reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
//-- SystemZMachineScheduler.cpp - SystemZ Scheduler Interface -*- C++ -*---==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// -------------------------- Post RA scheduling ---------------------------- //
// SystemZPostRASchedStrategy is a scheduling strategy which is plugged into
// the MachineScheduler. It has a sorted Available set of SUs and a pickNode()
// implementation that looks to optimize decoder grouping and balance the
// usage of processor resources. Scheduler states are saved for the end
// region of each MBB, so that a successor block can learn from it.
//===----------------------------------------------------------------------===//

#include "SystemZMachineScheduler.h"
#include "llvm/CodeGen/MachineLoopInfo.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

#ifndef NDEBUG
// Print the set of SUs
void SystemZPostRASchedStrategy::SUSet::
dump(SystemZHazardRecognizer &HazardRec) const {
  dbgs() << "{";
  for (auto &SU : *this) {
    HazardRec.dumpSU(SU, dbgs());
    if (SU != *rbegin())
      dbgs() << ",  ";
  }
  dbgs() << "}\n";
}
#endif

// Try to find a single predecessor that would be interesting for the
// scheduler in the top-most region of MBB.
static MachineBasicBlock *getSingleSchedPred(MachineBasicBlock *MBB,
                                             const MachineLoop *Loop) {
  MachineBasicBlock *PredMBB = nullptr;
  if (MBB->pred_size() == 1)
    PredMBB = *MBB->pred_begin();

  // The loop header has two predecessors, return the latch, but not for a
  // single block loop.
  if (MBB->pred_size() == 2 && Loop != nullptr && Loop->getHeader() == MBB) {
    for (auto I = MBB->pred_begin(); I != MBB->pred_end(); ++I)
      if (Loop->contains(*I))
        PredMBB = (*I == MBB ? nullptr : *I);
  }

  assert ((PredMBB == nullptr || !Loop || Loop->contains(PredMBB))
          && "Loop MBB should not consider predecessor outside of loop.");

  return PredMBB;
}

void SystemZPostRASchedStrategy::
advanceTo(MachineBasicBlock::iterator NextBegin) {
  MachineBasicBlock::iterator LastEmittedMI = HazardRec->getLastEmittedMI();
  MachineBasicBlock::iterator I =
    ((LastEmittedMI != nullptr && LastEmittedMI->getParent() == MBB) ?
     std::next(LastEmittedMI) : MBB->begin());

  for (; I != NextBegin; ++I) {
    if (I->isPosition() || I->isDebugInstr())
      continue;
    HazardRec->emitInstruction(&*I);
  }
}

void SystemZPostRASchedStrategy::initialize(ScheduleDAGMI *dag) {
  LLVM_DEBUG(HazardRec->dumpState(););
}

void SystemZPostRASchedStrategy::enterMBB(MachineBasicBlock *NextMBB) {
  assert ((SchedStates.find(NextMBB) == SchedStates.end()) &&
          "Entering MBB twice?");
  LLVM_DEBUG(dbgs() << "** Entering " << printMBBReference(*NextMBB));

  MBB = NextMBB;

  /// Create a HazardRec for MBB, save it in SchedStates and set HazardRec to
  /// point to it.
  HazardRec = SchedStates[MBB] = new SystemZHazardRecognizer(TII, &SchedModel);
  LLVM_DEBUG(const MachineLoop *Loop = MLI->getLoopFor(MBB);
             if (Loop && Loop->getHeader() == MBB) dbgs() << " (Loop header)";
             dbgs() << ":\n";);

  // Try to take over the state from a single predecessor, if it has been
  // scheduled. If this is not possible, we are done.
  MachineBasicBlock *SinglePredMBB =
    getSingleSchedPred(MBB, MLI->getLoopFor(MBB));
  if (SinglePredMBB == nullptr ||
      SchedStates.find(SinglePredMBB) == SchedStates.end())
    return;

  LLVM_DEBUG(dbgs() << "** Continued scheduling from "
                    << printMBBReference(*SinglePredMBB) << "\n";);

  HazardRec->copyState(SchedStates[SinglePredMBB]);
  LLVM_DEBUG(HazardRec->dumpState(););

  // Emit incoming terminator(s). Be optimistic and assume that branch
  // prediction will generally do "the right thing".
  for (MachineBasicBlock::iterator I = SinglePredMBB->getFirstTerminator();
       I != SinglePredMBB->end(); I++) {
    LLVM_DEBUG(dbgs() << "** Emitting incoming branch: "; I->dump(););
    bool TakenBranch = (I->isBranch() &&
                        (TII->getBranchInfo(*I).isIndirect() ||
                         TII->getBranchInfo(*I).getMBBTarget() == MBB));
    HazardRec->emitInstruction(&*I, TakenBranch);
    if (TakenBranch)
      break;
  }
}

void SystemZPostRASchedStrategy::leaveMBB() {
  LLVM_DEBUG(dbgs() << "** Leaving " << printMBBReference(*MBB) << "\n";);

  // Advance to first terminator. The successor block will handle terminators
  // dependent on CFG layout (T/NT branch etc).
  advanceTo(MBB->getFirstTerminator());
}

SystemZPostRASchedStrategy::
SystemZPostRASchedStrategy(const MachineSchedContext *C)
  : MLI(C->MLI),
    TII(static_cast<const SystemZInstrInfo *>
        (C->MF->getSubtarget().getInstrInfo())),
    MBB(nullptr), HazardRec(nullptr) {
  const TargetSubtargetInfo *ST = &C->MF->getSubtarget();
  SchedModel.init(ST);
}

SystemZPostRASchedStrategy::~SystemZPostRASchedStrategy() {
  // Delete hazard recognizers kept around for each MBB.
  for (auto I : SchedStates) {
    SystemZHazardRecognizer *hazrec = I.second;
    delete hazrec;
  }
}

void SystemZPostRASchedStrategy::initPolicy(MachineBasicBlock::iterator Begin,
                                            MachineBasicBlock::iterator End,
                                            unsigned NumRegionInstrs) {
  // Don't emit the terminators.
  if (Begin->isTerminator())
    return;

  // Emit any instructions before start of region.
  advanceTo(Begin);
}

// Pick the next node to schedule.
SUnit *SystemZPostRASchedStrategy::pickNode(bool &IsTopNode) {
  // Only scheduling top-down.
  IsTopNode = true;

  if (Available.empty())
    return nullptr;

  // If only one choice, return it.
  if (Available.size() == 1) {
    LLVM_DEBUG(dbgs() << "** Only one: ";
               HazardRec->dumpSU(*Available.begin(), dbgs()); dbgs() << "\n";);
    return *Available.begin();
  }

  // All nodes that are possible to schedule are stored in the Available set.
  LLVM_DEBUG(dbgs() << "** Available: "; Available.dump(*HazardRec););

  Candidate Best;
  for (auto *SU : Available) {

    // SU is the next candidate to be compared against current Best.
    Candidate c(SU, *HazardRec);

    // Remeber which SU is the best candidate.
    if (Best.SU == nullptr || c < Best) {
      Best = c;
      LLVM_DEBUG(dbgs() << "** Best so far: ";);
    } else
      LLVM_DEBUG(dbgs() << "** Tried      : ";);
    LLVM_DEBUG(HazardRec->dumpSU(c.SU, dbgs()); c.dumpCosts();
               dbgs() << " Height:" << c.SU->getHeight(); dbgs() << "\n";);

    // Once we know we have seen all SUs that affect grouping or use unbuffered
    // resources, we can stop iterating if Best looks good.
    if (!SU->isScheduleHigh && Best.noCost())
      break;
  }

  assert (Best.SU != nullptr);
  return Best.SU;
}

SystemZPostRASchedStrategy::Candidate::
Candidate(SUnit *SU_, SystemZHazardRecognizer &HazardRec) : Candidate() {
  SU = SU_;

  // Check the grouping cost. For a node that must begin / end a
  // group, it is positive if it would do so prematurely, or negative
  // if it would fit naturally into the schedule.
  GroupingCost = HazardRec.groupingCost(SU);

  // Check the resources cost for this SU.
  ResourcesCost = HazardRec.resourcesCost(SU);
}

bool SystemZPostRASchedStrategy::Candidate::
operator<(const Candidate &other) {

  // Check decoder grouping.
  if (GroupingCost < other.GroupingCost)
    return true;
  if (GroupingCost > other.GroupingCost)
    return false;

  // Compare the use of resources.
  if (ResourcesCost < other.ResourcesCost)
    return true;
  if (ResourcesCost > other.ResourcesCost)
    return false;

  // Higher SU is otherwise generally better.
  if (SU->getHeight() > other.SU->getHeight())
    return true;
  if (SU->getHeight() < other.SU->getHeight())
    return false;

  // If all same, fall back to original order.
  if (SU->NodeNum < other.SU->NodeNum)
    return true;

  return false;
}

void SystemZPostRASchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
  LLVM_DEBUG(dbgs() << "** Scheduling SU(" << SU->NodeNum << ") ";
             if (Available.size() == 1) dbgs() << "(only one) ";
             Candidate c(SU, *HazardRec); c.dumpCosts(); dbgs() << "\n";);

  // Remove SU from Available set and update HazardRec.
  Available.erase(SU);
  HazardRec->EmitInstruction(SU);
}

void SystemZPostRASchedStrategy::releaseTopNode(SUnit *SU) {
  // Set isScheduleHigh flag on all SUs that we want to consider first in
  // pickNode().
  const MCSchedClassDesc *SC = HazardRec->getSchedClass(SU);
  bool AffectsGrouping = (SC->isValid() && (SC->BeginGroup || SC->EndGroup));
  SU->isScheduleHigh = (AffectsGrouping || SU->isUnbuffered);

  // Put all released SUs in the Available set.
  Available.insert(SU);
}