//   !   - fixed register (appears after register name).
//
// The circular lists are not explicit in the dump.
//
//
// *** Node attributes
//
// NodeBase has a member "Attrs", which is the primary way of determining
// the node's characteristics. The fields in this member decide whether
// the node is a code node or a reference node (i.e. node's "type"), then
// within each type, the "kind" determines what specifically this node
// represents. The remaining bits, "flags", contain additional information
// that is even more detailed than the "kind".
// CodeNode's kinds are:
// - Phi:   Phi node, members are reference nodes.
// - Stmt:  Statement, members are reference nodes.
// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
// - Func:  The whole function. The members are basic block nodes.
// RefNode's kinds are:
// - Use.
// - Def.
//
// Meaning of flags:
// - Preserving: applies only to defs. A preserving def is one that can
//   preserve some of the original bits among those that are included in
//   the register associated with that def. For example, if R0 is a 32-bit
//   register, but a def can only change the lower 16 bits, then it will
//   be marked as preserving.
// - Shadow: a reference that has duplicates holding additional reaching
//   defs (see more below).
// - Clobbering: applied only to defs, indicates that the value generated
//   by this def is unspecified. A typical example would be volatile registers
//   after function calls.
// - Fixed: the register in this def/use cannot be replaced with any other
//   register. A typical case would be a parameter register to a call, or
//   the register with the return value from a function.
// - Undef: the register in this reference the register is assumed to have
//   no pre-existing value, even if it appears to be reached by some def.
//   This is typically used to prevent keeping registers artificially live
//   in cases when they are defined via predicated instructions. For example:
//     r0 = add-if-true cond, r10, r11                (1)
//     r0 = add-if-false cond, r12, r13, implicit r0  (2)
//     ... = r0                                       (3)
//   Before (1), r0 is not intended to be live, and the use of r0 in (3) is
//   not meant to be reached by any def preceding (1). However, since the
//   defs in (1) and (2) are both preserving, these properties alone would
//   imply that the use in (3) may indeed be reached by some prior def.
//   Adding Undef flag to the def in (1) prevents that. The Undef flag
//   may be applied to both defs and uses.
// - Dead: applies only to defs. The value coming out of a "dead" def is
//   assumed to be unused, even if the def appears to be reaching other defs
//   or uses. The motivation for this flag comes from dead defs on function
//   calls: there is no way to determine if such a def is dead without
//   analyzing the target's ABI. Hence the graph should contain this info,
//   as it is unavailable otherwise. On the other hand, a def without any
//   uses on a typical instruction is not the intended target for this flag.
//
// *** Shadow references
//
// It may happen that a super-register can have two (or more) non-overlapping
// sub-registers. When both of these sub-registers are defined and followed
// by a use of the super-register, the use of the super-register will not
// have a unique reaching def: both defs of the sub-registers need to be
// accounted for. In such cases, a duplicate use of the super-register is
// added and it points to the extra reaching def. Both uses are marked with
// a flag "shadow". Example:
// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
//   set r0, 1        ; r0 = 1
//   set r1, 1        ; r1 = 1
//   addi t1, t0, 1   ; t1 = t0+1
//
// The DFG:
//   s1: set [d2<r0>(,,u9):]
//   s3: set [d4<r1>(,,u10):]
//   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
//
// The statement s5 has two use nodes for t0: u7" and u9". The quotation
// mark " indicates that the node is a shadow.
//

#ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
#define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H

#include "RDFRegisters.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <map>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>

// RDF uses uint32_t to refer to registers. This is to ensure that the type
// size remains specific. In other places, registers are often stored using
// unsigned.
static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");

namespace llvm {

class MachineBasicBlock;
class MachineDominanceFrontier;
class MachineDominatorTree;
class MachineFunction;
class MachineInstr;
class MachineOperand;
class raw_ostream;
class TargetInstrInfo;
class TargetRegisterInfo;

namespace rdf {

  using NodeId = uint32_t;

  struct DataFlowGraph;

  struct NodeAttrs {
    enum : uint16_t {
      None          = 0x0000,   // Nothing

      // Types: 2 bits
      TypeMask      = 0x0003,
      Code          = 0x0001,   // 01, Container
      Ref           = 0x0002,   // 10, Reference

      // Kind: 3 bits
      KindMask      = 0x0007 << 2,
      Def           = 0x0001 << 2,  // 001
      Use           = 0x0002 << 2,  // 010
      Phi           = 0x0003 << 2,  // 011
      Stmt          = 0x0004 << 2,  // 100
      Block         = 0x0005 << 2,  // 101
      Func          = 0x0006 << 2,  // 110

      // Flags: 7 bits for now
      FlagMask      = 0x007F << 5,
      Shadow        = 0x0001 << 5,  // 0000001, Has extra reaching defs.
      Clobbering    = 0x0002 << 5,  // 0000010, Produces unspecified values.
      PhiRef        = 0x0004 << 5,  // 0000100, Member of PhiNode.
      Preserving    = 0x0008 << 5,  // 0001000, Def can keep original bits.
      Fixed         = 0x0010 << 5,  // 0010000, Fixed register.
      Undef         = 0x0020 << 5,  // 0100000, Has no pre-existing value.
      Dead          = 0x0040 << 5,  // 1000000, Does not define a value.
    };

    static uint16_t type(uint16_t T)  { return T & TypeMask; }
    static uint16_t kind(uint16_t T)  { return T & KindMask; }
    static uint16_t flags(uint16_t T) { return T & FlagMask; }

    static uint16_t set_type(uint16_t A, uint16_t T) {
      return (A & ~TypeMask) | T;
    }

    static uint16_t set_kind(uint16_t A, uint16_t K) {
      return (A & ~KindMask) | K;
    }

    static uint16_t set_flags(uint16_t A, uint16_t F) {
      return (A & ~FlagMask) | F;
    }

    // Test if A contains B.
    static bool contains(uint16_t A, uint16_t B) {
      if (type(A) != Code)
        return false;
      uint16_t KB = kind(B);
      switch (kind(A)) {
        case Func:
          return KB == Block;
        case Block:
          return KB == Phi || KB == Stmt;
        case Phi:
        case Stmt:
          return type(B) == Ref;
      }
      return false;
    }
  };

  struct BuildOptions {
    enum : unsigned {
      None          = 0x00,
      KeepDeadPhis  = 0x01,   // Do not remove dead phis during build.
    };
  };

  template <typename T> struct NodeAddr {
    NodeAddr() = default;
    NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}

    // Type cast (casting constructor). The reason for having this class
    // instead of std::pair.
    template <typename S> NodeAddr(const NodeAddr<S> &NA)
      : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}

    bool operator== (const NodeAddr<T> &NA) const {
      assert((Addr == NA.Addr) == (Id == NA.Id));
      return Addr == NA.Addr;
    }
    bool operator!= (const NodeAddr<T> &NA) const {
      return !operator==(NA);
    }

    T Addr = nullptr;
    NodeId Id = 0;
  };

  struct NodeBase;

  // Fast memory allocation and translation between node id and node address.
  // This is really the same idea as the one underlying the "bump pointer
  // allocator", the difference being in the translation. A node id is
  // composed of two components: the index of the block in which it was
  // allocated, and the index within the block. With the default settings,
  // where the number of nodes per block is 4096, the node id (minus 1) is:
  //
  // bit position:                11             0
  // +----------------------------+--------------+
  // | Index of the block         |Index in block|
  // +----------------------------+--------------+
  //
  // The actual node id is the above plus 1, to avoid creating a node id of 0.
  //
  // This method significantly improved the build time, compared to using maps
  // (std::unordered_map or DenseMap) to translate between pointers and ids.
  struct NodeAllocator {
    // Amount of storage for a single node.
    enum { NodeMemSize = 32 };

    NodeAllocator(uint32_t NPB = 4096)
        : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
          IndexMask((1 << BitsPerIndex)-1) {
      assert(isPowerOf2_32(NPB));
    }

    NodeBase *ptr(NodeId N) const {
      uint32_t N1 = N-1;
      uint32_t BlockN = N1 >> BitsPerIndex;
      uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
      return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
    }

    NodeId id(const NodeBase *P) const;
    NodeAddr<NodeBase*> New();
    void clear();

  private:
    void startNewBlock();
    bool needNewBlock();

    uint32_t makeId(uint32_t Block, uint32_t Index) const {
      // Add 1 to the id, to avoid the id of 0, which is treated as "null".
      return ((Block << BitsPerIndex) | Index) + 1;
    }

    const uint32_t NodesPerBlock;
    const uint32_t BitsPerIndex;
    const uint32_t IndexMask;
    char *ActiveEnd = nullptr;
    std::vector<char*> Blocks;
    using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
    AllocatorTy MemPool;
  };

  using RegisterSet = std::set<RegisterRef>;

  struct TargetOperandInfo {
    TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
    virtual ~TargetOperandInfo() = default;

    virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
    virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
    virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;

    const TargetInstrInfo &TII;
  };

  // Packed register reference. Only used for storage.
  struct PackedRegisterRef {
    RegisterId Reg;
    uint32_t MaskId;
  };

  struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
    LaneMaskIndex() = default;

    LaneBitmask getLaneMaskForIndex(uint32_t K) const {
      return K == 0 ? LaneBitmask::getAll() : get(K);
    }

    uint32_t getIndexForLaneMask(LaneBitmask LM) {
      assert(LM.any());
      return LM.all() ? 0 : insert(LM);
    }

    uint32_t getIndexForLaneMask(LaneBitmask LM) const {
      assert(LM.any());
      return LM.all() ? 0 : find(LM);
    }
  };

  struct NodeBase {
  public:
    // Make sure this is a POD.
    NodeBase() = default;

    uint16_t getType()  const { return NodeAttrs::type(Attrs); }
    uint16_t getKind()  const { return NodeAttrs::kind(Attrs); }
    uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
    NodeId   getNext()  const { return Next; }

    uint16_t getAttrs() const { return Attrs; }
    void setAttrs(uint16_t A) { Attrs = A; }
    void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }

    // Insert node NA after "this" in the circular chain.
    void append(NodeAddr<NodeBase*> NA);

    // Initialize all members to 0.
    void init() { memset(this, 0, sizeof *this); }

    void setNext(NodeId N) { Next = N; }

  protected:
    uint16_t Attrs;
    uint16_t Reserved;
    NodeId Next;                // Id of the next node in the circular chain.
    // Definitions of nested types. Using anonymous nested structs would make
    // this class definition clearer, but unnamed structs are not a part of
    // the standard.
    struct Def_struct  {
      NodeId DD, DU;          // Ids of the first reached def and use.
    };
    struct PhiU_struct  {
      NodeId PredB;           // Id of the predecessor block for a phi use.
    };
    struct Code_struct {
      void *CP;               // Pointer to the actual code.
      NodeId FirstM, LastM;   // Id of the first member and last.
    };
    struct Ref_struct {
      NodeId RD, Sib;         // Ids of the reaching def and the sibling.
      union {
        Def_struct Def;
        PhiU_struct PhiU;
      };
      union {
        MachineOperand *Op;   // Non-phi refs point to a machine operand.
        PackedRegisterRef PR; // Phi refs store register info directly.
      };
    };

    // The actual payload.
    union {
      Ref_struct Ref;
      Code_struct Code;
    };
  };
  // The allocator allocates chunks of 32 bytes for each node. The fact that
  // each node takes 32 bytes in memory is used for fast translation between
  // the node id and the node address.
  static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
        "NodeBase must be at most NodeAllocator::NodeMemSize bytes");

  using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
  using NodeSet = std::set<NodeId>;

  struct RefNode : public NodeBase {
    RefNode() = default;

    RegisterRef getRegRef(const DataFlowGraph &G) const;

    MachineOperand &getOp() {
      assert(!(getFlags() & NodeAttrs::PhiRef));
      return *Ref.Op;
    }

    void setRegRef(RegisterRef RR, DataFlowGraph &G);
    void setRegRef(MachineOperand *Op, DataFlowGraph &G);

    NodeId getReachingDef() const {
      return Ref.RD;
    }
    void setReachingDef(NodeId RD) {
      Ref.RD = RD;
    }

    NodeId getSibling() const {
      return Ref.Sib;
    }
    void setSibling(NodeId Sib) {
      Ref.Sib = Sib;
    }

    bool isUse() const {
      assert(getType() == NodeAttrs::Ref);
      return getKind() == NodeAttrs::Use;
    }

    bool isDef() const {
      assert(getType() == NodeAttrs::Ref);
      return getKind() == NodeAttrs::Def;
    }

    template <typename Predicate>
    NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
        const DataFlowGraph &G);
    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
  };

  struct DefNode : public RefNode {
    NodeId getReachedDef() const {
      return Ref.Def.DD;
    }
    void setReachedDef(NodeId D) {
      Ref.Def.DD = D;
    }
    NodeId getReachedUse() const {
      return Ref.Def.DU;
    }
    void setReachedUse(NodeId U) {
      Ref.Def.DU = U;
    }

    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
  };

  struct UseNode : public RefNode {
    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
  };

  struct PhiUseNode : public UseNode {
    NodeId getPredecessor() const {
      assert(getFlags() & NodeAttrs::PhiRef);
      return Ref.PhiU.PredB;
    }
    void setPredecessor(NodeId B) {
      assert(getFlags() & NodeAttrs::PhiRef);
      Ref.PhiU.PredB = B;
    }
  };

  struct CodeNode : public NodeBase {
    template <typename T> T getCode() const {
      return static_cast<T>(Code.CP);
    }
    void setCode(void *C) {
      Code.CP = C;
    }

    NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
    NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
    void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
    void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
        const DataFlowGraph &G);
    void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);

    NodeList members(const DataFlowGraph &G) const;
    template <typename Predicate>
    NodeList members_if(Predicate P, const DataFlowGraph &G) const;
  };

  struct InstrNode : public CodeNode {
    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
  };

  struct PhiNode : public InstrNode {
    MachineInstr *getCode() const {
      return nullptr;
    }
  };

  struct StmtNode : public InstrNode {
    MachineInstr *getCode() const {
      return CodeNode::getCode<MachineInstr*>();
    }
  };

  struct BlockNode : public CodeNode {
    MachineBasicBlock *getCode() const {
      return CodeNode::getCode<MachineBasicBlock*>();
    }

    void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
  };

  struct FuncNode : public CodeNode {
    MachineFunction *getCode() const {
      return CodeNode::getCode<MachineFunction*>();
    }

    NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
        const DataFlowGraph &G) const;
    NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
  };

  struct DataFlowGraph {
    DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
        const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
        const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);

    NodeBase *ptr(NodeId N) const;
    template <typename T> T ptr(NodeId N) const {
      return static_cast<T>(ptr(N));
    }

    NodeId id(const NodeBase *P) const;

    template <typename T> NodeAddr<T> addr(NodeId N) const {
      return { ptr<T>(N), N };
    }

    NodeAddr<FuncNode*> getFunc() const { return Func; }
    MachineFunction &getMF() const { return MF; }
    const TargetInstrInfo &getTII() const { return TII; }
    const TargetRegisterInfo &getTRI() const { return TRI; }
    const PhysicalRegisterInfo &getPRI() const { return PRI; }
    const MachineDominatorTree &getDT() const { return MDT; }
    const MachineDominanceFrontier &getDF() const { return MDF; }
    const RegisterAggr &getLiveIns() const { return LiveIns; }

    struct DefStack {
      DefStack() = default;

      bool empty() const { return Stack.empty() || top() == bottom(); }

    private:
      using value_type = NodeAddr<DefNode *>;
      struct Iterator {
        using value_type = DefStack::value_type;

        Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
        Iterator &down() { Pos = DS.nextDown(Pos); return *this; }

        value_type operator*() const {
          assert(Pos >= 1);
          return DS.Stack[Pos-1];
        }
        const value_type *operator->() const {
          assert(Pos >= 1);
          return &DS.Stack[Pos-1];
        }
        bool operator==(const Iterator &It) const { return Pos == It.Pos; }
        bool operator!=(const Iterator &It) const { return Pos != It.Pos; }

      private:
        friend struct DefStack;

        Iterator(const DefStack &S, bool Top);

        // Pos-1 is the index in the StorageType object that corresponds to
        // the top of the DefStack.
        const DefStack &DS;
        unsigned Pos;
      };

    public:
      using iterator = Iterator;

      iterator top() const { return Iterator(*this, true); }
      iterator bottom() const { return Iterator(*this, false); }
      unsigned size() const;

      void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
      void pop();
      void start_block(NodeId N);
      void clear_block(NodeId N);

    private:
      friend struct Iterator;

      using StorageType = std::vector<value_type>;

      bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
        return (P.Addr == nullptr) && (N == 0 || P.Id == N);
      }

      unsigned nextUp(unsigned P) const;
      unsigned nextDown(unsigned P) const;

      StorageType Stack;
    };

    // Make this std::unordered_map for speed of accessing elements.
    // Map: Register (physical or virtual) -> DefStack
    using DefStackMap = std::unordered_map<RegisterId, DefStack>;

    void build(unsigned Options = BuildOptions::None);
    void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
    void markBlock(NodeId B, DefStackMap &DefM);
    void releaseBlock(NodeId B, DefStackMap &DefM);

    PackedRegisterRef pack(RegisterRef RR) {
      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
    }
    PackedRegisterRef pack(RegisterRef RR) const {
      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
    }
    RegisterRef unpack(PackedRegisterRef PR) const {
      return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
    }

    RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
    RegisterRef makeRegRef(const MachineOperand &Op) const;
    RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;

    NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
        NodeAddr<RefNode*> RA) const;
    NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
        NodeAddr<RefNode*> RA, bool Create);
    NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
        NodeAddr<RefNode*> RA) const;
    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
        NodeAddr<RefNode*> RA, bool Create);
    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
        NodeAddr<RefNode*> RA) const;

    NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
        NodeAddr<RefNode*> RA) const;

    NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
      return BlockNodes.at(BB);
    }

    void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
      unlinkUseDF(UA);
      if (RemoveFromOwner)
        removeFromOwner(UA);
    }

    void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
      unlinkDefDF(DA);
      if (RemoveFromOwner)
        removeFromOwner(DA);
    }

    // Some useful filters.
    template <uint16_t Kind>
    static bool IsRef(const NodeAddr<NodeBase*> BA) {
      return BA.Addr->getType() == NodeAttrs::Ref &&
             BA.Addr->getKind() == Kind;
    }

    template <uint16_t Kind>
    static bool IsCode(const NodeAddr<NodeBase*> BA) {
      return BA.Addr->getType() == NodeAttrs::Code &&
             BA.Addr->getKind() == Kind;
    }

    static bool IsDef(const NodeAddr<NodeBase*> BA) {
      return BA.Addr->getType() == NodeAttrs::Ref &&
             BA.Addr->getKind() == NodeAttrs::Def;
    }

    static bool IsUse(const NodeAddr<NodeBase*> BA) {
      return BA.Addr->getType() == NodeAttrs::Ref &&
             BA.Addr->getKind() == NodeAttrs::Use;
    }

    static bool IsPhi(const NodeAddr<NodeBase*> BA) {
      return BA.Addr->getType() == NodeAttrs::Code &&
             BA.Addr->getKind() == NodeAttrs::Phi;
    }

    static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
      uint16_t Flags = DA.Addr->getFlags();
      return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
    }

  private:
    void reset();

    RegisterSet getLandingPadLiveIns() const;

    NodeAddr<NodeBase*> newNode(uint16_t Attrs);
    NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
    NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
    NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
        RegisterRef RR, NodeAddr<BlockNode*> PredB,
        uint16_t Flags = NodeAttrs::PhiRef);
    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
        RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
    NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
    NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
        MachineInstr *MI);
    NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
        MachineBasicBlock *BB);
    NodeAddr<FuncNode*> newFunc(MachineFunction *MF);

    template <typename Predicate>
    std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
    locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
        Predicate P) const;

    using BlockRefsMap = std::map<NodeId, RegisterSet>;

    void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
    void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
    void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
        NodeAddr<BlockNode*> BA);
    void removeUnusedPhis();

    void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
    void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
    template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
        NodeAddr<T> TA, DefStack &DS);
    template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
        NodeAddr<StmtNode*> SA, Predicate P);
    void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);

    void unlinkUseDF(NodeAddr<UseNode*> UA);
    void unlinkDefDF(NodeAddr<DefNode*> DA);

    void removeFromOwner(NodeAddr<RefNode*> RA) {
      NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
      IA.Addr->removeMember(RA, *this);
    }

    MachineFunction &MF;
    const TargetInstrInfo &TII;
    const TargetRegisterInfo &TRI;
    const PhysicalRegisterInfo PRI;
    const MachineDominatorTree &MDT;
    const MachineDominanceFrontier &MDF;
    const TargetOperandInfo &TOI;

    RegisterAggr LiveIns;
    NodeAddr<FuncNode*> Func;
    NodeAllocator Memory;
    // Local map:  MachineBasicBlock -> NodeAddr<BlockNode*>
    std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
    // Lane mask map.
    LaneMaskIndex LMI;
  };  // struct DataFlowGraph

  template <typename Predicate>
  NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
        bool NextOnly, const DataFlowGraph &G) {
    // Get the "Next" reference in the circular list that references RR and
    // satisfies predicate "Pred".
    auto NA = G.addr<NodeBase*>(getNext());

    while (NA.Addr != this) {
      if (NA.Addr->getType() == NodeAttrs::Ref) {
        NodeAddr<RefNode*> RA = NA;
        if (RA.Addr->getRegRef(G) == RR && P(NA))
          return NA;
        if (NextOnly)
          break;
        NA = G.addr<NodeBase*>(NA.Addr->getNext());
      } else {
        // We've hit the beginning of the chain.
        assert(NA.Addr->getType() == NodeAttrs::Code);
        NodeAddr<CodeNode*> CA = NA;
        NA = CA.Addr->getFirstMember(G);
      }
    }
    // Return the equivalent of "nullptr" if such a node was not found.
    return NodeAddr<RefNode*>();
  }

  template <typename Predicate>
  NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
    NodeList MM;
    auto M = getFirstMember(G);
    if (M.Id == 0)
      return MM;

    while (M.Addr != this) {
      if (P(M))
        MM.push_back(M);
      M = G.addr<NodeBase*>(M.Addr->getNext());
    }
    return MM;
  }

  template <typename T>
  struct Print {
    Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}

    const T &Obj;
    const DataFlowGraph &G;
  };

  template <typename T>
  struct PrintNode : Print<NodeAddr<T>> {
    PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
      : Print<NodeAddr<T>>(x, g) {}
  };

  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS,
                          const Print<NodeAddr<PhiUseNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS,
                          const Print<NodeAddr<StmtNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS,
                          const Print<NodeAddr<InstrNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS,
                          const Print<NodeAddr<BlockNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS,
                          const Print<NodeAddr<FuncNode *>> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
  raw_ostream &operator<<(raw_ostream &OS,
                          const Print<DataFlowGraph::DefStack> &P);

} // end namespace rdf

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H