1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
| //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a Union-find algorithm to compute Minimum Spanning Tree
// for a given CFG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
#define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <utility>
#include <vector>
#define DEBUG_TYPE "cfgmst"
namespace llvm {
/// An union-find based Minimum Spanning Tree for CFG
///
/// Implements a Union-find algorithm to compute Minimum Spanning Tree
/// for a given CFG.
template <class Edge, class BBInfo> class CFGMST {
public:
Function &F;
// Store all the edges in CFG. It may contain some stale edges
// when Removed is set.
std::vector<std::unique_ptr<Edge>> AllEdges;
// This map records the auxiliary information for each BB.
DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
// Whehter the function has an exit block with no successors.
// (For function with an infinite loop, this block may be absent)
bool ExitBlockFound = false;
// Find the root group of the G and compress the path from G to the root.
BBInfo *findAndCompressGroup(BBInfo *G) {
if (G->Group != G)
G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
return static_cast<BBInfo *>(G->Group);
}
// Union BB1 and BB2 into the same group and return true.
// Returns false if BB1 and BB2 are already in the same group.
bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
if (BB1G == BB2G)
return false;
// Make the smaller rank tree a direct child or the root of high rank tree.
if (BB1G->Rank < BB2G->Rank)
BB1G->Group = BB2G;
else {
BB2G->Group = BB1G;
// If the ranks are the same, increment root of one tree by one.
if (BB1G->Rank == BB2G->Rank)
BB1G->Rank++;
}
return true;
}
// Give BB, return the auxiliary information.
BBInfo &getBBInfo(const BasicBlock *BB) const {
auto It = BBInfos.find(BB);
assert(It->second.get() != nullptr);
return *It->second.get();
}
// Give BB, return the auxiliary information if it's available.
BBInfo *findBBInfo(const BasicBlock *BB) const {
auto It = BBInfos.find(BB);
if (It == BBInfos.end())
return nullptr;
return It->second.get();
}
// Traverse the CFG using a stack. Find all the edges and assign the weight.
// Edges with large weight will be put into MST first so they are less likely
// to be instrumented.
void buildEdges() {
LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
const BasicBlock *Entry = &(F.getEntryBlock());
uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
*ExitOutgoing = nullptr, *ExitIncoming = nullptr;
uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
// Add a fake edge to the entry.
EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName()
<< " w = " << EntryWeight << "\n");
// Special handling for single BB functions.
if (succ_empty(Entry)) {
addEdge(Entry, nullptr, EntryWeight);
return;
}
static const uint32_t CriticalEdgeMultiplier = 1000;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
Instruction *TI = BB->getTerminator();
uint64_t BBWeight =
(BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
uint64_t Weight = 2;
if (int successors = TI->getNumSuccessors()) {
for (int i = 0; i != successors; ++i) {
BasicBlock *TargetBB = TI->getSuccessor(i);
bool Critical = isCriticalEdge(TI, i);
uint64_t scaleFactor = BBWeight;
if (Critical) {
if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
scaleFactor *= CriticalEdgeMultiplier;
else
scaleFactor = UINT64_MAX;
}
if (BPI != nullptr)
Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
auto *E = &addEdge(&*BB, TargetBB, Weight);
E->IsCritical = Critical;
LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to "
<< TargetBB->getName() << " w=" << Weight << "\n");
// Keep track of entry/exit edges:
if (&*BB == Entry) {
if (Weight > MaxEntryOutWeight) {
MaxEntryOutWeight = Weight;
EntryOutgoing = E;
}
}
auto *TargetTI = TargetBB->getTerminator();
if (TargetTI && !TargetTI->getNumSuccessors()) {
if (Weight > MaxExitInWeight) {
MaxExitInWeight = Weight;
ExitIncoming = E;
}
}
}
} else {
ExitBlockFound = true;
Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight);
if (BBWeight > MaxExitOutWeight) {
MaxExitOutWeight = BBWeight;
ExitOutgoing = ExitO;
}
LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to fake exit"
<< " w = " << BBWeight << "\n");
}
}
// Entry/exit edge adjustment heurisitic:
// prefer instrumenting entry edge over exit edge
// if possible. Those exit edges may never have a chance to be
// executed (for instance the program is an event handling loop)
// before the profile is asynchronously dumped.
//
// If EntryIncoming and ExitOutgoing has similar weight, make sure
// ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
// and ExitIncoming has similar weight, make sure ExitIncoming becomes
// the min-edge.
uint64_t EntryInWeight = EntryWeight;
if (EntryInWeight >= MaxExitOutWeight &&
EntryInWeight * 2 < MaxExitOutWeight * 3) {
EntryIncoming->Weight = MaxExitOutWeight;
ExitOutgoing->Weight = EntryInWeight + 1;
}
if (MaxEntryOutWeight >= MaxExitInWeight &&
MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
EntryOutgoing->Weight = MaxExitInWeight;
ExitIncoming->Weight = MaxEntryOutWeight + 1;
}
}
// Sort CFG edges based on its weight.
void sortEdgesByWeight() {
llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
const std::unique_ptr<Edge> &Edge2) {
return Edge1->Weight > Edge2->Weight;
});
}
// Traverse all the edges and compute the Minimum Weight Spanning Tree
// using union-find algorithm.
void computeMinimumSpanningTree() {
// First, put all the critical edge with landing-pad as the Dest to MST.
// This works around the insufficient support of critical edges split
// when destination BB is a landing pad.
for (auto &Ei : AllEdges) {
if (Ei->Removed)
continue;
if (Ei->IsCritical) {
if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
if (unionGroups(Ei->SrcBB, Ei->DestBB))
Ei->InMST = true;
}
}
}
for (auto &Ei : AllEdges) {
if (Ei->Removed)
continue;
// If we detect infinite loops, force
// instrumenting the entry edge:
if (!ExitBlockFound && Ei->SrcBB == nullptr)
continue;
if (unionGroups(Ei->SrcBB, Ei->DestBB))
Ei->InMST = true;
}
}
// Dump the Debug information about the instrumentation.
void dumpEdges(raw_ostream &OS, const Twine &Message) const {
if (!Message.str().empty())
OS << Message << "\n";
OS << " Number of Basic Blocks: " << BBInfos.size() << "\n";
for (auto &BI : BBInfos) {
const BasicBlock *BB = BI.first;
OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " "
<< BI.second->infoString() << "\n";
}
OS << " Number of Edges: " << AllEdges.size()
<< " (*: Instrument, C: CriticalEdge, -: Removed)\n";
uint32_t Count = 0;
for (auto &EI : AllEdges)
OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
<< getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
}
// Add an edge to AllEdges with weight W.
Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
uint32_t Index = BBInfos.size();
auto Iter = BBInfos.end();
bool Inserted;
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
if (Inserted) {
// Newly inserted, update the real info.
Iter->second = std::move(std::make_unique<BBInfo>(Index));
Index++;
}
std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
if (Inserted)
// Newly inserted, update the real info.
Iter->second = std::move(std::make_unique<BBInfo>(Index));
AllEdges.emplace_back(new Edge(Src, Dest, W));
return *AllEdges.back();
}
BranchProbabilityInfo *BPI;
BlockFrequencyInfo *BFI;
public:
CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
BlockFrequencyInfo *BFI_ = nullptr)
: F(Func), BPI(BPI_), BFI(BFI_) {
buildEdges();
sortEdgesByWeight();
computeMinimumSpanningTree();
}
};
} // end namespace llvm
#undef DEBUG_TYPE // "cfgmst"
#endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
|