1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
| //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <string>
#include <tuple>
namespace llvm {
class APInt;
class Constant;
template <typename T> struct DenseMapInfo;
class GlobalValue;
class MachineBasicBlock;
class MachineConstantPoolValue;
class MCSymbol;
class raw_ostream;
class SDNode;
class SelectionDAG;
class Type;
class Value;
void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
bool force = false);
/// This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG. Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
const EVT *VTs;
unsigned int NumVTs;
};
namespace ISD {
/// Node predicates
/// If N is a BUILD_VECTOR node whose elements are all the same constant or
/// undefined, return true and return the constant value in \p SplatValue.
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
/// Return true if the specified node is a BUILD_VECTOR where all of the
/// elements are ~0 or undef.
bool isBuildVectorAllOnes(const SDNode *N);
/// Return true if the specified node is a BUILD_VECTOR where all of the
/// elements are 0 or undef.
bool isBuildVectorAllZeros(const SDNode *N);
/// Return true if the specified node is a BUILD_VECTOR node of all
/// ConstantSDNode or undef.
bool isBuildVectorOfConstantSDNodes(const SDNode *N);
/// Return true if the specified node is a BUILD_VECTOR node of all
/// ConstantFPSDNode or undef.
bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
/// Return true if the node has at least one operand and all operands of the
/// specified node are ISD::UNDEF.
bool allOperandsUndef(const SDNode *N);
} // end namespace ISD
//===----------------------------------------------------------------------===//
/// Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDValue value type.
///
class SDValue {
friend struct DenseMapInfo<SDValue>;
SDNode *Node = nullptr; // The node defining the value we are using.
unsigned ResNo = 0; // Which return value of the node we are using.
public:
SDValue() = default;
SDValue(SDNode *node, unsigned resno);
/// get the index which selects a specific result in the SDNode
unsigned getResNo() const { return ResNo; }
/// get the SDNode which holds the desired result
SDNode *getNode() const { return Node; }
/// set the SDNode
void setNode(SDNode *N) { Node = N; }
inline SDNode *operator->() const { return Node; }
bool operator==(const SDValue &O) const {
return Node == O.Node && ResNo == O.ResNo;
}
bool operator!=(const SDValue &O) const {
return !operator==(O);
}
bool operator<(const SDValue &O) const {
return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
}
explicit operator bool() const {
return Node != nullptr;
}
SDValue getValue(unsigned R) const {
return SDValue(Node, R);
}
/// Return true if this node is an operand of N.
bool isOperandOf(const SDNode *N) const;
/// Return the ValueType of the referenced return value.
inline EVT getValueType() const;
/// Return the simple ValueType of the referenced return value.
MVT getSimpleValueType() const {
return getValueType().getSimpleVT();
}
/// Returns the size of the value in bits.
unsigned getValueSizeInBits() const {
return getValueType().getSizeInBits();
}
unsigned getScalarValueSizeInBits() const {
return getValueType().getScalarType().getSizeInBits();
}
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const;
inline unsigned getNumOperands() const;
inline const SDValue &getOperand(unsigned i) const;
inline uint64_t getConstantOperandVal(unsigned i) const;
inline const APInt &getConstantOperandAPInt(unsigned i) const;
inline bool isTargetMemoryOpcode() const;
inline bool isTargetOpcode() const;
inline bool isMachineOpcode() const;
inline bool isUndef() const;
inline unsigned getMachineOpcode() const;
inline const DebugLoc &getDebugLoc() const;
inline void dump() const;
inline void dump(const SelectionDAG *G) const;
inline void dumpr() const;
inline void dumpr(const SelectionDAG *G) const;
/// Return true if this operand (which must be a chain) reaches the
/// specified operand without crossing any side-effecting instructions.
/// In practice, this looks through token factors and non-volatile loads.
/// In order to remain efficient, this only
/// looks a couple of nodes in, it does not do an exhaustive search.
bool reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth = 2) const;
/// Return true if there are no nodes using value ResNo of Node.
inline bool use_empty() const;
/// Return true if there is exactly one node using value ResNo of Node.
inline bool hasOneUse() const;
};
template<> struct DenseMapInfo<SDValue> {
static inline SDValue getEmptyKey() {
SDValue V;
V.ResNo = -1U;
return V;
}
static inline SDValue getTombstoneKey() {
SDValue V;
V.ResNo = -2U;
return V;
}
static unsigned getHashValue(const SDValue &Val) {
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
}
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
return LHS == RHS;
}
};
/// Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDValue> {
using SimpleType = SDNode *;
static SimpleType getSimplifiedValue(SDValue &Val) {
return Val.getNode();
}
};
template<> struct simplify_type<const SDValue> {
using SimpleType = /*const*/ SDNode *;
static SimpleType getSimplifiedValue(const SDValue &Val) {
return Val.getNode();
}
};
/// Represents a use of a SDNode. This class holds an SDValue,
/// which records the SDNode being used and the result number, a
/// pointer to the SDNode using the value, and Next and Prev pointers,
/// which link together all the uses of an SDNode.
///
class SDUse {
/// Val - The value being used.
SDValue Val;
/// User - The user of this value.
SDNode *User = nullptr;
/// Prev, Next - Pointers to the uses list of the SDNode referred by
/// this operand.
SDUse **Prev = nullptr;
SDUse *Next = nullptr;
public:
SDUse() = default;
SDUse(const SDUse &U) = delete;
SDUse &operator=(const SDUse &) = delete;
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
operator const SDValue&() const { return Val; }
/// If implicit conversion to SDValue doesn't work, the get() method returns
/// the SDValue.
const SDValue &get() const { return Val; }
/// This returns the SDNode that contains this Use.
SDNode *getUser() { return User; }
/// Get the next SDUse in the use list.
SDUse *getNext() const { return Next; }
/// Convenience function for get().getNode().
SDNode *getNode() const { return Val.getNode(); }
/// Convenience function for get().getResNo().
unsigned getResNo() const { return Val.getResNo(); }
/// Convenience function for get().getValueType().
EVT getValueType() const { return Val.getValueType(); }
/// Convenience function for get().operator==
bool operator==(const SDValue &V) const {
return Val == V;
}
/// Convenience function for get().operator!=
bool operator!=(const SDValue &V) const {
return Val != V;
}
/// Convenience function for get().operator<
bool operator<(const SDValue &V) const {
return Val < V;
}
private:
friend class SelectionDAG;
friend class SDNode;
// TODO: unfriend HandleSDNode once we fix its operand handling.
friend class HandleSDNode;
void setUser(SDNode *p) { User = p; }
/// Remove this use from its existing use list, assign it the
/// given value, and add it to the new value's node's use list.
inline void set(const SDValue &V);
/// Like set, but only supports initializing a newly-allocated
/// SDUse with a non-null value.
inline void setInitial(const SDValue &V);
/// Like set, but only sets the Node portion of the value,
/// leaving the ResNo portion unmodified.
inline void setNode(SDNode *N);
void addToList(SDUse **List) {
Next = *List;
if (Next) Next->Prev = &Next;
Prev = List;
*List = this;
}
void removeFromList() {
*Prev = Next;
if (Next) Next->Prev = Prev;
}
};
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDUse> {
using SimpleType = SDNode *;
static SimpleType getSimplifiedValue(SDUse &Val) {
return Val.getNode();
}
};
/// These are IR-level optimization flags that may be propagated to SDNodes.
/// TODO: This data structure should be shared by the IR optimizer and the
/// the backend.
struct SDNodeFlags {
private:
// This bit is used to determine if the flags are in a defined state.
// Flag bits can only be masked out during intersection if the masking flags
// are defined.
bool AnyDefined : 1;
bool NoUnsignedWrap : 1;
bool NoSignedWrap : 1;
bool Exact : 1;
bool NoNaNs : 1;
bool NoInfs : 1;
bool NoSignedZeros : 1;
bool AllowReciprocal : 1;
bool VectorReduction : 1;
bool AllowContract : 1;
bool ApproximateFuncs : 1;
bool AllowReassociation : 1;
// We assume instructions do not raise floating-point exceptions by default,
// and only those marked explicitly may do so. We could choose to represent
// this via a positive "FPExcept" flags like on the MI level, but having a
// negative "NoFPExcept" flag here (that defaults to true) makes the flag
// intersection logic more straightforward.
bool NoFPExcept : 1;
public:
/// Default constructor turns off all optimization flags.
SDNodeFlags()
: AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
Exact(false), NoNaNs(false), NoInfs(false),
NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
AllowContract(false), ApproximateFuncs(false),
AllowReassociation(false), NoFPExcept(true) {}
/// Propagate the fast-math-flags from an IR FPMathOperator.
void copyFMF(const FPMathOperator &FPMO) {
setNoNaNs(FPMO.hasNoNaNs());
setNoInfs(FPMO.hasNoInfs());
setNoSignedZeros(FPMO.hasNoSignedZeros());
setAllowReciprocal(FPMO.hasAllowReciprocal());
setAllowContract(FPMO.hasAllowContract());
setApproximateFuncs(FPMO.hasApproxFunc());
setAllowReassociation(FPMO.hasAllowReassoc());
}
/// Sets the state of the flags to the defined state.
void setDefined() { AnyDefined = true; }
/// Returns true if the flags are in a defined state.
bool isDefined() const { return AnyDefined; }
// These are mutators for each flag.
void setNoUnsignedWrap(bool b) {
setDefined();
NoUnsignedWrap = b;
}
void setNoSignedWrap(bool b) {
setDefined();
NoSignedWrap = b;
}
void setExact(bool b) {
setDefined();
Exact = b;
}
void setNoNaNs(bool b) {
setDefined();
NoNaNs = b;
}
void setNoInfs(bool b) {
setDefined();
NoInfs = b;
}
void setNoSignedZeros(bool b) {
setDefined();
NoSignedZeros = b;
}
void setAllowReciprocal(bool b) {
setDefined();
AllowReciprocal = b;
}
void setVectorReduction(bool b) {
setDefined();
VectorReduction = b;
}
void setAllowContract(bool b) {
setDefined();
AllowContract = b;
}
void setApproximateFuncs(bool b) {
setDefined();
ApproximateFuncs = b;
}
void setAllowReassociation(bool b) {
setDefined();
AllowReassociation = b;
}
void setFPExcept(bool b) {
setDefined();
NoFPExcept = !b;
}
// These are accessors for each flag.
bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
bool hasNoSignedWrap() const { return NoSignedWrap; }
bool hasExact() const { return Exact; }
bool hasNoNaNs() const { return NoNaNs; }
bool hasNoInfs() const { return NoInfs; }
bool hasNoSignedZeros() const { return NoSignedZeros; }
bool hasAllowReciprocal() const { return AllowReciprocal; }
bool hasVectorReduction() const { return VectorReduction; }
bool hasAllowContract() const { return AllowContract; }
bool hasApproximateFuncs() const { return ApproximateFuncs; }
bool hasAllowReassociation() const { return AllowReassociation; }
bool hasFPExcept() const { return !NoFPExcept; }
bool isFast() const {
return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs && NoFPExcept &&
AllowContract && ApproximateFuncs && AllowReassociation;
}
/// Clear any flags in this flag set that aren't also set in Flags.
/// If the given Flags are undefined then don't do anything.
void intersectWith(const SDNodeFlags Flags) {
if (!Flags.isDefined())
return;
NoUnsignedWrap &= Flags.NoUnsignedWrap;
NoSignedWrap &= Flags.NoSignedWrap;
Exact &= Flags.Exact;
NoNaNs &= Flags.NoNaNs;
NoInfs &= Flags.NoInfs;
NoSignedZeros &= Flags.NoSignedZeros;
AllowReciprocal &= Flags.AllowReciprocal;
VectorReduction &= Flags.VectorReduction;
AllowContract &= Flags.AllowContract;
ApproximateFuncs &= Flags.ApproximateFuncs;
AllowReassociation &= Flags.AllowReassociation;
NoFPExcept &= Flags.NoFPExcept;
}
};
/// Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
private:
/// The operation that this node performs.
int16_t NodeType;
protected:
// We define a set of mini-helper classes to help us interpret the bits in our
// SubclassData. These are designed to fit within a uint16_t so they pack
// with NodeType.
#if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__))
// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
// and give the `pack` pragma push semantics.
#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
#else
#define BEGIN_TWO_BYTE_PACK()
#define END_TWO_BYTE_PACK()
#endif
BEGIN_TWO_BYTE_PACK()
class SDNodeBitfields {
friend class SDNode;
friend class MemIntrinsicSDNode;
friend class MemSDNode;
friend class SelectionDAG;
uint16_t HasDebugValue : 1;
uint16_t IsMemIntrinsic : 1;
uint16_t IsDivergent : 1;
};
enum { NumSDNodeBits = 3 };
class ConstantSDNodeBitfields {
friend class ConstantSDNode;
uint16_t : NumSDNodeBits;
uint16_t IsOpaque : 1;
};
class MemSDNodeBitfields {
friend class MemSDNode;
friend class MemIntrinsicSDNode;
friend class AtomicSDNode;
uint16_t : NumSDNodeBits;
uint16_t IsVolatile : 1;
uint16_t IsNonTemporal : 1;
uint16_t IsDereferenceable : 1;
uint16_t IsInvariant : 1;
};
enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
class LSBaseSDNodeBitfields {
friend class LSBaseSDNode;
friend class MaskedGatherScatterSDNode;
uint16_t : NumMemSDNodeBits;
// This storage is shared between disparate class hierarchies to hold an
// enumeration specific to the class hierarchy in use.
// LSBaseSDNode => enum ISD::MemIndexedMode
// MaskedGatherScatterSDNode => enum ISD::MemIndexType
uint16_t AddressingMode : 3;
};
enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
class LoadSDNodeBitfields {
friend class LoadSDNode;
friend class MaskedLoadSDNode;
uint16_t : NumLSBaseSDNodeBits;
uint16_t ExtTy : 2; // enum ISD::LoadExtType
uint16_t IsExpanding : 1;
};
class StoreSDNodeBitfields {
friend class StoreSDNode;
friend class MaskedStoreSDNode;
uint16_t : NumLSBaseSDNodeBits;
uint16_t IsTruncating : 1;
uint16_t IsCompressing : 1;
};
union {
char RawSDNodeBits[sizeof(uint16_t)];
SDNodeBitfields SDNodeBits;
ConstantSDNodeBitfields ConstantSDNodeBits;
MemSDNodeBitfields MemSDNodeBits;
LSBaseSDNodeBitfields LSBaseSDNodeBits;
LoadSDNodeBitfields LoadSDNodeBits;
StoreSDNodeBitfields StoreSDNodeBits;
};
END_TWO_BYTE_PACK()
#undef BEGIN_TWO_BYTE_PACK
#undef END_TWO_BYTE_PACK
// RawSDNodeBits must cover the entirety of the union. This means that all of
// the union's members must have size <= RawSDNodeBits. We write the RHS as
// "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
private:
friend class SelectionDAG;
// TODO: unfriend HandleSDNode once we fix its operand handling.
friend class HandleSDNode;
/// Unique id per SDNode in the DAG.
int NodeId = -1;
/// The values that are used by this operation.
SDUse *OperandList = nullptr;
/// The types of the values this node defines. SDNode's may
/// define multiple values simultaneously.
const EVT *ValueList;
/// List of uses for this SDNode.
SDUse *UseList = nullptr;
/// The number of entries in the Operand/Value list.
unsigned short NumOperands = 0;
unsigned short NumValues;
// The ordering of the SDNodes. It roughly corresponds to the ordering of the
// original LLVM instructions.
// This is used for turning off scheduling, because we'll forgo
// the normal scheduling algorithms and output the instructions according to
// this ordering.
unsigned IROrder;
/// Source line information.
DebugLoc debugLoc;
/// Return a pointer to the specified value type.
static const EVT *getValueTypeList(EVT VT);
SDNodeFlags Flags;
public:
/// Unique and persistent id per SDNode in the DAG.
/// Used for debug printing.
uint16_t PersistentId;
//===--------------------------------------------------------------------===//
// Accessors
//
/// Return the SelectionDAG opcode value for this node. For
/// pre-isel nodes (those for which isMachineOpcode returns false), these
/// are the opcode values in the ISD and <target>ISD namespaces. For
/// post-isel opcodes, see getMachineOpcode.
unsigned getOpcode() const { return (unsigned short)NodeType; }
/// Test if this node has a target-specific opcode (in the
/// \<target\>ISD namespace).
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
/// Test if this node has a target-specific
/// memory-referencing opcode (in the \<target\>ISD namespace and
/// greater than FIRST_TARGET_MEMORY_OPCODE).
bool isTargetMemoryOpcode() const {
return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
}
/// Return true if the type of the node type undefined.
bool isUndef() const { return NodeType == ISD::UNDEF; }
/// Test if this node is a memory intrinsic (with valid pointer information).
/// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
/// non-memory intrinsics (with chains) that are not really instances of
/// MemSDNode. For such nodes, we need some extra state to determine the
/// proper classof relationship.
bool isMemIntrinsic() const {
return (NodeType == ISD::INTRINSIC_W_CHAIN ||
NodeType == ISD::INTRINSIC_VOID) &&
SDNodeBits.IsMemIntrinsic;
}
/// Test if this node is a strict floating point pseudo-op.
bool isStrictFPOpcode() {
switch (NodeType) {
default:
return false;
case ISD::STRICT_FADD:
case ISD::STRICT_FSUB:
case ISD::STRICT_FMUL:
case ISD::STRICT_FDIV:
case ISD::STRICT_FREM:
case ISD::STRICT_FMA:
case ISD::STRICT_FSQRT:
case ISD::STRICT_FPOW:
case ISD::STRICT_FPOWI:
case ISD::STRICT_FSIN:
case ISD::STRICT_FCOS:
case ISD::STRICT_FEXP:
case ISD::STRICT_FEXP2:
case ISD::STRICT_FLOG:
case ISD::STRICT_FLOG10:
case ISD::STRICT_FLOG2:
case ISD::STRICT_LRINT:
case ISD::STRICT_LLRINT:
case ISD::STRICT_FRINT:
case ISD::STRICT_FNEARBYINT:
case ISD::STRICT_FMAXNUM:
case ISD::STRICT_FMINNUM:
case ISD::STRICT_FCEIL:
case ISD::STRICT_FFLOOR:
case ISD::STRICT_LROUND:
case ISD::STRICT_LLROUND:
case ISD::STRICT_FROUND:
case ISD::STRICT_FTRUNC:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::STRICT_FP_ROUND:
case ISD::STRICT_FP_EXTEND:
return true;
}
}
/// Test if this node has a post-isel opcode, directly
/// corresponding to a MachineInstr opcode.
bool isMachineOpcode() const { return NodeType < 0; }
/// This may only be called if isMachineOpcode returns
/// true. It returns the MachineInstr opcode value that the node's opcode
/// corresponds to.
unsigned getMachineOpcode() const {
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
return ~NodeType;
}
bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
bool isDivergent() const { return SDNodeBits.IsDivergent; }
/// Return true if there are no uses of this node.
bool use_empty() const { return UseList == nullptr; }
/// Return true if there is exactly one use of this node.
bool hasOneUse() const {
return !use_empty() && std::next(use_begin()) == use_end();
}
/// Return the number of uses of this node. This method takes
/// time proportional to the number of uses.
size_t use_size() const { return std::distance(use_begin(), use_end()); }
/// Return the unique node id.
int getNodeId() const { return NodeId; }
/// Set unique node id.
void setNodeId(int Id) { NodeId = Id; }
/// Return the node ordering.
unsigned getIROrder() const { return IROrder; }
/// Set the node ordering.
void setIROrder(unsigned Order) { IROrder = Order; }
/// Return the source location info.
const DebugLoc &getDebugLoc() const { return debugLoc; }
/// Set source location info. Try to avoid this, putting
/// it in the constructor is preferable.
void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
/// This class provides iterator support for SDUse
/// operands that use a specific SDNode.
class use_iterator
: public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
friend class SDNode;
SDUse *Op = nullptr;
explicit use_iterator(SDUse *op) : Op(op) {}
public:
using reference = std::iterator<std::forward_iterator_tag,
SDUse, ptrdiff_t>::reference;
using pointer = std::iterator<std::forward_iterator_tag,
SDUse, ptrdiff_t>::pointer;
use_iterator() = default;
use_iterator(const use_iterator &I) : Op(I.Op) {}
bool operator==(const use_iterator &x) const {
return Op == x.Op;
}
bool operator!=(const use_iterator &x) const {
return !operator==(x);
}
/// Return true if this iterator is at the end of uses list.
bool atEnd() const { return Op == nullptr; }
// Iterator traversal: forward iteration only.
use_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!");
Op = Op->getNext();
return *this;
}
use_iterator operator++(int) { // Postincrement
use_iterator tmp = *this; ++*this; return tmp;
}
/// Retrieve a pointer to the current user node.
SDNode *operator*() const {
assert(Op && "Cannot dereference end iterator!");
return Op->getUser();
}
SDNode *operator->() const { return operator*(); }
SDUse &getUse() const { return *Op; }
/// Retrieve the operand # of this use in its user.
unsigned getOperandNo() const {
assert(Op && "Cannot dereference end iterator!");
return (unsigned)(Op - Op->getUser()->OperandList);
}
};
/// Provide iteration support to walk over all uses of an SDNode.
use_iterator use_begin() const {
return use_iterator(UseList);
}
static use_iterator use_end() { return use_iterator(nullptr); }
inline iterator_range<use_iterator> uses() {
return make_range(use_begin(), use_end());
}
inline iterator_range<use_iterator> uses() const {
return make_range(use_begin(), use_end());
}
/// Return true if there are exactly NUSES uses of the indicated value.
/// This method ignores uses of other values defined by this operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
/// Return true if there are any use of the indicated value.
/// This method ignores uses of other values defined by this operation.
bool hasAnyUseOfValue(unsigned Value) const;
/// Return true if this node is the only use of N.
bool isOnlyUserOf(const SDNode *N) const;
/// Return true if this node is an operand of N.
bool isOperandOf(const SDNode *N) const;
/// Return true if this node is a predecessor of N.
/// NOTE: Implemented on top of hasPredecessor and every bit as
/// expensive. Use carefully.
bool isPredecessorOf(const SDNode *N) const {
return N->hasPredecessor(this);
}
/// Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// NOTE: This is an expensive method. Use it carefully.
bool hasPredecessor(const SDNode *N) const;
/// Returns true if N is a predecessor of any node in Worklist. This
/// helper keeps Visited and Worklist sets externally to allow unions
/// searches to be performed in parallel, caching of results across
/// queries and incremental addition to Worklist. Stops early if N is
/// found but will resume. Remember to clear Visited and Worklists
/// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
/// giving up. The TopologicalPrune flag signals that positive NodeIds are
/// topologically ordered (Operands have strictly smaller node id) and search
/// can be pruned leveraging this.
static bool hasPredecessorHelper(const SDNode *N,
SmallPtrSetImpl<const SDNode *> &Visited,
SmallVectorImpl<const SDNode *> &Worklist,
unsigned int MaxSteps = 0,
bool TopologicalPrune = false) {
SmallVector<const SDNode *, 8> DeferredNodes;
if (Visited.count(N))
return true;
// Node Id's are assigned in three places: As a topological
// ordering (> 0), during legalization (results in values set to
// 0), new nodes (set to -1). If N has a topolgical id then we
// know that all nodes with ids smaller than it cannot be
// successors and we need not check them. Filter out all node
// that can't be matches. We add them to the worklist before exit
// in case of multiple calls. Note that during selection the topological id
// may be violated if a node's predecessor is selected before it. We mark
// this at selection negating the id of unselected successors and
// restricting topological pruning to positive ids.
int NId = N->getNodeId();
// If we Invalidated the Id, reconstruct original NId.
if (NId < -1)
NId = -(NId + 1);
bool Found = false;
while (!Worklist.empty()) {
const SDNode *M = Worklist.pop_back_val();
int MId = M->getNodeId();
if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
(MId > 0) && (MId < NId)) {
DeferredNodes.push_back(M);
continue;
}
for (const SDValue &OpV : M->op_values()) {
SDNode *Op = OpV.getNode();
if (Visited.insert(Op).second)
Worklist.push_back(Op);
if (Op == N)
Found = true;
}
if (Found)
break;
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
break;
}
// Push deferred nodes back on worklist.
Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
// If we bailed early, conservatively return found.
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
return true;
return Found;
}
/// Return true if all the users of N are contained in Nodes.
/// NOTE: Requires at least one match, but doesn't require them all.
static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
/// Return the number of values used by this operation.
unsigned getNumOperands() const { return NumOperands; }
/// Return the maximum number of operands that a SDNode can hold.
static constexpr size_t getMaxNumOperands() {
return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
}
/// Helper method returns the integer value of a ConstantSDNode operand.
inline uint64_t getConstantOperandVal(unsigned Num) const;
/// Helper method returns the APInt of a ConstantSDNode operand.
inline const APInt &getConstantOperandAPInt(unsigned Num) const;
const SDValue &getOperand(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return OperandList[Num];
}
using op_iterator = SDUse *;
op_iterator op_begin() const { return OperandList; }
op_iterator op_end() const { return OperandList+NumOperands; }
ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
/// Iterator for directly iterating over the operand SDValue's.
struct value_op_iterator
: iterator_adaptor_base<value_op_iterator, op_iterator,
std::random_access_iterator_tag, SDValue,
ptrdiff_t, value_op_iterator *,
value_op_iterator *> {
explicit value_op_iterator(SDUse *U = nullptr)
: iterator_adaptor_base(U) {}
const SDValue &operator*() const { return I->get(); }
};
iterator_range<value_op_iterator> op_values() const {
return make_range(value_op_iterator(op_begin()),
value_op_iterator(op_end()));
}
SDVTList getVTList() const {
SDVTList X = { ValueList, NumValues };
return X;
}
/// If this node has a glue operand, return the node
/// to which the glue operand points. Otherwise return NULL.
SDNode *getGluedNode() const {
if (getNumOperands() != 0 &&
getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
return getOperand(getNumOperands()-1).getNode();
return nullptr;
}
/// If this node has a glue value with a user, return
/// the user (there is at most one). Otherwise return NULL.
SDNode *getGluedUser() const {
for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
if (UI.getUse().get().getValueType() == MVT::Glue)
return *UI;
return nullptr;
}
const SDNodeFlags getFlags() const { return Flags; }
void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
bool isFast() { return Flags.isFast(); }
/// Clear any flags in this node that aren't also set in Flags.
/// If Flags is not in a defined state then this has no effect.
void intersectFlagsWith(const SDNodeFlags Flags);
/// Return the number of values defined/returned by this operator.
unsigned getNumValues() const { return NumValues; }
/// Return the type of a specified result.
EVT getValueType(unsigned ResNo) const {
assert(ResNo < NumValues && "Illegal result number!");
return ValueList[ResNo];
}
/// Return the type of a specified result as a simple type.
MVT getSimpleValueType(unsigned ResNo) const {
return getValueType(ResNo).getSimpleVT();
}
/// Returns MVT::getSizeInBits(getValueType(ResNo)).
unsigned getValueSizeInBits(unsigned ResNo) const {
return getValueType(ResNo).getSizeInBits();
}
using value_iterator = const EVT *;
value_iterator value_begin() const { return ValueList; }
value_iterator value_end() const { return ValueList+NumValues; }
/// Return the opcode of this operation for printing.
std::string getOperationName(const SelectionDAG *G = nullptr) const;
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
/// Print a SelectionDAG node and all children down to
/// the leaves. The given SelectionDAG allows target-specific nodes
/// to be printed in human-readable form. Unlike printr, this will
/// print the whole DAG, including children that appear multiple
/// times.
///
void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
/// Print a SelectionDAG node and children up to
/// depth "depth." The given SelectionDAG allows target-specific
/// nodes to be printed in human-readable form. Unlike printr, this
/// will print children that appear multiple times wherever they are
/// used.
///
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
unsigned depth = 100) const;
/// Dump this node, for debugging.
void dump() const;
/// Dump (recursively) this node and its use-def subgraph.
void dumpr() const;
/// Dump this node, for debugging.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dump(const SelectionDAG *G) const;
/// Dump (recursively) this node and its use-def subgraph.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dumpr(const SelectionDAG *G) const;
/// printrFull to dbgs(). The given SelectionDAG allows
/// target-specific nodes to be printed in human-readable form.
/// Unlike dumpr, this will print the whole DAG, including children
/// that appear multiple times.
void dumprFull(const SelectionDAG *G = nullptr) const;
/// printrWithDepth to dbgs(). The given
/// SelectionDAG allows target-specific nodes to be printed in
/// human-readable form. Unlike dumpr, this will print children
/// that appear multiple times wherever they are used.
///
void dumprWithDepth(const SelectionDAG *G = nullptr,
unsigned depth = 100) const;
/// Gather unique data for the node.
void Profile(FoldingSetNodeID &ID) const;
/// This method should only be used by the SDUse class.
void addUse(SDUse &U) { U.addToList(&UseList); }
protected:
static SDVTList getSDVTList(EVT VT) {
SDVTList Ret = { getValueTypeList(VT), 1 };
return Ret;
}
/// Create an SDNode.
///
/// SDNodes are created without any operands, and never own the operand
/// storage. To add operands, see SelectionDAG::createOperands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
: NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
IROrder(Order), debugLoc(std::move(dl)) {
memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
assert(NumValues == VTs.NumVTs &&
"NumValues wasn't wide enough for its operands!");
}
/// Release the operands and set this node to have zero operands.
void DropOperands();
};
/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
/// into SDNode creation functions.
/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
/// from the original Instruction, and IROrder is the ordinal position of
/// the instruction.
/// When an SDNode is created after the DAG is being built, both DebugLoc and
/// the IROrder are propagated from the original SDNode.
/// So SDLoc class provides two constructors besides the default one, one to
/// be used by the DAGBuilder, the other to be used by others.
class SDLoc {
private:
DebugLoc DL;
int IROrder = 0;
public:
SDLoc() = default;
SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
SDLoc(const Instruction *I, int Order) : IROrder(Order) {
assert(Order >= 0 && "bad IROrder");
if (I)
DL = I->getDebugLoc();
}
unsigned getIROrder() const { return IROrder; }
const DebugLoc &getDebugLoc() const { return DL; }
};
// Define inline functions from the SDValue class.
inline SDValue::SDValue(SDNode *node, unsigned resno)
: Node(node), ResNo(resno) {
// Explicitly check for !ResNo to avoid use-after-free, because there are
// callers that use SDValue(N, 0) with a deleted N to indicate successful
// combines.
assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
"Invalid result number for the given node!");
assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
}
inline unsigned SDValue::getOpcode() const {
return Node->getOpcode();
}
inline EVT SDValue::getValueType() const {
return Node->getValueType(ResNo);
}
inline unsigned SDValue::getNumOperands() const {
return Node->getNumOperands();
}
inline const SDValue &SDValue::getOperand(unsigned i) const {
return Node->getOperand(i);
}
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
return Node->getConstantOperandVal(i);
}
inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
return Node->getConstantOperandAPInt(i);
}
inline bool SDValue::isTargetOpcode() const {
return Node->isTargetOpcode();
}
inline bool SDValue::isTargetMemoryOpcode() const {
return Node->isTargetMemoryOpcode();
}
inline bool SDValue::isMachineOpcode() const {
return Node->isMachineOpcode();
}
inline unsigned SDValue::getMachineOpcode() const {
return Node->getMachineOpcode();
}
inline bool SDValue::isUndef() const {
return Node->isUndef();
}
inline bool SDValue::use_empty() const {
return !Node->hasAnyUseOfValue(ResNo);
}
inline bool SDValue::hasOneUse() const {
return Node->hasNUsesOfValue(1, ResNo);
}
inline const DebugLoc &SDValue::getDebugLoc() const {
return Node->getDebugLoc();
}
inline void SDValue::dump() const {
return Node->dump();
}
inline void SDValue::dump(const SelectionDAG *G) const {
return Node->dump(G);
}
inline void SDValue::dumpr() const {
return Node->dumpr();
}
inline void SDValue::dumpr(const SelectionDAG *G) const {
return Node->dumpr(G);
}
// Define inline functions from the SDUse class.
inline void SDUse::set(const SDValue &V) {
if (Val.getNode()) removeFromList();
Val = V;
if (V.getNode()) V.getNode()->addUse(*this);
}
inline void SDUse::setInitial(const SDValue &V) {
Val = V;
V.getNode()->addUse(*this);
}
inline void SDUse::setNode(SDNode *N) {
if (Val.getNode()) removeFromList();
Val.setNode(N);
if (N) N->addUse(*this);
}
/// This class is used to form a handle around another node that
/// is persistent and is updated across invocations of replaceAllUsesWith on its
/// operand. This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
SDUse Op;
public:
explicit HandleSDNode(SDValue X)
: SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
// HandleSDNodes are never inserted into the DAG, so they won't be
// auto-numbered. Use ID 65535 as a sentinel.
PersistentId = 0xffff;
// Manually set up the operand list. This node type is special in that it's
// always stack allocated and SelectionDAG does not manage its operands.
// TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
// be so special.
Op.setUser(this);
Op.setInitial(X);
NumOperands = 1;
OperandList = &Op;
}
~HandleSDNode();
const SDValue &getValue() const { return Op; }
};
class AddrSpaceCastSDNode : public SDNode {
private:
unsigned SrcAddrSpace;
unsigned DestAddrSpace;
public:
AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
unsigned SrcAS, unsigned DestAS);
unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
unsigned getDestAddressSpace() const { return DestAddrSpace; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ADDRSPACECAST;
}
};
/// This is an abstract virtual class for memory operations.
class MemSDNode : public SDNode {
private:
// VT of in-memory value.
EVT MemoryVT;
protected:
/// Memory reference information.
MachineMemOperand *MMO;
public:
MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT memvt, MachineMemOperand *MMO);
bool readMem() const { return MMO->isLoad(); }
bool writeMem() const { return MMO->isStore(); }
/// Returns alignment and volatility of the memory access
unsigned getOriginalAlignment() const {
return MMO->getBaseAlignment();
}
unsigned getAlignment() const {
return MMO->getAlignment();
}
/// Return the SubclassData value, without HasDebugValue. This contains an
/// encoding of the volatile flag, as well as bits used by subclasses. This
/// function should only be used to compute a FoldingSetNodeID value.
/// The HasDebugValue bit is masked out because CSE map needs to match
/// nodes with debug info with nodes without debug info. Same is about
/// isDivergent bit.
unsigned getRawSubclassData() const {
uint16_t Data;
union {
char RawSDNodeBits[sizeof(uint16_t)];
SDNodeBitfields SDNodeBits;
};
memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
SDNodeBits.HasDebugValue = 0;
SDNodeBits.IsDivergent = false;
memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
return Data;
}
bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
// Returns the offset from the location of the access.
int64_t getSrcValueOffset() const { return MMO->getOffset(); }
/// Returns the AA info that describes the dereference.
AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
/// Returns the Ranges that describes the dereference.
const MDNode *getRanges() const { return MMO->getRanges(); }
/// Returns the synchronization scope ID for this memory operation.
SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
/// Return the atomic ordering requirements for this memory operation. For
/// cmpxchg atomic operations, return the atomic ordering requirements when
/// store occurs.
AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
/// Return true if the memory operation ordering is Unordered or higher.
bool isAtomic() const { return MMO->isAtomic(); }
/// Returns true if the memory operation doesn't imply any ordering
/// constraints on surrounding memory operations beyond the normal memory
/// aliasing rules.
bool isUnordered() const { return MMO->isUnordered(); }
/// Returns true if the memory operation is neither atomic or volatile.
bool isSimple() const { return !isAtomic() && !isVolatile(); }
/// Return the type of the in-memory value.
EVT getMemoryVT() const { return MemoryVT; }
/// Return a MachineMemOperand object describing the memory
/// reference performed by operation.
MachineMemOperand *getMemOperand() const { return MMO; }
const MachinePointerInfo &getPointerInfo() const {
return MMO->getPointerInfo();
}
/// Return the address space for the associated pointer
unsigned getAddressSpace() const {
return getPointerInfo().getAddrSpace();
}
/// Update this MemSDNode's MachineMemOperand information
/// to reflect the alignment of NewMMO, if it has a greater alignment.
/// This must only be used when the new alignment applies to all users of
/// this MachineMemOperand.
void refineAlignment(const MachineMemOperand *NewMMO) {
MMO->refineAlignment(NewMMO);
}
const SDValue &getChain() const { return getOperand(0); }
const SDValue &getBasePtr() const {
return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
// with either an intrinsic or a target opcode.
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE ||
N->getOpcode() == ISD::PREFETCH ||
N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
N->getOpcode() == ISD::ATOMIC_LOAD ||
N->getOpcode() == ISD::ATOMIC_STORE ||
N->getOpcode() == ISD::MLOAD ||
N->getOpcode() == ISD::MSTORE ||
N->getOpcode() == ISD::MGATHER ||
N->getOpcode() == ISD::MSCATTER ||
N->isMemIntrinsic() ||
N->isTargetMemoryOpcode();
}
};
/// This is an SDNode representing atomic operations.
class AtomicSDNode : public MemSDNode {
public:
AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
EVT MemVT, MachineMemOperand *MMO)
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getVal() const { return getOperand(2); }
/// Returns true if this SDNode represents cmpxchg atomic operation, false
/// otherwise.
bool isCompareAndSwap() const {
unsigned Op = getOpcode();
return Op == ISD::ATOMIC_CMP_SWAP ||
Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
}
/// For cmpxchg atomic operations, return the atomic ordering requirements
/// when store does not occur.
AtomicOrdering getFailureOrdering() const {
assert(isCompareAndSwap() && "Must be cmpxchg operation");
return MMO->getFailureOrdering();
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
N->getOpcode() == ISD::ATOMIC_SWAP ||
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
N->getOpcode() == ISD::ATOMIC_LOAD ||
N->getOpcode() == ISD::ATOMIC_STORE;
}
};
/// This SDNode is used for target intrinsics that touch
/// memory and need an associated MachineMemOperand. Its opcode may be
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
class MemIntrinsicSDNode : public MemSDNode {
public:
MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
: MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
SDNodeBits.IsMemIntrinsic = true;
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
// We lower some target intrinsics to their target opcode
// early a node with a target opcode can be of this class
return N->isMemIntrinsic() ||
N->getOpcode() == ISD::PREFETCH ||
N->isTargetMemoryOpcode();
}
};
/// This SDNode is used to implement the code generator
/// support for the llvm IR shufflevector instruction. It combines elements
/// from two input vectors into a new input vector, with the selection and
/// ordering of elements determined by an array of integers, referred to as
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
/// An index of -1 is treated as undef, such that the code generator may put
/// any value in the corresponding element of the result.
class ShuffleVectorSDNode : public SDNode {
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
// is freed when the SelectionDAG object is destroyed.
const int *Mask;
protected:
friend class SelectionDAG;
ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
: SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
public:
ArrayRef<int> getMask() const {
EVT VT = getValueType(0);
return makeArrayRef(Mask, VT.getVectorNumElements());
}
int getMaskElt(unsigned Idx) const {
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
return Mask[Idx];
}
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
int getSplatIndex() const {
assert(isSplat() && "Cannot get splat index for non-splat!");
EVT VT = getValueType(0);
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
if (Mask[i] >= 0)
return Mask[i];
// We can choose any index value here and be correct because all elements
// are undefined. Return 0 for better potential for callers to simplify.
return 0;
}
static bool isSplatMask(const int *Mask, EVT VT);
/// Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
static void commuteMask(MutableArrayRef<int> Mask) {
unsigned NumElems = Mask.size();
for (unsigned i = 0; i != NumElems; ++i) {
int idx = Mask[i];
if (idx < 0)
continue;
else if (idx < (int)NumElems)
Mask[i] = idx + NumElems;
else
Mask[i] = idx - NumElems;
}
}
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
}
};
class ConstantSDNode : public SDNode {
friend class SelectionDAG;
const ConstantInt *Value;
ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
getSDVTList(VT)),
Value(val) {
ConstantSDNodeBits.IsOpaque = isOpaque;
}
public:
const ConstantInt *getConstantIntValue() const { return Value; }
const APInt &getAPIntValue() const { return Value->getValue(); }
uint64_t getZExtValue() const { return Value->getZExtValue(); }
int64_t getSExtValue() const { return Value->getSExtValue(); }
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
return Value->getLimitedValue(Limit);
}
bool isOne() const { return Value->isOne(); }
bool isNullValue() const { return Value->isZero(); }
bool isAllOnesValue() const { return Value->isMinusOne(); }
bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Constant ||
N->getOpcode() == ISD::TargetConstant;
}
};
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
}
const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
}
class ConstantFPSDNode : public SDNode {
friend class SelectionDAG;
const ConstantFP *Value;
ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
DebugLoc(), getSDVTList(VT)),
Value(val) {}
public:
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
const ConstantFP *getConstantFPValue() const { return Value; }
/// Return true if the value is positive or negative zero.
bool isZero() const { return Value->isZero(); }
/// Return true if the value is a NaN.
bool isNaN() const { return Value->isNaN(); }
/// Return true if the value is an infinity
bool isInfinity() const { return Value->isInfinity(); }
/// Return true if the value is negative.
bool isNegative() const { return Value->isNegative(); }
/// We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
/// We leave the version with the double argument here because it's just so
/// convenient to write "2.0" and the like. Without this function we'd
/// have to duplicate its logic everywhere it's called.
bool isExactlyValue(double V) const {
return Value->getValueAPF().isExactlyValue(V);
}
bool isExactlyValue(const APFloat& V) const;
static bool isValueValidForType(EVT VT, const APFloat& Val);
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantFP ||
N->getOpcode() == ISD::TargetConstantFP;
}
};
/// Returns true if \p V is a constant integer zero.
bool isNullConstant(SDValue V);
/// Returns true if \p V is an FP constant with a value of positive zero.
bool isNullFPConstant(SDValue V);
/// Returns true if \p V is an integer constant with all bits set.
bool isAllOnesConstant(SDValue V);
/// Returns true if \p V is a constant integer one.
bool isOneConstant(SDValue V);
/// Return the non-bitcasted source operand of \p V if it exists.
/// If \p V is not a bitcasted value, it is returned as-is.
SDValue peekThroughBitcasts(SDValue V);
/// Return the non-bitcasted and one-use source operand of \p V if it exists.
/// If \p V is not a bitcasted one-use value, it is returned as-is.
SDValue peekThroughOneUseBitcasts(SDValue V);
/// Return the non-extracted vector source operand of \p V if it exists.
/// If \p V is not an extracted subvector, it is returned as-is.
SDValue peekThroughExtractSubvectors(SDValue V);
/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
/// constant is canonicalized to be operand 1.
bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
/// Returns the SDNode if it is a constant splat BuildVector or constant int.
ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
bool AllowTruncation = false);
/// Returns the SDNode if it is a demanded constant splat BuildVector or
/// constant int.
ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
bool AllowUndefs = false,
bool AllowTruncation = false);
/// Returns the SDNode if it is a constant splat BuildVector or constant float.
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
/// Returns the SDNode if it is a demanded constant splat BuildVector or
/// constant float.
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
bool AllowUndefs = false);
/// Return true if the value is a constant 0 integer or a splatted vector of
/// a constant 0 integer (with no undefs by default).
/// Build vector implicit truncation is not an issue for null values.
bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
/// Return true if the value is a constant 1 integer or a splatted vector of a
/// constant 1 integer (with no undefs).
/// Does not permit build vector implicit truncation.
bool isOneOrOneSplat(SDValue V);
/// Return true if the value is a constant -1 integer or a splatted vector of a
/// constant -1 integer (with no undefs).
/// Does not permit build vector implicit truncation.
bool isAllOnesOrAllOnesSplat(SDValue V);
class GlobalAddressSDNode : public SDNode {
friend class SelectionDAG;
const GlobalValue *TheGlobal;
int64_t Offset;
unsigned TargetFlags;
GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
const GlobalValue *GA, EVT VT, int64_t o,
unsigned TF);
public:
const GlobalValue *getGlobal() const { return TheGlobal; }
int64_t getOffset() const { return Offset; }
unsigned getTargetFlags() const { return TargetFlags; }
// Return the address space this GlobalAddress belongs to.
unsigned getAddressSpace() const;
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::GlobalAddress ||
N->getOpcode() == ISD::TargetGlobalAddress ||
N->getOpcode() == ISD::GlobalTLSAddress ||
N->getOpcode() == ISD::TargetGlobalTLSAddress;
}
};
class FrameIndexSDNode : public SDNode {
friend class SelectionDAG;
int FI;
FrameIndexSDNode(int fi, EVT VT, bool isTarg)
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
0, DebugLoc(), getSDVTList(VT)), FI(fi) {
}
public:
int getIndex() const { return FI; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::FrameIndex ||
N->getOpcode() == ISD::TargetFrameIndex;
}
};
/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
/// the offet and size that are started/ended in the underlying FrameIndex.
class LifetimeSDNode : public SDNode {
friend class SelectionDAG;
int64_t Size;
int64_t Offset; // -1 if offset is unknown.
LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
SDVTList VTs, int64_t Size, int64_t Offset)
: SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
public:
int64_t getFrameIndex() const {
return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
}
bool hasOffset() const { return Offset >= 0; }
int64_t getOffset() const {
assert(hasOffset() && "offset is unknown");
return Offset;
}
int64_t getSize() const {
assert(hasOffset() && "offset is unknown");
return Size;
}
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LIFETIME_START ||
N->getOpcode() == ISD::LIFETIME_END;
}
};
class JumpTableSDNode : public SDNode {
friend class SelectionDAG;
int JTI;
unsigned TargetFlags;
JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
}
public:
int getIndex() const { return JTI; }
unsigned getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::JumpTable ||
N->getOpcode() == ISD::TargetJumpTable;
}
};
class ConstantPoolSDNode : public SDNode {
friend class SelectionDAG;
union {
const Constant *ConstVal;
MachineConstantPoolValue *MachineCPVal;
} Val;
int Offset; // It's a MachineConstantPoolValue if top bit is set.
unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
unsigned TargetFlags;
ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
unsigned Align, unsigned TF)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
TargetFlags(TF) {
assert(Offset >= 0 && "Offset is too large");
Val.ConstVal = c;
}
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
EVT VT, int o, unsigned Align, unsigned TF)
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
TargetFlags(TF) {
assert(Offset >= 0 && "Offset is too large");
Val.MachineCPVal = v;
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
}
public:
bool isMachineConstantPoolEntry() const {
return Offset < 0;
}
const Constant *getConstVal() const {
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.ConstVal;
}
MachineConstantPoolValue *getMachineCPVal() const {
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
return Val.MachineCPVal;
}
int getOffset() const {
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
}
// Return the alignment of this constant pool object, which is either 0 (for
// default alignment) or the desired value.
unsigned getAlignment() const { return Alignment; }
unsigned getTargetFlags() const { return TargetFlags; }
Type *getType() const;
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ConstantPool ||
N->getOpcode() == ISD::TargetConstantPool;
}
};
/// Completely target-dependent object reference.
class TargetIndexSDNode : public SDNode {
friend class SelectionDAG;
unsigned TargetFlags;
int Index;
int64_t Offset;
public:
TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
: SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
TargetFlags(TF), Index(Idx), Offset(Ofs) {}
unsigned getTargetFlags() const { return TargetFlags; }
int getIndex() const { return Index; }
int64_t getOffset() const { return Offset; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::TargetIndex;
}
};
class BasicBlockSDNode : public SDNode {
friend class SelectionDAG;
MachineBasicBlock *MBB;
/// Debug info is meaningful and potentially useful here, but we create
/// blocks out of order when they're jumped to, which makes it a bit
/// harder. Let's see if we need it first.
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
: SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
{}
public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BasicBlock;
}
};
/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
class BuildVectorSDNode : public SDNode {
public:
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
explicit BuildVectorSDNode() = delete;
/// Check if this is a constant splat, and if so, find the
/// smallest element size that splats the vector. If MinSplatBits is
/// nonzero, the element size must be at least that large. Note that the
/// splat element may be the entire vector (i.e., a one element vector).
/// Returns the splat element value in SplatValue. Any undefined bits in
/// that value are zero, and the corresponding bits in the SplatUndef mask
/// are set. The SplatBitSize value is set to the splat element size in
/// bits. HasAnyUndefs is set to true if any bits in the vector are
/// undefined. isBigEndian describes the endianness of the target.
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
unsigned &SplatBitSize, bool &HasAnyUndefs,
unsigned MinSplatBits = 0,
bool isBigEndian = false) const;
/// Returns the demanded splatted value or a null value if this is not a
/// splat.
///
/// The DemandedElts mask indicates the elements that must be in the splat.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
SDValue getSplatValue(const APInt &DemandedElts,
BitVector *UndefElements = nullptr) const;
/// Returns the splatted value or a null value if this is not a splat.
///
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
/// Returns the demanded splatted constant or null if this is not a constant
/// splat.
///
/// The DemandedElts mask indicates the elements that must be in the splat.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantSDNode *
getConstantSplatNode(const APInt &DemandedElts,
BitVector *UndefElements = nullptr) const;
/// Returns the splatted constant or null if this is not a constant
/// splat.
///
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantSDNode *
getConstantSplatNode(BitVector *UndefElements = nullptr) const;
/// Returns the demanded splatted constant FP or null if this is not a
/// constant FP splat.
///
/// The DemandedElts mask indicates the elements that must be in the splat.
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantFPSDNode *
getConstantFPSplatNode(const APInt &DemandedElts,
BitVector *UndefElements = nullptr) const;
/// Returns the splatted constant FP or null if this is not a constant
/// FP splat.
///
/// If passed a non-null UndefElements bitvector, it will resize it to match
/// the vector width and set the bits where elements are undef.
ConstantFPSDNode *
getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
/// If this is a constant FP splat and the splatted constant FP is an
/// exact power or 2, return the log base 2 integer value. Otherwise,
/// return -1.
///
/// The BitWidth specifies the necessary bit precision.
int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
uint32_t BitWidth) const;
bool isConstant() const;
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BUILD_VECTOR;
}
};
/// An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
class SrcValueSDNode : public SDNode {
friend class SelectionDAG;
const Value *V;
/// Create a SrcValue for a general value.
explicit SrcValueSDNode(const Value *v)
: SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
public:
/// Return the contained Value.
const Value *getValue() const { return V; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::SRCVALUE;
}
};
class MDNodeSDNode : public SDNode {
friend class SelectionDAG;
const MDNode *MD;
explicit MDNodeSDNode(const MDNode *md)
: SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
{}
public:
const MDNode *getMD() const { return MD; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MDNODE_SDNODE;
}
};
class RegisterSDNode : public SDNode {
friend class SelectionDAG;
unsigned Reg;
RegisterSDNode(unsigned reg, EVT VT)
: SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
public:
unsigned getReg() const { return Reg; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::Register;
}
};
class RegisterMaskSDNode : public SDNode {
friend class SelectionDAG;
// The memory for RegMask is not owned by the node.
const uint32_t *RegMask;
RegisterMaskSDNode(const uint32_t *mask)
: SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
RegMask(mask) {}
public:
const uint32_t *getRegMask() const { return RegMask; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::RegisterMask;
}
};
class BlockAddressSDNode : public SDNode {
friend class SelectionDAG;
const BlockAddress *BA;
int64_t Offset;
unsigned TargetFlags;
BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
int64_t o, unsigned Flags)
: SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
BA(ba), Offset(o), TargetFlags(Flags) {}
public:
const BlockAddress *getBlockAddress() const { return BA; }
int64_t getOffset() const { return Offset; }
unsigned getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::BlockAddress ||
N->getOpcode() == ISD::TargetBlockAddress;
}
};
class LabelSDNode : public SDNode {
friend class SelectionDAG;
MCSymbol *Label;
LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
: SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
assert(LabelSDNode::classof(this) && "not a label opcode");
}
public:
MCSymbol *getLabel() const { return Label; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EH_LABEL ||
N->getOpcode() == ISD::ANNOTATION_LABEL;
}
};
class ExternalSymbolSDNode : public SDNode {
friend class SelectionDAG;
const char *Symbol;
unsigned TargetFlags;
ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
DebugLoc(), getSDVTList(VT)),
Symbol(Sym), TargetFlags(TF) {}
public:
const char *getSymbol() const { return Symbol; }
unsigned getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::ExternalSymbol ||
N->getOpcode() == ISD::TargetExternalSymbol;
}
};
class MCSymbolSDNode : public SDNode {
friend class SelectionDAG;
MCSymbol *Symbol;
MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
: SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
public:
MCSymbol *getMCSymbol() const { return Symbol; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MCSymbol;
}
};
class CondCodeSDNode : public SDNode {
friend class SelectionDAG;
ISD::CondCode Condition;
explicit CondCodeSDNode(ISD::CondCode Cond)
: SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
Condition(Cond) {}
public:
ISD::CondCode get() const { return Condition; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::CONDCODE;
}
};
/// This class is used to represent EVT's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
friend class SelectionDAG;
EVT ValueType;
explicit VTSDNode(EVT VT)
: SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
ValueType(VT) {}
public:
EVT getVT() const { return ValueType; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::VALUETYPE;
}
};
/// Base class for LoadSDNode and StoreSDNode
class LSBaseSDNode : public MemSDNode {
public:
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = AM;
assert(getAddressingMode() == AM && "Value truncated");
}
const SDValue &getOffset() const {
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
}
/// Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const {
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
}
/// Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD ||
N->getOpcode() == ISD::STORE;
}
};
/// This class is used to represent ISD::LOAD nodes.
class LoadSDNode : public LSBaseSDNode {
friend class SelectionDAG;
LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
MachineMemOperand *MMO)
: LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
LoadSDNodeBits.ExtTy = ETy;
assert(readMem() && "Load MachineMemOperand is not a load!");
assert(!writeMem() && "Load MachineMemOperand is a store!");
}
public:
/// Return whether this is a plain node,
/// or one of the varieties of value-extending loads.
ISD::LoadExtType getExtensionType() const {
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getOffset() const { return getOperand(2); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::LOAD;
}
};
/// This class is used to represent ISD::STORE nodes.
class StoreSDNode : public LSBaseSDNode {
friend class SelectionDAG;
StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
MachineMemOperand *MMO)
: LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
StoreSDNodeBits.IsTruncating = isTrunc;
assert(!readMem() && "Store MachineMemOperand is a load!");
assert(writeMem() && "Store MachineMemOperand is not a store!");
}
public:
/// Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
void setTruncatingStore(bool Truncating) {
StoreSDNodeBits.IsTruncating = Truncating;
}
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getOffset() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::STORE;
}
};
/// This base class is used to represent MLOAD and MSTORE nodes
class MaskedLoadStoreSDNode : public MemSDNode {
public:
friend class SelectionDAG;
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
// MaskedLoadSDNode (Chain, ptr, mask, passthru)
// MaskedStoreSDNode (Chain, data, ptr, mask)
// Mask is a vector of i1 elements
const SDValue &getBasePtr() const {
return getOperand(getOpcode() == ISD::MLOAD ? 1 : 2);
}
const SDValue &getMask() const {
return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
}
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MLOAD ||
N->getOpcode() == ISD::MSTORE;
}
};
/// This class is used to represent an MLOAD node
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
public:
friend class SelectionDAG;
MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
MachineMemOperand *MMO)
: MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
LoadSDNodeBits.ExtTy = ETy;
LoadSDNodeBits.IsExpanding = IsExpanding;
}
ISD::LoadExtType getExtensionType() const {
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
}
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getMask() const { return getOperand(2); }
const SDValue &getPassThru() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MLOAD;
}
bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
};
/// This class is used to represent an MSTORE node
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
public:
friend class SelectionDAG;
MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
bool isTrunc, bool isCompressing, EVT MemVT,
MachineMemOperand *MMO)
: MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
StoreSDNodeBits.IsTruncating = isTrunc;
StoreSDNodeBits.IsCompressing = isCompressing;
}
/// Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
/// Returns true if the op does a compression to the vector before storing.
/// The node contiguously stores the active elements (integers or floats)
/// in src (those with their respective bit set in writemask k) to unaligned
/// memory at base_addr.
bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
const SDValue &getValue() const { return getOperand(1); }
const SDValue &getBasePtr() const { return getOperand(2); }
const SDValue &getMask() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MSTORE;
}
};
/// This is a base class used to represent
/// MGATHER and MSCATTER nodes
///
class MaskedGatherScatterSDNode : public MemSDNode {
public:
friend class SelectionDAG;
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
LSBaseSDNodeBits.AddressingMode = IndexType;
assert(getIndexType() == IndexType && "Value truncated");
}
/// How is Index applied to BasePtr when computing addresses.
ISD::MemIndexType getIndexType() const {
return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
}
bool isIndexScaled() const {
return (getIndexType() == ISD::SIGNED_SCALED) ||
(getIndexType() == ISD::UNSIGNED_SCALED);
}
bool isIndexSigned() const {
return (getIndexType() == ISD::SIGNED_SCALED) ||
(getIndexType() == ISD::SIGNED_UNSCALED);
}
// In the both nodes address is Op1, mask is Op2:
// MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
// MaskedScatterSDNode (Chain, value, mask, base, index, scale)
// Mask is a vector of i1 elements
const SDValue &getBasePtr() const { return getOperand(3); }
const SDValue &getIndex() const { return getOperand(4); }
const SDValue &getMask() const { return getOperand(2); }
const SDValue &getScale() const { return getOperand(5); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MGATHER ||
N->getOpcode() == ISD::MSCATTER;
}
};
/// This class is used to represent an MGATHER node
///
class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
public:
friend class SelectionDAG;
MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT MemVT, MachineMemOperand *MMO,
ISD::MemIndexType IndexType)
: MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
IndexType) {}
const SDValue &getPassThru() const { return getOperand(1); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MGATHER;
}
};
/// This class is used to represent an MSCATTER node
///
class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
public:
friend class SelectionDAG;
MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
EVT MemVT, MachineMemOperand *MMO,
ISD::MemIndexType IndexType)
: MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
IndexType) {}
const SDValue &getValue() const { return getOperand(1); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MSCATTER;
}
};
/// An SDNode that represents everything that will be needed
/// to construct a MachineInstr. These nodes are created during the
/// instruction selection proper phase.
///
/// Note that the only supported way to set the `memoperands` is by calling the
/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
/// inside the DAG rather than in the node.
class MachineSDNode : public SDNode {
private:
friend class SelectionDAG;
MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
: SDNode(Opc, Order, DL, VTs) {}
// We use a pointer union between a single `MachineMemOperand` pointer and
// a pointer to an array of `MachineMemOperand` pointers. This is null when
// the number of these is zero, the single pointer variant used when the
// number is one, and the array is used for larger numbers.
//
// The array is allocated via the `SelectionDAG`'s allocator and so will
// always live until the DAG is cleaned up and doesn't require ownership here.
//
// We can't use something simpler like `TinyPtrVector` here because `SDNode`
// subclasses aren't managed in a conforming C++ manner. See the comments on
// `SelectionDAG::MorphNodeTo` which details what all goes on, but the
// constraint here is that these don't manage memory with their constructor or
// destructor and can be initialized to a good state even if they start off
// uninitialized.
PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
// Note that this could be folded into the above `MemRefs` member if doing so
// is advantageous at some point. We don't need to store this in most cases.
// However, at the moment this doesn't appear to make the allocation any
// smaller and makes the code somewhat simpler to read.
int NumMemRefs = 0;
public:
using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
ArrayRef<MachineMemOperand *> memoperands() const {
// Special case the common cases.
if (NumMemRefs == 0)
return {};
if (NumMemRefs == 1)
return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
// Otherwise we have an actual array.
return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
}
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
mmo_iterator memoperands_end() const { return memoperands().end(); }
bool memoperands_empty() const { return memoperands().empty(); }
/// Clear out the memory reference descriptor list.
void clearMemRefs() {
MemRefs = nullptr;
NumMemRefs = 0;
}
static bool classof(const SDNode *N) {
return N->isMachineOpcode();
}
};
class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
SDNode, ptrdiff_t> {
const SDNode *Node;
unsigned Operand;
SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
bool operator==(const SDNodeIterator& x) const {
return Operand == x.Operand;
}
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
pointer operator*() const {
return Node->getOperand(Operand).getNode();
}
pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand;
return *this;
}
SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp;
}
size_t operator-(SDNodeIterator Other) const {
assert(Node == Other.Node &&
"Cannot compare iterators of two different nodes!");
return Operand - Other.Operand;
}
static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
static SDNodeIterator end (const SDNode *N) {
return SDNodeIterator(N, N->getNumOperands());
}
unsigned getOperand() const { return Operand; }
const SDNode *getNode() const { return Node; }
};
template <> struct GraphTraits<SDNode*> {
using NodeRef = SDNode *;
using ChildIteratorType = SDNodeIterator;
static NodeRef getEntryNode(SDNode *N) { return N; }
static ChildIteratorType child_begin(NodeRef N) {
return SDNodeIterator::begin(N);
}
static ChildIteratorType child_end(NodeRef N) {
return SDNodeIterator::end(N);
}
};
/// A representation of the largest SDNode, for use in sizeof().
///
/// This needs to be a union because the largest node differs on 32 bit systems
/// with 4 and 8 byte pointer alignment, respectively.
using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
BlockAddressSDNode,
GlobalAddressSDNode>;
/// The SDNode class with the greatest alignment requirement.
using MostAlignedSDNode = GlobalAddressSDNode;
namespace ISD {
/// Returns true if the specified node is a non-extending and unindexed load.
inline bool isNormalLoad(const SDNode *N) {
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
Ld->getAddressingMode() == ISD::UNINDEXED;
}
/// Returns true if the specified node is a non-extending load.
inline bool isNON_EXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
}
/// Returns true if the specified node is a EXTLOAD.
inline bool isEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
}
/// Returns true if the specified node is a SEXTLOAD.
inline bool isSEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
}
/// Returns true if the specified node is a ZEXTLOAD.
inline bool isZEXTLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
}
/// Returns true if the specified node is an unindexed load.
inline bool isUNINDEXEDLoad(const SDNode *N) {
return isa<LoadSDNode>(N) &&
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
/// Returns true if the specified node is a non-truncating
/// and unindexed store.
inline bool isNormalStore(const SDNode *N) {
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
return St && !St->isTruncatingStore() &&
St->getAddressingMode() == ISD::UNINDEXED;
}
/// Returns true if the specified node is a non-truncating store.
inline bool isNON_TRUNCStore(const SDNode *N) {
return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
}
/// Returns true if the specified node is a truncating store.
inline bool isTRUNCStore(const SDNode *N) {
return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
}
/// Returns true if the specified node is an unindexed store.
inline bool isUNINDEXEDStore(const SDNode *N) {
return isa<StoreSDNode>(N) &&
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
}
/// Attempt to match a unary predicate against a scalar/splat constant or
/// every element of a constant BUILD_VECTOR.
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
bool matchUnaryPredicate(SDValue Op,
std::function<bool(ConstantSDNode *)> Match,
bool AllowUndefs = false);
/// Attempt to match a binary predicate against a pair of scalar/splat
/// constants or every element of a pair of constant BUILD_VECTORs.
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
/// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
bool matchBinaryPredicate(
SDValue LHS, SDValue RHS,
std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
bool AllowUndefs = false, bool AllowTypeMismatch = false);
} // end namespace ISD
} // end namespace llvm
#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
|