reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//

#include "X86.h"

#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86MacroFusion.h"
#include "X86RegisterBankInfo.h"
#include "X86Subtarget.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#if defined(_MSC_VER)
#include <intrin.h>
#endif

using namespace llvm;

#define DEBUG_TYPE "subtarget"

#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"

// Temporary option to control early if-conversion for x86 while adding machine
// models.
static cl::opt<bool>
X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
               cl::desc("Enable early if-conversion on X86"));


/// Classify a blockaddress reference for the current subtarget according to how
/// we should reference it in a non-pcrel context.
unsigned char X86Subtarget::classifyBlockAddressReference() const {
  return classifyLocalReference(nullptr);
}

/// Classify a global variable reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char
X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
  return classifyGlobalReference(GV, *GV->getParent());
}

unsigned char
X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
  // If we're not PIC, it's not very interesting.
  if (!isPositionIndependent())
    return X86II::MO_NO_FLAG;

  if (is64Bit()) {
    // 64-bit ELF PIC local references may use GOTOFF relocations.
    if (isTargetELF()) {
      switch (TM.getCodeModel()) {
      // 64-bit small code model is simple: All rip-relative.
      case CodeModel::Tiny:
        llvm_unreachable("Tiny codesize model not supported on X86");
      case CodeModel::Small:
      case CodeModel::Kernel:
        return X86II::MO_NO_FLAG;

      // The large PIC code model uses GOTOFF.
      case CodeModel::Large:
        return X86II::MO_GOTOFF;

      // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
      case CodeModel::Medium:
        if (isa<Function>(GV))
          return X86II::MO_NO_FLAG; // All code is RIP-relative
        return X86II::MO_GOTOFF;    // Local symbols use GOTOFF.
      }
      llvm_unreachable("invalid code model");
    }

    // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
    // both of which use MO_NO_FLAG.
    return X86II::MO_NO_FLAG;
  }

  // The COFF dynamic linker just patches the executable sections.
  if (isTargetCOFF())
    return X86II::MO_NO_FLAG;

  if (isTargetDarwin()) {
    // 32 bit macho has no relocation for a-b if a is undefined, even if
    // b is in the section that is being relocated.
    // This means we have to use o load even for GVs that are known to be
    // local to the dso.
    if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;

    return X86II::MO_PIC_BASE_OFFSET;
  }

  return X86II::MO_GOTOFF;
}

unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
                                                    const Module &M) const {
  // The static large model never uses stubs.
  if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
    return X86II::MO_NO_FLAG;

  // Absolute symbols can be referenced directly.
  if (GV) {
    if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
      // See if we can use the 8-bit immediate form. Note that some instructions
      // will sign extend the immediate operand, so to be conservative we only
      // accept the range [0,128).
      if (CR->getUnsignedMax().ult(128))
        return X86II::MO_ABS8;
      else
        return X86II::MO_NO_FLAG;
    }
  }

  if (TM.shouldAssumeDSOLocal(M, GV))
    return classifyLocalReference(GV);

  if (isTargetCOFF()) {
    if (GV->hasDLLImportStorageClass())
      return X86II::MO_DLLIMPORT;
    return X86II::MO_COFFSTUB;
  }
  // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
  if (isOSWindows())
    return X86II::MO_NO_FLAG;

  if (is64Bit()) {
    // ELF supports a large, truly PIC code model with non-PC relative GOT
    // references. Other object file formats do not. Use the no-flag, 64-bit
    // reference for them.
    if (TM.getCodeModel() == CodeModel::Large)
      return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
    return X86II::MO_GOTPCREL;
  }

  if (isTargetDarwin()) {
    if (!isPositionIndependent())
      return X86II::MO_DARWIN_NONLAZY;
    return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
  }

  return X86II::MO_GOT;
}

unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
  return classifyGlobalFunctionReference(GV, *GV->getParent());
}

unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
                                              const Module &M) const {
  if (TM.shouldAssumeDSOLocal(M, GV))
    return X86II::MO_NO_FLAG;

  // Functions on COFF can be non-DSO local for two reasons:
  // - They are marked dllimport
  // - They are extern_weak, and a stub is needed
  if (isTargetCOFF()) {
    if (GV->hasDLLImportStorageClass())
      return X86II::MO_DLLIMPORT;
    return X86II::MO_COFFSTUB;
  }

  const Function *F = dyn_cast_or_null<Function>(GV);

  if (isTargetELF()) {
    if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
      // According to psABI, PLT stub clobbers XMM8-XMM15.
      // In Regcall calling convention those registers are used for passing
      // parameters. Thus we need to prevent lazy binding in Regcall.
      return X86II::MO_GOTPCREL;
    // If PLT must be avoided then the call should be via GOTPCREL.
    if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
         (!F && M.getRtLibUseGOT())) &&
        is64Bit())
       return X86II::MO_GOTPCREL;
    return X86II::MO_PLT;
  }

  if (is64Bit()) {
    if (F && F->hasFnAttribute(Attribute::NonLazyBind))
      // If the function is marked as non-lazy, generate an indirect call
      // which loads from the GOT directly. This avoids runtime overhead
      // at the cost of eager binding (and one extra byte of encoding).
      return X86II::MO_GOTPCREL;
    return X86II::MO_NO_FLAG;
  }

  return X86II::MO_NO_FLAG;
}

/// Return true if the subtarget allows calls to immediate address.
bool X86Subtarget::isLegalToCallImmediateAddr() const {
  // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
  // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
  // the following check for Win32 should be removed.
  if (In64BitMode || isTargetWin32())
    return false;
  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}

void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
  std::string CPUName = CPU;
  if (CPUName.empty())
    CPUName = "generic";

  std::string FullFS = FS;
  if (In64BitMode) {
    // SSE2 should default to enabled in 64-bit mode, but can be turned off
    // explicitly.
    if (!FullFS.empty())
      FullFS = "+sse2," + FullFS;
    else
      FullFS = "+sse2";

    // If no CPU was specified, enable 64bit feature to satisy later check.
    if (CPUName == "generic") {
      if (!FullFS.empty())
        FullFS = "+64bit," + FullFS;
      else
        FullFS = "+64bit";
    }
  }

  // LAHF/SAHF are always supported in non-64-bit mode.
  if (!In64BitMode) {
    if (!FullFS.empty())
      FullFS = "+sahf," + FullFS;
    else
      FullFS = "+sahf";
  }

  // Parse features string and set the CPU.
  ParseSubtargetFeatures(CPUName, FullFS);

  // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
  // 16-bytes and under that are reasonably fast. These features were
  // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
  // micro-architectures respectively.
  if (hasSSE42() || hasSSE4A())
    IsUAMem16Slow = false;

  // It's important to keep the MCSubtargetInfo feature bits in sync with
  // target data structure which is shared with MC code emitter, etc.
  if (In64BitMode)
    ToggleFeature(X86::Mode64Bit);
  else if (In32BitMode)
    ToggleFeature(X86::Mode32Bit);
  else if (In16BitMode)
    ToggleFeature(X86::Mode16Bit);
  else
    llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");

  LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
                    << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
                    << HasX86_64 << "\n");
  if (In64BitMode && !HasX86_64)
    report_fatal_error("64-bit code requested on a subtarget that doesn't "
                       "support it!");

  // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
  // 32 and 64 bit) and for all 64-bit targets.
  if (StackAlignOverride)
    stackAlignment = *StackAlignOverride;
  else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
           isTargetKFreeBSD() || In64BitMode)
    stackAlignment = Align(16);

  // Some CPUs have more overhead for gather. The specified overhead is relative
  // to the Load operation. "2" is the number provided by Intel architects. This
  // parameter is used for cost estimation of Gather Op and comparison with
  // other alternatives.
  // TODO: Remove the explicit hasAVX512()?, That would mean we would only
  // enable gather with a -march.
  if (hasAVX512() || (hasAVX2() && hasFastGather()))
    GatherOverhead = 2;
  if (hasAVX512())
    ScatterOverhead = 2;

  // Consume the vector width attribute or apply any target specific limit.
  if (PreferVectorWidthOverride)
    PreferVectorWidth = PreferVectorWidthOverride;
  else if (Prefer128Bit)
    PreferVectorWidth = 128;
  else if (Prefer256Bit)
    PreferVectorWidth = 256;
}

X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
                                                            StringRef FS) {
  initSubtargetFeatures(CPU, FS);
  return *this;
}

X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
                           const X86TargetMachine &TM,
                           MaybeAlign StackAlignOverride,
                           unsigned PreferVectorWidthOverride,
                           unsigned RequiredVectorWidth)
    : X86GenSubtargetInfo(TT, CPU, FS), PICStyle(PICStyles::None), TM(TM),
      TargetTriple(TT), StackAlignOverride(StackAlignOverride),
      PreferVectorWidthOverride(PreferVectorWidthOverride),
      RequiredVectorWidth(RequiredVectorWidth),
      In64BitMode(TargetTriple.getArch() == Triple::x86_64),
      In32BitMode(TargetTriple.getArch() == Triple::x86 &&
                  TargetTriple.getEnvironment() != Triple::CODE16),
      In16BitMode(TargetTriple.getArch() == Triple::x86 &&
                  TargetTriple.getEnvironment() == Triple::CODE16),
      InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
      FrameLowering(*this, getStackAlignment()) {
  // Determine the PICStyle based on the target selected.
  if (!isPositionIndependent())
    setPICStyle(PICStyles::None);
  else if (is64Bit())
    setPICStyle(PICStyles::RIPRel);
  else if (isTargetCOFF())
    setPICStyle(PICStyles::None);
  else if (isTargetDarwin())
    setPICStyle(PICStyles::StubPIC);
  else if (isTargetELF())
    setPICStyle(PICStyles::GOT);

  CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
  Legalizer.reset(new X86LegalizerInfo(*this, TM));

  auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
  RegBankInfo.reset(RBI);
  InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
}

const CallLowering *X86Subtarget::getCallLowering() const {
  return CallLoweringInfo.get();
}

InstructionSelector *X86Subtarget::getInstructionSelector() const {
  return InstSelector.get();
}

const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
  return Legalizer.get();
}

const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
  return RegBankInfo.get();
}

bool X86Subtarget::enableEarlyIfConversion() const {
  return hasCMov() && X86EarlyIfConv;
}

void X86Subtarget::getPostRAMutations(
    std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
  Mutations.push_back(createX86MacroFusionDAGMutation());
}