reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a Union-find algorithm to compute Minimum Spanning Tree
// for a given CFG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
#define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <utility>
#include <vector>

#define DEBUG_TYPE "cfgmst"

namespace llvm {

/// An union-find based Minimum Spanning Tree for CFG
///
/// Implements a Union-find algorithm to compute Minimum Spanning Tree
/// for a given CFG.
template <class Edge, class BBInfo> class CFGMST {
public:
  Function &F;

  // Store all the edges in CFG. It may contain some stale edges
  // when Removed is set.
  std::vector<std::unique_ptr<Edge>> AllEdges;

  // This map records the auxiliary information for each BB.
  DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;

  // Whehter the function has an exit block with no successors.
  // (For function with an infinite loop, this block may be absent)
  bool ExitBlockFound = false;

  // Find the root group of the G and compress the path from G to the root.
  BBInfo *findAndCompressGroup(BBInfo *G) {
    if (G->Group != G)
      G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
    return static_cast<BBInfo *>(G->Group);
  }

  // Union BB1 and BB2 into the same group and return true.
  // Returns false if BB1 and BB2 are already in the same group.
  bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
    BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
    BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));

    if (BB1G == BB2G)
      return false;

    // Make the smaller rank tree a direct child or the root of high rank tree.
    if (BB1G->Rank < BB2G->Rank)
      BB1G->Group = BB2G;
    else {
      BB2G->Group = BB1G;
      // If the ranks are the same, increment root of one tree by one.
      if (BB1G->Rank == BB2G->Rank)
        BB1G->Rank++;
    }
    return true;
  }

  // Give BB, return the auxiliary information.
  BBInfo &getBBInfo(const BasicBlock *BB) const {
    auto It = BBInfos.find(BB);
    assert(It->second.get() != nullptr);
    return *It->second.get();
  }

  // Give BB, return the auxiliary information if it's available.
  BBInfo *findBBInfo(const BasicBlock *BB) const {
    auto It = BBInfos.find(BB);
    if (It == BBInfos.end())
      return nullptr;
    return It->second.get();
  }

  // Traverse the CFG using a stack. Find all the edges and assign the weight.
  // Edges with large weight will be put into MST first so they are less likely
  // to be instrumented.
  void buildEdges() {
    LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");

    const BasicBlock *Entry = &(F.getEntryBlock());
    uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
    Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
        *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
    uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;

    // Add a fake edge to the entry.
    EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
    LLVM_DEBUG(dbgs() << "  Edge: from fake node to " << Entry->getName()
                      << " w = " << EntryWeight << "\n");

    // Special handling for single BB functions.
    if (succ_empty(Entry)) {
      addEdge(Entry, nullptr, EntryWeight);
      return;
    }

    static const uint32_t CriticalEdgeMultiplier = 1000;

    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
      Instruction *TI = BB->getTerminator();
      uint64_t BBWeight =
          (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2);
      uint64_t Weight = 2;
      if (int successors = TI->getNumSuccessors()) {
        for (int i = 0; i != successors; ++i) {
          BasicBlock *TargetBB = TI->getSuccessor(i);
          bool Critical = isCriticalEdge(TI, i);
          uint64_t scaleFactor = BBWeight;
          if (Critical) {
            if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
              scaleFactor *= CriticalEdgeMultiplier;
            else
              scaleFactor = UINT64_MAX;
          }
          if (BPI != nullptr)
            Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor);
          auto *E = &addEdge(&*BB, TargetBB, Weight);
          E->IsCritical = Critical;
          LLVM_DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to "
                            << TargetBB->getName() << "  w=" << Weight << "\n");

          // Keep track of entry/exit edges:
          if (&*BB == Entry) {
            if (Weight > MaxEntryOutWeight) {
              MaxEntryOutWeight = Weight;
              EntryOutgoing = E;
            }
          }

          auto *TargetTI = TargetBB->getTerminator();
          if (TargetTI && !TargetTI->getNumSuccessors()) {
            if (Weight > MaxExitInWeight) {
              MaxExitInWeight = Weight;
              ExitIncoming = E;
            }
          }
        }
      } else {
        ExitBlockFound = true;
        Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight);
        if (BBWeight > MaxExitOutWeight) {
          MaxExitOutWeight = BBWeight;
          ExitOutgoing = ExitO;
        }
        LLVM_DEBUG(dbgs() << "  Edge: from " << BB->getName() << " to fake exit"
                          << " w = " << BBWeight << "\n");
      }
    }

    // Entry/exit edge adjustment heurisitic:
    // prefer instrumenting entry edge over exit edge
    // if possible. Those exit edges may never have a chance to be
    // executed (for instance the program is an event handling loop)
    // before the profile is asynchronously dumped.
    //
    // If EntryIncoming and ExitOutgoing has similar weight, make sure
    // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
    // and ExitIncoming has similar weight, make sure ExitIncoming becomes
    // the min-edge.
    uint64_t EntryInWeight = EntryWeight;

    if (EntryInWeight >= MaxExitOutWeight &&
        EntryInWeight * 2 < MaxExitOutWeight * 3) {
      EntryIncoming->Weight = MaxExitOutWeight;
      ExitOutgoing->Weight = EntryInWeight + 1;
    }

    if (MaxEntryOutWeight >= MaxExitInWeight &&
        MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
      EntryOutgoing->Weight = MaxExitInWeight;
      ExitIncoming->Weight = MaxEntryOutWeight + 1;
    }
  }

  // Sort CFG edges based on its weight.
  void sortEdgesByWeight() {
    llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
                                   const std::unique_ptr<Edge> &Edge2) {
      return Edge1->Weight > Edge2->Weight;
    });
  }

  // Traverse all the edges and compute the Minimum Weight Spanning Tree
  // using union-find algorithm.
  void computeMinimumSpanningTree() {
    // First, put all the critical edge with landing-pad as the Dest to MST.
    // This works around the insufficient support of critical edges split
    // when destination BB is a landing pad.
    for (auto &Ei : AllEdges) {
      if (Ei->Removed)
        continue;
      if (Ei->IsCritical) {
        if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
          if (unionGroups(Ei->SrcBB, Ei->DestBB))
            Ei->InMST = true;
        }
      }
    }

    for (auto &Ei : AllEdges) {
      if (Ei->Removed)
        continue;
      // If we detect infinite loops, force
      // instrumenting the entry edge:
      if (!ExitBlockFound && Ei->SrcBB == nullptr)
        continue;
      if (unionGroups(Ei->SrcBB, Ei->DestBB))
        Ei->InMST = true;
    }
  }

  // Dump the Debug information about the instrumentation.
  void dumpEdges(raw_ostream &OS, const Twine &Message) const {
    if (!Message.str().empty())
      OS << Message << "\n";
    OS << "  Number of Basic Blocks: " << BBInfos.size() << "\n";
    for (auto &BI : BBInfos) {
      const BasicBlock *BB = BI.first;
      OS << "  BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << "  "
         << BI.second->infoString() << "\n";
    }

    OS << "  Number of Edges: " << AllEdges.size()
       << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
    uint32_t Count = 0;
    for (auto &EI : AllEdges)
      OS << "  Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
         << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
  }

  // Add an edge to AllEdges with weight W.
  Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
    uint32_t Index = BBInfos.size();
    auto Iter = BBInfos.end();
    bool Inserted;
    std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
    if (Inserted) {
      // Newly inserted, update the real info.
      Iter->second = std::move(std::make_unique<BBInfo>(Index));
      Index++;
    }
    std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
    if (Inserted)
      // Newly inserted, update the real info.
      Iter->second = std::move(std::make_unique<BBInfo>(Index));
    AllEdges.emplace_back(new Edge(Src, Dest, W));
    return *AllEdges.back();
  }

  BranchProbabilityInfo *BPI;
  BlockFrequencyInfo *BFI;

public:
  CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr,
         BlockFrequencyInfo *BFI_ = nullptr)
      : F(Func), BPI(BPI_), BFI(BFI_) {
    buildEdges();
    sortEdgesByWeight();
    computeMinimumSpanningTree();
  }
};

} // end namespace llvm

#undef DEBUG_TYPE // "cfgmst"

#endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H