1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
| //===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Implements the ScheduleDAG class, which is used as the common base
/// class for instruction schedulers. This encapsulates the scheduling DAG,
/// which is shared between SelectionDAG and MachineInstr scheduling.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
#define LLVM_CODEGEN_SCHEDULEDAG_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <string>
#include <vector>
namespace llvm {
template<class Graph> class GraphWriter;
class LLVMTargetMachine;
class MachineFunction;
class MachineRegisterInfo;
class MCInstrDesc;
struct MCSchedClassDesc;
class SDNode;
class SUnit;
class ScheduleDAG;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;
/// Scheduling dependency. This represents one direction of an edge in the
/// scheduling DAG.
class SDep {
public:
/// These are the different kinds of scheduling dependencies.
enum Kind {
Data, ///< Regular data dependence (aka true-dependence).
Anti, ///< A register anti-dependence (aka WAR).
Output, ///< A register output-dependence (aka WAW).
Order ///< Any other ordering dependency.
};
// Strong dependencies must be respected by the scheduler. Artificial
// dependencies may be removed only if they are redundant with another
// strong dependence.
//
// Weak dependencies may be violated by the scheduling strategy, but only if
// the strategy can prove it is correct to do so.
//
// Strong OrderKinds must occur before "Weak".
// Weak OrderKinds must occur after "Weak".
enum OrderKind {
Barrier, ///< An unknown scheduling barrier.
MayAliasMem, ///< Nonvolatile load/Store instructions that may alias.
MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
Artificial, ///< Arbitrary strong DAG edge (no real dependence).
Weak, ///< Arbitrary weak DAG edge.
Cluster ///< Weak DAG edge linking a chain of clustered instrs.
};
private:
/// A pointer to the depending/depended-on SUnit, and an enum
/// indicating the kind of the dependency.
PointerIntPair<SUnit *, 2, Kind> Dep;
/// A union discriminated by the dependence kind.
union {
/// For Data, Anti, and Output dependencies, the associated register. For
/// Data dependencies that don't currently have a register/ assigned, this
/// is set to zero.
unsigned Reg;
/// Additional information about Order dependencies.
unsigned OrdKind; // enum OrderKind
} Contents;
/// The time associated with this edge. Often this is just the value of the
/// Latency field of the predecessor, however advanced models may provide
/// additional information about specific edges.
unsigned Latency;
public:
/// Constructs a null SDep. This is only for use by container classes which
/// require default constructors. SUnits may not/ have null SDep edges.
SDep() : Dep(nullptr, Data) {}
/// Constructs an SDep with the specified values.
SDep(SUnit *S, Kind kind, unsigned Reg)
: Dep(S, kind), Contents() {
switch (kind) {
default:
llvm_unreachable("Reg given for non-register dependence!");
case Anti:
case Output:
assert(Reg != 0 &&
"SDep::Anti and SDep::Output must use a non-zero Reg!");
Contents.Reg = Reg;
Latency = 0;
break;
case Data:
Contents.Reg = Reg;
Latency = 1;
break;
}
}
SDep(SUnit *S, OrderKind kind)
: Dep(S, Order), Contents(), Latency(0) {
Contents.OrdKind = kind;
}
/// Returns true if the specified SDep is equivalent except for latency.
bool overlaps(const SDep &Other) const;
bool operator==(const SDep &Other) const {
return overlaps(Other) && Latency == Other.Latency;
}
bool operator!=(const SDep &Other) const {
return !operator==(Other);
}
/// Returns the latency value for this edge, which roughly means the
/// minimum number of cycles that must elapse between the predecessor and
/// the successor, given that they have this edge between them.
unsigned getLatency() const {
return Latency;
}
/// Sets the latency for this edge.
void setLatency(unsigned Lat) {
Latency = Lat;
}
//// Returns the SUnit to which this edge points.
SUnit *getSUnit() const;
//// Assigns the SUnit to which this edge points.
void setSUnit(SUnit *SU);
/// Returns an enum value representing the kind of the dependence.
Kind getKind() const;
/// Shorthand for getKind() != SDep::Data.
bool isCtrl() const {
return getKind() != Data;
}
/// Tests if this is an Order dependence between two memory accesses
/// where both sides of the dependence access memory in non-volatile and
/// fully modeled ways.
bool isNormalMemory() const {
return getKind() == Order && (Contents.OrdKind == MayAliasMem
|| Contents.OrdKind == MustAliasMem);
}
/// Tests if this is an Order dependence that is marked as a barrier.
bool isBarrier() const {
return getKind() == Order && Contents.OrdKind == Barrier;
}
/// Tests if this is could be any kind of memory dependence.
bool isNormalMemoryOrBarrier() const {
return (isNormalMemory() || isBarrier());
}
/// Tests if this is an Order dependence that is marked as
/// "must alias", meaning that the SUnits at either end of the edge have a
/// memory dependence on a known memory location.
bool isMustAlias() const {
return getKind() == Order && Contents.OrdKind == MustAliasMem;
}
/// Tests if this a weak dependence. Weak dependencies are considered DAG
/// edges for height computation and other heuristics, but do not force
/// ordering. Breaking a weak edge may require the scheduler to compensate,
/// for example by inserting a copy.
bool isWeak() const {
return getKind() == Order && Contents.OrdKind >= Weak;
}
/// Tests if this is an Order dependence that is marked as
/// "artificial", meaning it isn't necessary for correctness.
bool isArtificial() const {
return getKind() == Order && Contents.OrdKind == Artificial;
}
/// Tests if this is an Order dependence that is marked as "cluster",
/// meaning it is artificial and wants to be adjacent.
bool isCluster() const {
return getKind() == Order && Contents.OrdKind == Cluster;
}
/// Tests if this is a Data dependence that is associated with a register.
bool isAssignedRegDep() const {
return getKind() == Data && Contents.Reg != 0;
}
/// Returns the register associated with this edge. This is only valid on
/// Data, Anti, and Output edges. On Data edges, this value may be zero,
/// meaning there is no associated register.
unsigned getReg() const {
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
"getReg called on non-register dependence edge!");
return Contents.Reg;
}
/// Assigns the associated register for this edge. This is only valid on
/// Data, Anti, and Output edges. On Anti and Output edges, this value must
/// not be zero. On Data edges, the value may be zero, which would mean that
/// no specific register is associated with this edge.
void setReg(unsigned Reg) {
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
"setReg called on non-register dependence edge!");
assert((getKind() != Anti || Reg != 0) &&
"SDep::Anti edge cannot use the zero register!");
assert((getKind() != Output || Reg != 0) &&
"SDep::Output edge cannot use the zero register!");
Contents.Reg = Reg;
}
void dump(const TargetRegisterInfo *TRI = nullptr) const;
};
/// Scheduling unit. This is a node in the scheduling DAG.
class SUnit {
private:
enum : unsigned { BoundaryID = ~0u };
SDNode *Node = nullptr; ///< Representative node.
MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr.
public:
SUnit *OrigNode = nullptr; ///< If not this, the node from which this node
/// was cloned. (SD scheduling only)
const MCSchedClassDesc *SchedClass =
nullptr; ///< nullptr or resolved SchedClass.
SmallVector<SDep, 4> Preds; ///< All sunit predecessors.
SmallVector<SDep, 4> Succs; ///< All sunit successors.
typedef SmallVectorImpl<SDep>::iterator pred_iterator;
typedef SmallVectorImpl<SDep>::iterator succ_iterator;
typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector.
unsigned NodeQueueId = 0; ///< Queue id of node.
unsigned NumPreds = 0; ///< # of SDep::Data preds.
unsigned NumSuccs = 0; ///< # of SDep::Data sucss.
unsigned NumPredsLeft = 0; ///< # of preds not scheduled.
unsigned NumSuccsLeft = 0; ///< # of succs not scheduled.
unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled.
unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled.
unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use.
unsigned short Latency = 0; ///< Node latency.
bool isVRegCycle : 1; ///< May use and def the same vreg.
bool isCall : 1; ///< Is a function call.
bool isCallOp : 1; ///< Is a function call operand.
bool isTwoAddress : 1; ///< Is a two-address instruction.
bool isCommutable : 1; ///< Is a commutable instruction.
bool hasPhysRegUses : 1; ///< Has physreg uses.
bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used.
bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not.
bool isPending : 1; ///< True once pending.
bool isAvailable : 1; ///< True once available.
bool isScheduled : 1; ///< True once scheduled.
bool isScheduleHigh : 1; ///< True if preferable to schedule high.
bool isScheduleLow : 1; ///< True if preferable to schedule low.
bool isCloned : 1; ///< True if this node has been cloned.
bool isUnbuffered : 1; ///< Uses an unbuffered resource.
bool hasReservedResource : 1; ///< Uses a reserved resource.
Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference.
private:
bool isDepthCurrent : 1; ///< True if Depth is current.
bool isHeightCurrent : 1; ///< True if Height is current.
unsigned Depth = 0; ///< Node depth.
unsigned Height = 0; ///< Node height.
public:
unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready.
unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready.
const TargetRegisterClass *CopyDstRC =
nullptr; ///< Is a special copy node if != nullptr.
const TargetRegisterClass *CopySrcRC = nullptr;
/// Constructs an SUnit for pre-regalloc scheduling to represent an
/// SDNode and any nodes flagged to it.
SUnit(SDNode *node, unsigned nodenum)
: Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false),
isCallOp(false), isTwoAddress(false), isCommutable(false),
hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
isHeightCurrent(false) {}
/// Constructs an SUnit for post-regalloc scheduling to represent a
/// MachineInstr.
SUnit(MachineInstr *instr, unsigned nodenum)
: Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false),
isCallOp(false), isTwoAddress(false), isCommutable(false),
hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isScheduleLow(false), isCloned(false),
isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
isHeightCurrent(false) {}
/// Constructs a placeholder SUnit.
SUnit()
: isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false), isPending(false), isAvailable(false),
isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
isCloned(false), isUnbuffered(false), hasReservedResource(false),
isDepthCurrent(false), isHeightCurrent(false) {}
/// Boundary nodes are placeholders for the boundary of the
/// scheduling region.
///
/// BoundaryNodes can have DAG edges, including Data edges, but they do not
/// correspond to schedulable entities (e.g. instructions) and do not have a
/// valid ID. Consequently, always check for boundary nodes before accessing
/// an associative data structure keyed on node ID.
bool isBoundaryNode() const { return NodeNum == BoundaryID; }
/// Assigns the representative SDNode for this SUnit. This may be used
/// during pre-regalloc scheduling.
void setNode(SDNode *N) {
assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
Node = N;
}
/// Returns the representative SDNode for this SUnit. This may be used
/// during pre-regalloc scheduling.
SDNode *getNode() const {
assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
return Node;
}
/// Returns true if this SUnit refers to a machine instruction as
/// opposed to an SDNode.
bool isInstr() const { return Instr; }
/// Assigns the instruction for the SUnit. This may be used during
/// post-regalloc scheduling.
void setInstr(MachineInstr *MI) {
assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
Instr = MI;
}
/// Returns the representative MachineInstr for this SUnit. This may be used
/// during post-regalloc scheduling.
MachineInstr *getInstr() const {
assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
return Instr;
}
/// Adds the specified edge as a pred of the current node if not already.
/// It also adds the current node as a successor of the specified node.
bool addPred(const SDep &D, bool Required = true);
/// Adds a barrier edge to SU by calling addPred(), with latency 0
/// generally or latency 1 for a store followed by a load.
bool addPredBarrier(SUnit *SU) {
SDep Dep(SU, SDep::Barrier);
unsigned TrueMemOrderLatency =
((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0);
Dep.setLatency(TrueMemOrderLatency);
return addPred(Dep);
}
/// Removes the specified edge as a pred of the current node if it exists.
/// It also removes the current node as a successor of the specified node.
void removePred(const SDep &D);
/// Returns the depth of this node, which is the length of the maximum path
/// up to any node which has no predecessors.
unsigned getDepth() const {
if (!isDepthCurrent)
const_cast<SUnit *>(this)->ComputeDepth();
return Depth;
}
/// Returns the height of this node, which is the length of the
/// maximum path down to any node which has no successors.
unsigned getHeight() const {
if (!isHeightCurrent)
const_cast<SUnit *>(this)->ComputeHeight();
return Height;
}
/// If NewDepth is greater than this node's depth value, sets it to
/// be the new depth value. This also recursively marks successor nodes
/// dirty.
void setDepthToAtLeast(unsigned NewDepth);
/// If NewHeight is greater than this node's height value, set it to be
/// the new height value. This also recursively marks predecessor nodes
/// dirty.
void setHeightToAtLeast(unsigned NewHeight);
/// Sets a flag in this node to indicate that its stored Depth value
/// will require recomputation the next time getDepth() is called.
void setDepthDirty();
/// Sets a flag in this node to indicate that its stored Height value
/// will require recomputation the next time getHeight() is called.
void setHeightDirty();
/// Tests if node N is a predecessor of this node.
bool isPred(const SUnit *N) const {
for (const SDep &Pred : Preds)
if (Pred.getSUnit() == N)
return true;
return false;
}
/// Tests if node N is a successor of this node.
bool isSucc(const SUnit *N) const {
for (const SDep &Succ : Succs)
if (Succ.getSUnit() == N)
return true;
return false;
}
bool isTopReady() const {
return NumPredsLeft == 0;
}
bool isBottomReady() const {
return NumSuccsLeft == 0;
}
/// Orders this node's predecessor edges such that the critical path
/// edge occurs first.
void biasCriticalPath();
void dumpAttributes() const;
private:
void ComputeDepth();
void ComputeHeight();
};
/// Returns true if the specified SDep is equivalent except for latency.
inline bool SDep::overlaps(const SDep &Other) const {
if (Dep != Other.Dep)
return false;
switch (Dep.getInt()) {
case Data:
case Anti:
case Output:
return Contents.Reg == Other.Contents.Reg;
case Order:
return Contents.OrdKind == Other.Contents.OrdKind;
}
llvm_unreachable("Invalid dependency kind!");
}
//// Returns the SUnit to which this edge points.
inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }
//// Assigns the SUnit to which this edge points.
inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }
/// Returns an enum value representing the kind of the dependence.
inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }
//===--------------------------------------------------------------------===//
/// This interface is used to plug different priorities computation
/// algorithms into the list scheduler. It implements the interface of a
/// standard priority queue, where nodes are inserted in arbitrary order and
/// returned in priority order. The computation of the priority and the
/// representation of the queue are totally up to the implementation to
/// decide.
class SchedulingPriorityQueue {
virtual void anchor();
unsigned CurCycle = 0;
bool HasReadyFilter;
public:
SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {}
virtual ~SchedulingPriorityQueue() = default;
virtual bool isBottomUp() const = 0;
virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
virtual void addNode(const SUnit *SU) = 0;
virtual void updateNode(const SUnit *SU) = 0;
virtual void releaseState() = 0;
virtual bool empty() const = 0;
bool hasReadyFilter() const { return HasReadyFilter; }
virtual bool tracksRegPressure() const { return false; }
virtual bool isReady(SUnit *) const {
assert(!HasReadyFilter && "The ready filter must override isReady()");
return true;
}
virtual void push(SUnit *U) = 0;
void push_all(const std::vector<SUnit *> &Nodes) {
for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
E = Nodes.end(); I != E; ++I)
push(*I);
}
virtual SUnit *pop() = 0;
virtual void remove(SUnit *SU) = 0;
virtual void dump(ScheduleDAG *) const {}
/// As each node is scheduled, this method is invoked. This allows the
/// priority function to adjust the priority of related unscheduled nodes,
/// for example.
virtual void scheduledNode(SUnit *) {}
virtual void unscheduledNode(SUnit *) {}
void setCurCycle(unsigned Cycle) {
CurCycle = Cycle;
}
unsigned getCurCycle() const {
return CurCycle;
}
};
class ScheduleDAG {
public:
const LLVMTargetMachine &TM; ///< Target processor
const TargetInstrInfo *TII; ///< Target instruction information
const TargetRegisterInfo *TRI; ///< Target processor register info
MachineFunction &MF; ///< Machine function
MachineRegisterInfo &MRI; ///< Virtual/real register map
std::vector<SUnit> SUnits; ///< The scheduling units.
SUnit EntrySU; ///< Special node for the region entry.
SUnit ExitSU; ///< Special node for the region exit.
#ifdef NDEBUG
static const bool StressSched = false;
#else
bool StressSched;
#endif
explicit ScheduleDAG(MachineFunction &mf);
virtual ~ScheduleDAG();
/// Clears the DAG state (between regions).
void clearDAG();
/// Returns the MCInstrDesc of this SUnit.
/// Returns NULL for SDNodes without a machine opcode.
const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
if (SU->isInstr()) return &SU->getInstr()->getDesc();
return getNodeDesc(SU->getNode());
}
/// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
virtual void viewGraph(const Twine &Name, const Twine &Title);
virtual void viewGraph();
virtual void dumpNode(const SUnit &SU) const = 0;
virtual void dump() const = 0;
void dumpNodeName(const SUnit &SU) const;
/// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
/// Returns a label for the region of code covered by the DAG.
virtual std::string getDAGName() const = 0;
/// Adds custom features for a visualization of the ScheduleDAG.
virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
#ifndef NDEBUG
/// Verifies that all SUnits were scheduled and that their state is
/// consistent. Returns the number of scheduled SUnits.
unsigned VerifyScheduledDAG(bool isBottomUp);
#endif
protected:
void dumpNodeAll(const SUnit &SU) const;
private:
/// Returns the MCInstrDesc of this SDNode or NULL.
const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
};
class SUnitIterator : public std::iterator<std::forward_iterator_tag,
SUnit, ptrdiff_t> {
SUnit *Node;
unsigned Operand;
SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SUnitIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
pointer operator*() const {
return Node->Preds[Operand].getSUnit();
}
pointer operator->() const { return operator*(); }
SUnitIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SUnitIterator operator++(int) { // Postincrement
SUnitIterator tmp = *this; ++*this; return tmp;
}
static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
static SUnitIterator end (SUnit *N) {
return SUnitIterator(N, (unsigned)N->Preds.size());
}
unsigned getOperand() const { return Operand; }
const SUnit *getNode() const { return Node; }
/// Tests if this is not an SDep::Data dependence.
bool isCtrlDep() const {
return getSDep().isCtrl();
}
bool isArtificialDep() const {
return getSDep().isArtificial();
}
const SDep &getSDep() const {
return Node->Preds[Operand];
}
};
template <> struct GraphTraits<SUnit*> {
typedef SUnit *NodeRef;
typedef SUnitIterator ChildIteratorType;
static NodeRef getEntryNode(SUnit *N) { return N; }
static ChildIteratorType child_begin(NodeRef N) {
return SUnitIterator::begin(N);
}
static ChildIteratorType child_end(NodeRef N) {
return SUnitIterator::end(N);
}
};
template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator;
static nodes_iterator nodes_begin(ScheduleDAG *G) {
return nodes_iterator(G->SUnits.begin());
}
static nodes_iterator nodes_end(ScheduleDAG *G) {
return nodes_iterator(G->SUnits.end());
}
};
/// This class can compute a topological ordering for SUnits and provides
/// methods for dynamically updating the ordering as new edges are added.
///
/// This allows a very fast implementation of IsReachable, for example.
class ScheduleDAGTopologicalSort {
/// A reference to the ScheduleDAG's SUnits.
std::vector<SUnit> &SUnits;
SUnit *ExitSU;
// Have any new nodes been added?
bool Dirty = false;
// Outstanding added edges, that have not been applied to the ordering.
SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates;
/// Maps topological index to the node number.
std::vector<int> Index2Node;
/// Maps the node number to its topological index.
std::vector<int> Node2Index;
/// a set of nodes visited during a DFS traversal.
BitVector Visited;
/// Makes a DFS traversal and mark all nodes affected by the edge insertion.
/// These nodes will later get new topological indexes by means of the Shift
/// method.
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
/// Reassigns topological indexes for the nodes in the DAG to
/// preserve the topological ordering.
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
/// Assigns the topological index to the node n.
void Allocate(int n, int index);
/// Fix the ordering, by either recomputing from scratch or by applying
/// any outstanding updates. Uses a heuristic to estimate what will be
/// cheaper.
void FixOrder();
public:
ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
/// Creates the initial topological ordering from the DAG to be scheduled.
void InitDAGTopologicalSorting();
/// Returns an array of SUs that are both in the successor
/// subtree of StartSU and in the predecessor subtree of TargetSU.
/// StartSU and TargetSU are not in the array.
/// Success is false if TargetSU is not in the successor subtree of
/// StartSU, else it is true.
std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU,
bool &Success);
/// Checks if \p SU is reachable from \p TargetSU.
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
/// Returns true if addPred(TargetSU, SU) creates a cycle.
bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
/// Updates the topological ordering to accommodate an edge to be
/// added from SUnit \p X to SUnit \p Y.
void AddPred(SUnit *Y, SUnit *X);
/// Queues an update to the topological ordering to accommodate an edge to
/// be added from SUnit \p X to SUnit \p Y.
void AddPredQueued(SUnit *Y, SUnit *X);
/// Updates the topological ordering to accommodate an an edge to be
/// removed from the specified node \p N from the predecessors of the
/// current node \p M.
void RemovePred(SUnit *M, SUnit *N);
/// Mark the ordering as temporarily broken, after a new node has been
/// added.
void MarkDirty() { Dirty = true; }
typedef std::vector<int>::iterator iterator;
typedef std::vector<int>::const_iterator const_iterator;
iterator begin() { return Index2Node.begin(); }
const_iterator begin() const { return Index2Node.begin(); }
iterator end() { return Index2Node.end(); }
const_iterator end() const { return Index2Node.end(); }
typedef std::vector<int>::reverse_iterator reverse_iterator;
typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
reverse_iterator rbegin() { return Index2Node.rbegin(); }
const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
reverse_iterator rend() { return Index2Node.rend(); }
const_reverse_iterator rend() const { return Index2Node.rend(); }
};
} // end namespace llvm
#endif // LLVM_CODEGEN_SCHEDULEDAG_H
|