reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sparse conditional constant propagation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   * Proves conditional branches to be unconditional
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include <cassert>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "sccp"

STATISTIC(NumInstRemoved, "Number of instructions removed");
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");

STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");

namespace {

/// LatticeVal class - This class represents the different lattice values that
/// an LLVM value may occupy.  It is a simple class with value semantics.
///
class LatticeVal {
  enum LatticeValueTy {
    /// unknown - This LLVM Value has no known value yet.
    unknown,

    /// constant - This LLVM Value has a specific constant value.
    constant,

    /// forcedconstant - This LLVM Value was thought to be undef until
    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
    /// with another (different) constant, it goes to overdefined, instead of
    /// asserting.
    forcedconstant,

    /// overdefined - This instruction is not known to be constant, and we know
    /// it has a value.
    overdefined
  };

  /// Val: This stores the current lattice value along with the Constant* for
  /// the constant if this is a 'constant' or 'forcedconstant' value.
  PointerIntPair<Constant *, 2, LatticeValueTy> Val;

  LatticeValueTy getLatticeValue() const {
    return Val.getInt();
  }

public:
  LatticeVal() : Val(nullptr, unknown) {}

  bool isUnknown() const { return getLatticeValue() == unknown; }

  bool isConstant() const {
    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
  }

  bool isOverdefined() const { return getLatticeValue() == overdefined; }

  Constant *getConstant() const {
    assert(isConstant() && "Cannot get the constant of a non-constant!");
    return Val.getPointer();
  }

  /// markOverdefined - Return true if this is a change in status.
  bool markOverdefined() {
    if (isOverdefined())
      return false;

    Val.setInt(overdefined);
    return true;
  }

  /// markConstant - Return true if this is a change in status.
  bool markConstant(Constant *V) {
    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
      assert(getConstant() == V && "Marking constant with different value");
      return false;
    }

    if (isUnknown()) {
      Val.setInt(constant);
      assert(V && "Marking constant with NULL");
      Val.setPointer(V);
    } else {
      assert(getLatticeValue() == forcedconstant &&
             "Cannot move from overdefined to constant!");
      // Stay at forcedconstant if the constant is the same.
      if (V == getConstant()) return false;

      // Otherwise, we go to overdefined.  Assumptions made based on the
      // forced value are possibly wrong.  Assuming this is another constant
      // could expose a contradiction.
      Val.setInt(overdefined);
    }
    return true;
  }

  /// getConstantInt - If this is a constant with a ConstantInt value, return it
  /// otherwise return null.
  ConstantInt *getConstantInt() const {
    if (isConstant())
      return dyn_cast<ConstantInt>(getConstant());
    return nullptr;
  }

  /// getBlockAddress - If this is a constant with a BlockAddress value, return
  /// it, otherwise return null.
  BlockAddress *getBlockAddress() const {
    if (isConstant())
      return dyn_cast<BlockAddress>(getConstant());
    return nullptr;
  }

  void markForcedConstant(Constant *V) {
    assert(isUnknown() && "Can't force a defined value!");
    Val.setInt(forcedconstant);
    Val.setPointer(V);
  }

  ValueLatticeElement toValueLattice() const {
    if (isOverdefined())
      return ValueLatticeElement::getOverdefined();
    if (isConstant())
      return ValueLatticeElement::get(getConstant());
    return ValueLatticeElement();
  }
};

//===----------------------------------------------------------------------===//
//
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
/// Constant Propagation.
///
class SCCPSolver : public InstVisitor<SCCPSolver> {
  const DataLayout &DL;
  std::function<const TargetLibraryInfo &(Function &)> GetTLI;
  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
  DenseMap<Value *, LatticeVal> ValueState;  // The state each value is in.
  // The state each parameter is in.
  DenseMap<Value *, ValueLatticeElement> ParamState;

  /// StructValueState - This maintains ValueState for values that have
  /// StructType, for example for formal arguments, calls, insertelement, etc.
  DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;

  /// GlobalValue - If we are tracking any values for the contents of a global
  /// variable, we keep a mapping from the constant accessor to the element of
  /// the global, to the currently known value.  If the value becomes
  /// overdefined, it's entry is simply removed from this map.
  DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;

  /// TrackedRetVals - If we are tracking arguments into and the return
  /// value out of a function, it will have an entry in this map, indicating
  /// what the known return value for the function is.
  MapVector<Function *, LatticeVal> TrackedRetVals;

  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
  /// that return multiple values.
  MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;

  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
  /// represented here for efficient lookup.
  SmallPtrSet<Function *, 16> MRVFunctionsTracked;

  /// MustTailFunctions - Each function here is a callee of non-removable
  /// musttail call site.
  SmallPtrSet<Function *, 16> MustTailCallees;

  /// TrackingIncomingArguments - This is the set of functions for whose
  /// arguments we make optimistic assumptions about and try to prove as
  /// constants.
  SmallPtrSet<Function *, 16> TrackingIncomingArguments;

  /// The reason for two worklists is that overdefined is the lowest state
  /// on the lattice, and moving things to overdefined as fast as possible
  /// makes SCCP converge much faster.
  ///
  /// By having a separate worklist, we accomplish this because everything
  /// possibly overdefined will become overdefined at the soonest possible
  /// point.
  SmallVector<Value *, 64> OverdefinedInstWorkList;
  SmallVector<Value *, 64> InstWorkList;

  // The BasicBlock work list
  SmallVector<BasicBlock *, 64>  BBWorkList;

  /// KnownFeasibleEdges - Entries in this set are edges which have already had
  /// PHI nodes retriggered.
  using Edge = std::pair<BasicBlock *, BasicBlock *>;
  DenseSet<Edge> KnownFeasibleEdges;

  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;

public:
  void addAnalysis(Function &F, AnalysisResultsForFn A) {
    AnalysisResults.insert({&F, std::move(A)});
  }

  const PredicateBase *getPredicateInfoFor(Instruction *I) {
    auto A = AnalysisResults.find(I->getParent()->getParent());
    if (A == AnalysisResults.end())
      return nullptr;
    return A->second.PredInfo->getPredicateInfoFor(I);
  }

  DomTreeUpdater getDTU(Function &F) {
    auto A = AnalysisResults.find(&F);
    assert(A != AnalysisResults.end() && "Need analysis results for function.");
    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
  }

  SCCPSolver(const DataLayout &DL,
             std::function<const TargetLibraryInfo &(Function &)> GetTLI)
      : DL(DL), GetTLI(std::move(GetTLI)) {}

  /// MarkBlockExecutable - This method can be used by clients to mark all of
  /// the blocks that are known to be intrinsically live in the processed unit.
  ///
  /// This returns true if the block was not considered live before.
  bool MarkBlockExecutable(BasicBlock *BB) {
    if (!BBExecutable.insert(BB).second)
      return false;
    LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
    BBWorkList.push_back(BB);  // Add the block to the work list!
    return true;
  }

  /// TrackValueOfGlobalVariable - Clients can use this method to
  /// inform the SCCPSolver that it should track loads and stores to the
  /// specified global variable if it can.  This is only legal to call if
  /// performing Interprocedural SCCP.
  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    // We only track the contents of scalar globals.
    if (GV->getValueType()->isSingleValueType()) {
      LatticeVal &IV = TrackedGlobals[GV];
      if (!isa<UndefValue>(GV->getInitializer()))
        IV.markConstant(GV->getInitializer());
    }
  }

  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
  /// and out of the specified function (which cannot have its address taken),
  /// this method must be called.
  void AddTrackedFunction(Function *F) {
    // Add an entry, F -> undef.
    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
      MRVFunctionsTracked.insert(F);
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
                                                     LatticeVal()));
    } else
      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
  }

  /// AddMustTailCallee - If the SCCP solver finds that this function is called
  /// from non-removable musttail call site.
  void AddMustTailCallee(Function *F) {
    MustTailCallees.insert(F);
  }

  /// Returns true if the given function is called from non-removable musttail
  /// call site.
  bool isMustTailCallee(Function *F) {
    return MustTailCallees.count(F);
  }

  void AddArgumentTrackedFunction(Function *F) {
    TrackingIncomingArguments.insert(F);
  }

  /// Returns true if the given function is in the solver's set of
  /// argument-tracked functions.
  bool isArgumentTrackedFunction(Function *F) {
    return TrackingIncomingArguments.count(F);
  }

  /// Solve - Solve for constants and executable blocks.
  void Solve();

  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
  /// that branches on undef values cannot reach any of their successors.
  /// However, this is not a safe assumption.  After we solve dataflow, this
  /// method should be use to handle this.  If this returns true, the solver
  /// should be rerun.
  bool ResolvedUndefsIn(Function &F);

  bool isBlockExecutable(BasicBlock *BB) const {
    return BBExecutable.count(BB);
  }

  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
  // block to the 'To' basic block is currently feasible.
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);

  std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
    std::vector<LatticeVal> StructValues;
    auto *STy = dyn_cast<StructType>(V->getType());
    assert(STy && "getStructLatticeValueFor() can be called only on structs");
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      auto I = StructValueState.find(std::make_pair(V, i));
      assert(I != StructValueState.end() && "Value not in valuemap!");
      StructValues.push_back(I->second);
    }
    return StructValues;
  }

  const LatticeVal &getLatticeValueFor(Value *V) const {
    assert(!V->getType()->isStructTy() &&
           "Should use getStructLatticeValueFor");
    DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
    assert(I != ValueState.end() &&
           "V not found in ValueState nor Paramstate map!");
    return I->second;
  }

  /// getTrackedRetVals - Get the inferred return value map.
  const MapVector<Function*, LatticeVal> &getTrackedRetVals() {
    return TrackedRetVals;
  }

  /// getTrackedGlobals - Get and return the set of inferred initializers for
  /// global variables.
  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    return TrackedGlobals;
  }

  /// getMRVFunctionsTracked - Get the set of functions which return multiple
  /// values tracked by the pass.
  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
    return MRVFunctionsTracked;
  }

  /// getMustTailCallees - Get the set of functions which are called
  /// from non-removable musttail call sites.
  const SmallPtrSet<Function *, 16> getMustTailCallees() {
    return MustTailCallees;
  }

  /// markOverdefined - Mark the specified value overdefined.  This
  /// works with both scalars and structs.
  void markOverdefined(Value *V) {
    if (auto *STy = dyn_cast<StructType>(V->getType()))
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        markOverdefined(getStructValueState(V, i), V);
    else
      markOverdefined(ValueState[V], V);
  }

  // isStructLatticeConstant - Return true if all the lattice values
  // corresponding to elements of the structure are not overdefined,
  // false otherwise.
  bool isStructLatticeConstant(Function *F, StructType *STy) {
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
      assert(It != TrackedMultipleRetVals.end());
      LatticeVal LV = It->second;
      if (LV.isOverdefined())
        return false;
    }
    return true;
  }

private:
  // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
  void pushToWorkList(LatticeVal &IV, Value *V) {
    if (IV.isOverdefined())
      return OverdefinedInstWorkList.push_back(V);
    InstWorkList.push_back(V);
  }

  // markConstant - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that
  // the users of the instruction are updated later.
  bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
    if (!IV.markConstant(C)) return false;
    LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    pushToWorkList(IV, V);
    return true;
  }

  bool markConstant(Value *V, Constant *C) {
    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
    return markConstant(ValueState[V], V, C);
  }

  void markForcedConstant(Value *V, Constant *C) {
    assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
    LatticeVal &IV = ValueState[V];
    IV.markForcedConstant(C);
    LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    pushToWorkList(IV, V);
  }

  // markOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the overdefined instruction
  // work list so that the users of the instruction are updated later.
  bool markOverdefined(LatticeVal &IV, Value *V) {
    if (!IV.markOverdefined()) return false;

    LLVM_DEBUG(dbgs() << "markOverdefined: ";
               if (auto *F = dyn_cast<Function>(V)) dbgs()
               << "Function '" << F->getName() << "'\n";
               else dbgs() << *V << '\n');
    // Only instructions go on the work list
    pushToWorkList(IV, V);
    return true;
  }

  bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    if (IV.isOverdefined() || MergeWithV.isUnknown())
      return false; // Noop.
    if (MergeWithV.isOverdefined())
      return markOverdefined(IV, V);
    if (IV.isUnknown())
      return markConstant(IV, V, MergeWithV.getConstant());
    if (IV.getConstant() != MergeWithV.getConstant())
      return markOverdefined(IV, V);
    return false;
  }

  bool mergeInValue(Value *V, LatticeVal MergeWithV) {
    assert(!V->getType()->isStructTy() &&
           "non-structs should use markConstant");
    return mergeInValue(ValueState[V], V, MergeWithV);
  }

  /// getValueState - Return the LatticeVal object that corresponds to the
  /// value.  This function handles the case when the value hasn't been seen yet
  /// by properly seeding constants etc.
  LatticeVal &getValueState(Value *V) {
    assert(!V->getType()->isStructTy() && "Should use getStructValueState");

    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
      ValueState.insert(std::make_pair(V, LatticeVal()));
    LatticeVal &LV = I.first->second;

    if (!I.second)
      return LV;  // Common case, already in the map.

    if (auto *C = dyn_cast<Constant>(V)) {
      // Undef values remain unknown.
      if (!isa<UndefValue>(V))
        LV.markConstant(C);          // Constants are constant
    }

    // All others are underdefined by default.
    return LV;
  }

  ValueLatticeElement &getParamState(Value *V) {
    assert(!V->getType()->isStructTy() && "Should use getStructValueState");

    std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
        PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
    ValueLatticeElement &LV = PI.first->second;
    if (PI.second)
      LV = getValueState(V).toValueLattice();

    return LV;
  }

  /// getStructValueState - Return the LatticeVal object that corresponds to the
  /// value/field pair.  This function handles the case when the value hasn't
  /// been seen yet by properly seeding constants etc.
  LatticeVal &getStructValueState(Value *V, unsigned i) {
    assert(V->getType()->isStructTy() && "Should use getValueState");
    assert(i < cast<StructType>(V->getType())->getNumElements() &&
           "Invalid element #");

    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
              bool> I = StructValueState.insert(
                        std::make_pair(std::make_pair(V, i), LatticeVal()));
    LatticeVal &LV = I.first->second;

    if (!I.second)
      return LV;  // Common case, already in the map.

    if (auto *C = dyn_cast<Constant>(V)) {
      Constant *Elt = C->getAggregateElement(i);

      if (!Elt)
        LV.markOverdefined();      // Unknown sort of constant.
      else if (isa<UndefValue>(Elt))
        ; // Undef values remain unknown.
      else
        LV.markConstant(Elt);      // Constants are constant.
    }

    // All others are underdefined by default.
    return LV;
  }

  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  /// work list if it is not already executable.
  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
      return false;  // This edge is already known to be executable!

    if (!MarkBlockExecutable(Dest)) {
      // If the destination is already executable, we just made an *edge*
      // feasible that wasn't before.  Revisit the PHI nodes in the block
      // because they have potentially new operands.
      LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
                        << " -> " << Dest->getName() << '\n');

      for (PHINode &PN : Dest->phis())
        visitPHINode(PN);
    }
    return true;
  }

  // getFeasibleSuccessors - Return a vector of booleans to indicate which
  // successors are reachable from a given terminator instruction.
  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);

  // OperandChangedState - This method is invoked on all of the users of an
  // instruction that was just changed state somehow.  Based on this
  // information, we need to update the specified user of this instruction.
  void OperandChangedState(Instruction *I) {
    if (BBExecutable.count(I->getParent()))   // Inst is executable?
      visit(*I);
  }

  // Add U as additional user of V.
  void addAdditionalUser(Value *V, User *U) {
    auto Iter = AdditionalUsers.insert({V, {}});
    Iter.first->second.insert(U);
  }

  // Mark I's users as changed, including AdditionalUsers.
  void markUsersAsChanged(Value *I) {
    for (User *U : I->users())
      if (auto *UI = dyn_cast<Instruction>(U))
        OperandChangedState(UI);

    auto Iter = AdditionalUsers.find(I);
    if (Iter != AdditionalUsers.end()) {
      for (User *U : Iter->second)
        if (auto *UI = dyn_cast<Instruction>(U))
          OperandChangedState(UI);
    }
  }

private:
  friend class InstVisitor<SCCPSolver>;

  // visit implementations - Something changed in this instruction.  Either an
  // operand made a transition, or the instruction is newly executable.  Change
  // the value type of I to reflect these changes if appropriate.
  void visitPHINode(PHINode &I);

  // Terminators

  void visitReturnInst(ReturnInst &I);
  void visitTerminator(Instruction &TI);

  void visitCastInst(CastInst &I);
  void visitSelectInst(SelectInst &I);
  void visitUnaryOperator(Instruction &I);
  void visitBinaryOperator(Instruction &I);
  void visitCmpInst(CmpInst &I);
  void visitExtractValueInst(ExtractValueInst &EVI);
  void visitInsertValueInst(InsertValueInst &IVI);

  void visitCatchSwitchInst(CatchSwitchInst &CPI) {
    markOverdefined(&CPI);
    visitTerminator(CPI);
  }

  // Instructions that cannot be folded away.

  void visitStoreInst     (StoreInst &I);
  void visitLoadInst      (LoadInst &I);
  void visitGetElementPtrInst(GetElementPtrInst &I);

  void visitCallInst      (CallInst &I) {
    visitCallSite(&I);
  }

  void visitInvokeInst    (InvokeInst &II) {
    visitCallSite(&II);
    visitTerminator(II);
  }

  void visitCallBrInst    (CallBrInst &CBI) {
    visitCallSite(&CBI);
    visitTerminator(CBI);
  }

  void visitCallSite      (CallSite CS);
  void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
  void visitFenceInst     (FenceInst &I) { /*returns void*/ }

  void visitInstruction(Instruction &I) {
    // All the instructions we don't do any special handling for just
    // go to overdefined.
    LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
    markOverdefined(&I);
  }
};

} // end anonymous namespace

// getFeasibleSuccessors - Return a vector of booleans to indicate which
// successors are reachable from a given terminator instruction.
void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
                                       SmallVectorImpl<bool> &Succs) {
  Succs.resize(TI.getNumSuccessors());
  if (auto *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
      return;
    }

    LatticeVal BCValue = getValueState(BI->getCondition());
    ConstantInt *CI = BCValue.getConstantInt();
    if (!CI) {
      // Overdefined condition variables, and branches on unfoldable constant
      // conditions, mean the branch could go either way.
      if (!BCValue.isUnknown())
        Succs[0] = Succs[1] = true;
      return;
    }

    // Constant condition variables mean the branch can only go a single way.
    Succs[CI->isZero()] = true;
    return;
  }

  // Unwinding instructions successors are always executable.
  if (TI.isExceptionalTerminator()) {
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
    if (!SI->getNumCases()) {
      Succs[0] = true;
      return;
    }
    LatticeVal SCValue = getValueState(SI->getCondition());
    ConstantInt *CI = SCValue.getConstantInt();

    if (!CI) {   // Overdefined or unknown condition?
      // All destinations are executable!
      if (!SCValue.isUnknown())
        Succs.assign(TI.getNumSuccessors(), true);
      return;
    }

    Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
    return;
  }

  // In case of indirect branch and its address is a blockaddress, we mark
  // the target as executable.
  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
    // Casts are folded by visitCastInst.
    LatticeVal IBRValue = getValueState(IBR->getAddress());
    BlockAddress *Addr = IBRValue.getBlockAddress();
    if (!Addr) {   // Overdefined or unknown condition?
      // All destinations are executable!
      if (!IBRValue.isUnknown())
        Succs.assign(TI.getNumSuccessors(), true);
      return;
    }

    BasicBlock* T = Addr->getBasicBlock();
    assert(Addr->getFunction() == T->getParent() &&
           "Block address of a different function ?");
    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
      // This is the target.
      if (IBR->getDestination(i) == T) {
        Succs[i] = true;
        return;
      }
    }

    // If we didn't find our destination in the IBR successor list, then we
    // have undefined behavior. Its ok to assume no successor is executable.
    return;
  }

  // In case of callbr, we pessimistically assume that all successors are
  // feasible.
  if (isa<CallBrInst>(&TI)) {
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
}

// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
// block to the 'To' basic block is currently feasible.
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
  // Check if we've called markEdgeExecutable on the edge yet. (We could
  // be more aggressive and try to consider edges which haven't been marked
  // yet, but there isn't any need.)
  return KnownFeasibleEdges.count(Edge(From, To));
}

// visit Implementations - Something changed in this instruction, either an
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
void SCCPSolver::visitPHINode(PHINode &PN) {
  // If this PN returns a struct, just mark the result overdefined.
  // TODO: We could do a lot better than this if code actually uses this.
  if (PN.getType()->isStructTy())
    return (void)markOverdefined(&PN);

  if (getValueState(&PN).isOverdefined())
    return;  // Quick exit

  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
  // and slow us down a lot.  Just mark them overdefined.
  if (PN.getNumIncomingValues() > 64)
    return (void)markOverdefined(&PN);

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  If they are all
  // constant, and they agree with each other, the PHI becomes the identical
  // constant.  If they are constant and don't agree, the PHI is overdefined.
  // If there are no executable operands, the PHI remains unknown.
  Constant *OperandVal = nullptr;
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    LatticeVal IV = getValueState(PN.getIncomingValue(i));
    if (IV.isUnknown()) continue;  // Doesn't influence PHI node.

    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
      continue;

    if (IV.isOverdefined())    // PHI node becomes overdefined!
      return (void)markOverdefined(&PN);

    if (!OperandVal) {   // Grab the first value.
      OperandVal = IV.getConstant();
      continue;
    }

    // There is already a reachable operand.  If we conflict with it,
    // then the PHI node becomes overdefined.  If we agree with it, we
    // can continue on.

    // Check to see if there are two different constants merging, if so, the PHI
    // node is overdefined.
    if (IV.getConstant() != OperandVal)
      return (void)markOverdefined(&PN);
  }

  // If we exited the loop, this means that the PHI node only has constant
  // arguments that agree with each other(and OperandVal is the constant) or
  // OperandVal is null because there are no defined incoming arguments.  If
  // this is the case, the PHI remains unknown.
  if (OperandVal)
    markConstant(&PN, OperandVal);      // Acquire operand value
}

void SCCPSolver::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() == 0) return;  // ret void

  Function *F = I.getParent()->getParent();
  Value *ResultOp = I.getOperand(0);

  // If we are tracking the return value of this function, merge it in.
  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    MapVector<Function*, LatticeVal>::iterator TFRVI =
      TrackedRetVals.find(F);
    if (TFRVI != TrackedRetVals.end()) {
      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
      return;
    }
  }

  // Handle functions that return multiple values.
  if (!TrackedMultipleRetVals.empty()) {
    if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
      if (MRVFunctionsTracked.count(F))
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
                       getStructValueState(ResultOp, i));
  }
}

void SCCPSolver::visitTerminator(Instruction &TI) {
  SmallVector<bool, 16> SuccFeasible;
  getFeasibleSuccessors(TI, SuccFeasible);

  BasicBlock *BB = TI.getParent();

  // Mark all feasible successors executable.
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i])
      markEdgeExecutable(BB, TI.getSuccessor(i));
}

void SCCPSolver::visitCastInst(CastInst &I) {
  LatticeVal OpSt = getValueState(I.getOperand(0));
  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    markOverdefined(&I);
  else if (OpSt.isConstant()) {
    // Fold the constant as we build.
    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
                                          I.getType(), DL);
    if (isa<UndefValue>(C))
      return;
    // Propagate constant value
    markConstant(&I, C);
  }
}

void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
  // If this returns a struct, mark all elements over defined, we don't track
  // structs in structs.
  if (EVI.getType()->isStructTy())
    return (void)markOverdefined(&EVI);

  // If this is extracting from more than one level of struct, we don't know.
  if (EVI.getNumIndices() != 1)
    return (void)markOverdefined(&EVI);

  Value *AggVal = EVI.getAggregateOperand();
  if (AggVal->getType()->isStructTy()) {
    unsigned i = *EVI.idx_begin();
    LatticeVal EltVal = getStructValueState(AggVal, i);
    mergeInValue(getValueState(&EVI), &EVI, EltVal);
  } else {
    // Otherwise, must be extracting from an array.
    return (void)markOverdefined(&EVI);
  }
}

void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
  auto *STy = dyn_cast<StructType>(IVI.getType());
  if (!STy)
    return (void)markOverdefined(&IVI);

  // If this has more than one index, we can't handle it, drive all results to
  // undef.
  if (IVI.getNumIndices() != 1)
    return (void)markOverdefined(&IVI);

  Value *Aggr = IVI.getAggregateOperand();
  unsigned Idx = *IVI.idx_begin();

  // Compute the result based on what we're inserting.
  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    // This passes through all values that aren't the inserted element.
    if (i != Idx) {
      LatticeVal EltVal = getStructValueState(Aggr, i);
      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
      continue;
    }

    Value *Val = IVI.getInsertedValueOperand();
    if (Val->getType()->isStructTy())
      // We don't track structs in structs.
      markOverdefined(getStructValueState(&IVI, i), &IVI);
    else {
      LatticeVal InVal = getValueState(Val);
      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    }
  }
}

void SCCPSolver::visitSelectInst(SelectInst &I) {
  // If this select returns a struct, just mark the result overdefined.
  // TODO: We could do a lot better than this if code actually uses this.
  if (I.getType()->isStructTy())
    return (void)markOverdefined(&I);

  LatticeVal CondValue = getValueState(I.getCondition());
  if (CondValue.isUnknown())
    return;

  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    mergeInValue(&I, getValueState(OpVal));
    return;
  }

  // Otherwise, the condition is overdefined or a constant we can't evaluate.
  // See if we can produce something better than overdefined based on the T/F
  // value.
  LatticeVal TVal = getValueState(I.getTrueValue());
  LatticeVal FVal = getValueState(I.getFalseValue());

  // select ?, C, C -> C.
  if (TVal.isConstant() && FVal.isConstant() &&
      TVal.getConstant() == FVal.getConstant())
    return (void)markConstant(&I, FVal.getConstant());

  if (TVal.isUnknown())   // select ?, undef, X -> X.
    return (void)mergeInValue(&I, FVal);
  if (FVal.isUnknown())   // select ?, X, undef -> X.
    return (void)mergeInValue(&I, TVal);
  markOverdefined(&I);
}

// Handle Unary Operators.
void SCCPSolver::visitUnaryOperator(Instruction &I) {
  LatticeVal V0State = getValueState(I.getOperand(0));

  LatticeVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  if (V0State.isConstant()) {
    Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant());

    // op Y -> undef.
    if (isa<UndefValue>(C))
      return;
    return (void)markConstant(IV, &I, C);
  }

  // If something is undef, wait for it to resolve.
  if (!V0State.isOverdefined())
    return;

  markOverdefined(&I);
}

// Handle Binary Operators.
void SCCPSolver::visitBinaryOperator(Instruction &I) {
  LatticeVal V1State = getValueState(I.getOperand(0));
  LatticeVal V2State = getValueState(I.getOperand(1));

  LatticeVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  if (V1State.isConstant() && V2State.isConstant()) {
    Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
                                    V2State.getConstant());
    // X op Y -> undef.
    if (isa<UndefValue>(C))
      return;
    return (void)markConstant(IV, &I, C);
  }

  // If something is undef, wait for it to resolve.
  if (!V1State.isOverdefined() && !V2State.isOverdefined())
    return;

  // Otherwise, one of our operands is overdefined.  Try to produce something
  // better than overdefined with some tricks.
  // If this is 0 / Y, it doesn't matter that the second operand is
  // overdefined, and we can replace it with zero.
  if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
    if (V1State.isConstant() && V1State.getConstant()->isNullValue())
      return (void)markConstant(IV, &I, V1State.getConstant());

  // If this is:
  // -> AND/MUL with 0
  // -> OR with -1
  // it doesn't matter that the other operand is overdefined.
  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
      I.getOpcode() == Instruction::Or) {
    LatticeVal *NonOverdefVal = nullptr;
    if (!V1State.isOverdefined())
      NonOverdefVal = &V1State;
    else if (!V2State.isOverdefined())
      NonOverdefVal = &V2State;

    if (NonOverdefVal) {
      if (NonOverdefVal->isUnknown())
        return;

      if (I.getOpcode() == Instruction::And ||
          I.getOpcode() == Instruction::Mul) {
        // X and 0 = 0
        // X * 0 = 0
        if (NonOverdefVal->getConstant()->isNullValue())
          return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
      } else {
        // X or -1 = -1
        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
          if (CI->isMinusOne())
            return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
      }
    }
  }

  markOverdefined(&I);
}

// Handle ICmpInst instruction.
void SCCPSolver::visitCmpInst(CmpInst &I) {
  // Do not cache this lookup, getValueState calls later in the function might
  // invalidate the reference.
  if (ValueState[&I].isOverdefined()) return;

  Value *Op1 = I.getOperand(0);
  Value *Op2 = I.getOperand(1);

  // For parameters, use ParamState which includes constant range info if
  // available.
  auto V1Param = ParamState.find(Op1);
  ValueLatticeElement V1State = (V1Param != ParamState.end())
                                    ? V1Param->second
                                    : getValueState(Op1).toValueLattice();

  auto V2Param = ParamState.find(Op2);
  ValueLatticeElement V2State = V2Param != ParamState.end()
                                    ? V2Param->second
                                    : getValueState(Op2).toValueLattice();

  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
  if (C) {
    if (isa<UndefValue>(C))
      return;
    LatticeVal CV;
    CV.markConstant(C);
    mergeInValue(&I, CV);
    return;
  }

  // If operands are still unknown, wait for it to resolve.
  if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
      !ValueState[&I].isConstant())
    return;

  markOverdefined(&I);
}

// Handle getelementptr instructions.  If all operands are constants then we
// can turn this into a getelementptr ConstantExpr.
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
  if (ValueState[&I].isOverdefined()) return;

  SmallVector<Constant*, 8> Operands;
  Operands.reserve(I.getNumOperands());

  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
    LatticeVal State = getValueState(I.getOperand(i));
    if (State.isUnknown())
      return;  // Operands are not resolved yet.

    if (State.isOverdefined())
      return (void)markOverdefined(&I);

    assert(State.isConstant() && "Unknown state!");
    Operands.push_back(State.getConstant());
  }

  Constant *Ptr = Operands[0];
  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
  Constant *C =
      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
  if (isa<UndefValue>(C))
      return;
  markConstant(&I, C);
}

void SCCPSolver::visitStoreInst(StoreInst &SI) {
  // If this store is of a struct, ignore it.
  if (SI.getOperand(0)->getType()->isStructTy())
    return;

  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
    return;

  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;

  // Get the value we are storing into the global, then merge it.
  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
  if (I->second.isOverdefined())
    TrackedGlobals.erase(I);      // No need to keep tracking this!
}

// Handle load instructions.  If the operand is a constant pointer to a constant
// global, we can replace the load with the loaded constant value!
void SCCPSolver::visitLoadInst(LoadInst &I) {
  // If this load is of a struct, just mark the result overdefined.
  if (I.getType()->isStructTy())
    return (void)markOverdefined(&I);

  LatticeVal PtrVal = getValueState(I.getOperand(0));
  if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet!

  LatticeVal &IV = ValueState[&I];
  if (IV.isOverdefined()) return;

  if (!PtrVal.isConstant() || I.isVolatile())
    return (void)markOverdefined(IV, &I);

  Constant *Ptr = PtrVal.getConstant();

  // load null is undefined.
  if (isa<ConstantPointerNull>(Ptr)) {
    if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
      return (void)markOverdefined(IV, &I);
    else
      return;
  }

  // Transform load (constant global) into the value loaded.
  if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
    if (!TrackedGlobals.empty()) {
      // If we are tracking this global, merge in the known value for it.
      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
        TrackedGlobals.find(GV);
      if (It != TrackedGlobals.end()) {
        mergeInValue(IV, &I, It->second);
        return;
      }
    }
  }

  // Transform load from a constant into a constant if possible.
  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
    if (isa<UndefValue>(C))
      return;
    return (void)markConstant(IV, &I, C);
  }

  // Otherwise we cannot say for certain what value this load will produce.
  // Bail out.
  markOverdefined(IV, &I);
}

void SCCPSolver::visitCallSite(CallSite CS) {
  Function *F = CS.getCalledFunction();
  Instruction *I = CS.getInstruction();

  if (auto *II = dyn_cast<IntrinsicInst>(I)) {
    if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
      if (ValueState[I].isOverdefined())
        return;

      auto *PI = getPredicateInfoFor(I);
      if (!PI)
        return;

      Value *CopyOf = I->getOperand(0);
      auto *PBranch = dyn_cast<PredicateBranch>(PI);
      if (!PBranch) {
        mergeInValue(ValueState[I], I, getValueState(CopyOf));
        return;
      }

      Value *Cond = PBranch->Condition;

      // Everything below relies on the condition being a comparison.
      auto *Cmp = dyn_cast<CmpInst>(Cond);
      if (!Cmp) {
        mergeInValue(ValueState[I], I, getValueState(CopyOf));
        return;
      }

      Value *CmpOp0 = Cmp->getOperand(0);
      Value *CmpOp1 = Cmp->getOperand(1);
      if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
        mergeInValue(ValueState[I], I, getValueState(CopyOf));
        return;
      }

      if (CmpOp0 != CopyOf)
        std::swap(CmpOp0, CmpOp1);

      LatticeVal OriginalVal = getValueState(CopyOf);
      LatticeVal EqVal = getValueState(CmpOp1);
      LatticeVal &IV = ValueState[I];
      if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
        addAdditionalUser(CmpOp1, I);
        if (OriginalVal.isConstant())
          mergeInValue(IV, I, OriginalVal);
        else
          mergeInValue(IV, I, EqVal);
        return;
      }
      if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
        addAdditionalUser(CmpOp1, I);
        if (OriginalVal.isConstant())
          mergeInValue(IV, I, OriginalVal);
        else
          mergeInValue(IV, I, EqVal);
        return;
      }

      return (void)mergeInValue(IV, I, getValueState(CopyOf));
    }
  }

  // The common case is that we aren't tracking the callee, either because we
  // are not doing interprocedural analysis or the callee is indirect, or is
  // external.  Handle these cases first.
  if (!F || F->isDeclaration()) {
CallOverdefined:
    // Void return and not tracking callee, just bail.
    if (I->getType()->isVoidTy()) return;

    // Otherwise, if we have a single return value case, and if the function is
    // a declaration, maybe we can constant fold it.
    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
        canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) {
      SmallVector<Constant*, 8> Operands;
      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
           AI != E; ++AI) {
        if (AI->get()->getType()->isStructTy())
          return markOverdefined(I); // Can't handle struct args.
        LatticeVal State = getValueState(*AI);

        if (State.isUnknown())
          return;  // Operands are not resolved yet.
        if (State.isOverdefined())
          return (void)markOverdefined(I);
        assert(State.isConstant() && "Unknown state!");
        Operands.push_back(State.getConstant());
      }

      if (getValueState(I).isOverdefined())
        return;

      // If we can constant fold this, mark the result of the call as a
      // constant.
      if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F,
                                         Operands, &GetTLI(*F))) {
        // call -> undef.
        if (isa<UndefValue>(C))
          return;
        return (void)markConstant(I, C);
      }
    }

    // Otherwise, we don't know anything about this call, mark it overdefined.
    return (void)markOverdefined(I);
  }

  // If this is a local function that doesn't have its address taken, mark its
  // entry block executable and merge in the actual arguments to the call into
  // the formal arguments of the function.
  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
    MarkBlockExecutable(&F->front());

    // Propagate information from this call site into the callee.
    CallSite::arg_iterator CAI = CS.arg_begin();
    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
         AI != E; ++AI, ++CAI) {
      // If this argument is byval, and if the function is not readonly, there
      // will be an implicit copy formed of the input aggregate.
      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
        markOverdefined(&*AI);
        continue;
      }

      if (auto *STy = dyn_cast<StructType>(AI->getType())) {
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          LatticeVal CallArg = getStructValueState(*CAI, i);
          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
        }
      } else {
        // Most other parts of the Solver still only use the simpler value
        // lattice, so we propagate changes for parameters to both lattices.
        LatticeVal ConcreteArgument = getValueState(*CAI);
        bool ParamChanged =
            getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
         bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
        // Add argument to work list, if the state of a parameter changes but
        // ValueState does not change (because it is already overdefined there),
        // We have to take changes in ParamState into account, as it is used
        // when evaluating Cmp instructions.
        if (!ValueChanged && ParamChanged)
          pushToWorkList(ValueState[&*AI], &*AI);
      }
    }
  }

  // If this is a single/zero retval case, see if we're tracking the function.
  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
    if (!MRVFunctionsTracked.count(F))
      goto CallOverdefined;  // Not tracking this callee.

    // If we are tracking this callee, propagate the result of the function
    // into this call site.
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
      mergeInValue(getStructValueState(I, i), I,
                   TrackedMultipleRetVals[std::make_pair(F, i)]);
  } else {
    MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
    if (TFRVI == TrackedRetVals.end())
      goto CallOverdefined;  // Not tracking this callee.

    // If so, propagate the return value of the callee into this call result.
    mergeInValue(I, TFRVI->second);
  }
}

void SCCPSolver::Solve() {
  // Process the work lists until they are empty!
  while (!BBWorkList.empty() || !InstWorkList.empty() ||
         !OverdefinedInstWorkList.empty()) {
    // Process the overdefined instruction's work list first, which drives other
    // things to overdefined more quickly.
    while (!OverdefinedInstWorkList.empty()) {
      Value *I = OverdefinedInstWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');

      // "I" got into the work list because it either made the transition from
      // bottom to constant, or to overdefined.
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined
      // Update all of the users of this instruction's value.
      //
      markUsersAsChanged(I);
    }

    // Process the instruction work list.
    while (!InstWorkList.empty()) {
      Value *I = InstWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');

      // "I" got into the work list because it made the transition from undef to
      // constant.
      //
      // Anything on this worklist that is overdefined need not be visited
      // since all of its users will have already been marked as overdefined.
      // Update all of the users of this instruction's value.
      //
      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
        markUsersAsChanged(I);
    }

    // Process the basic block work list.
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.back();
      BBWorkList.pop_back();

      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');

      // Notify all instructions in this basic block that they are newly
      // executable.
      visit(BB);
    }
  }
}

/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
/// that branches on undef values cannot reach any of their successors.
/// However, this is not a safe assumption.  After we solve dataflow, this
/// method should be use to handle this.  If this returns true, the solver
/// should be rerun.
///
/// This method handles this by finding an unresolved branch and marking it one
/// of the edges from the block as being feasible, even though the condition
/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
/// CFG and only slightly pessimizes the analysis results (by marking one,
/// potentially infeasible, edge feasible).  This cannot usefully modify the
/// constraints on the condition of the branch, as that would impact other users
/// of the value.
///
/// This scan also checks for values that use undefs, whose results are actually
/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
/// even if X isn't defined.
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
  for (BasicBlock &BB : F) {
    if (!BBExecutable.count(&BB))
      continue;

    for (Instruction &I : BB) {
      // Look for instructions which produce undef values.
      if (I.getType()->isVoidTy()) continue;

      if (auto *STy = dyn_cast<StructType>(I.getType())) {
        // Only a few things that can be structs matter for undef.

        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
        if (CallSite CS = CallSite(&I))
          if (Function *F = CS.getCalledFunction())
            if (MRVFunctionsTracked.count(F))
              continue;

        // extractvalue and insertvalue don't need to be marked; they are
        // tracked as precisely as their operands.
        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
          continue;

        // Send the results of everything else to overdefined.  We could be
        // more precise than this but it isn't worth bothering.
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          LatticeVal &LV = getStructValueState(&I, i);
          if (LV.isUnknown())
            markOverdefined(LV, &I);
        }
        continue;
      }

      LatticeVal &LV = getValueState(&I);
      if (!LV.isUnknown())
        continue;

      // There are two reasons a call can have an undef result
      // 1. It could be tracked.
      // 2. It could be constant-foldable.
      // Because of the way we solve return values, tracked calls must
      // never be marked overdefined in ResolvedUndefsIn.
      if (CallSite CS = CallSite(&I)) {
        if (Function *F = CS.getCalledFunction())
          if (TrackedRetVals.count(F))
            continue;

        // If the call is constant-foldable, we mark it overdefined because
        // we do not know what return values are valid.
        markOverdefined(&I);
        return true;
      }

      // extractvalue is safe; check here because the argument is a struct.
      if (isa<ExtractValueInst>(I))
        continue;

      // Compute the operand LatticeVals, for convenience below.
      // Anything taking a struct is conservatively assumed to require
      // overdefined markings.
      if (I.getOperand(0)->getType()->isStructTy()) {
        markOverdefined(&I);
        return true;
      }
      LatticeVal Op0LV = getValueState(I.getOperand(0));
      LatticeVal Op1LV;
      if (I.getNumOperands() == 2) {
        if (I.getOperand(1)->getType()->isStructTy()) {
          markOverdefined(&I);
          return true;
        }

        Op1LV = getValueState(I.getOperand(1));
      }
      // If this is an instructions whose result is defined even if the input is
      // not fully defined, propagate the information.
      Type *ITy = I.getType();
      switch (I.getOpcode()) {
      case Instruction::Add:
      case Instruction::Sub:
      case Instruction::Trunc:
      case Instruction::FPTrunc:
      case Instruction::BitCast:
        break; // Any undef -> undef
      case Instruction::FSub:
      case Instruction::FAdd:
      case Instruction::FMul:
      case Instruction::FDiv:
      case Instruction::FRem:
        // Floating-point binary operation: be conservative.
        if (Op0LV.isUnknown() && Op1LV.isUnknown())
          markForcedConstant(&I, Constant::getNullValue(ITy));
        else
          markOverdefined(&I);
        return true;
      case Instruction::FNeg:
        break; // fneg undef -> undef
      case Instruction::ZExt:
      case Instruction::SExt:
      case Instruction::FPToUI:
      case Instruction::FPToSI:
      case Instruction::FPExt:
      case Instruction::PtrToInt:
      case Instruction::IntToPtr:
      case Instruction::SIToFP:
      case Instruction::UIToFP:
        // undef -> 0; some outputs are impossible
        markForcedConstant(&I, Constant::getNullValue(ITy));
        return true;
      case Instruction::Mul:
      case Instruction::And:
        // Both operands undef -> undef
        if (Op0LV.isUnknown() && Op1LV.isUnknown())
          break;
        // undef * X -> 0.   X could be zero.
        // undef & X -> 0.   X could be zero.
        markForcedConstant(&I, Constant::getNullValue(ITy));
        return true;
      case Instruction::Or:
        // Both operands undef -> undef
        if (Op0LV.isUnknown() && Op1LV.isUnknown())
          break;
        // undef | X -> -1.   X could be -1.
        markForcedConstant(&I, Constant::getAllOnesValue(ITy));
        return true;
      case Instruction::Xor:
        // undef ^ undef -> 0; strictly speaking, this is not strictly
        // necessary, but we try to be nice to people who expect this
        // behavior in simple cases
        if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
          markForcedConstant(&I, Constant::getNullValue(ITy));
          return true;
        }
        // undef ^ X -> undef
        break;
      case Instruction::SDiv:
      case Instruction::UDiv:
      case Instruction::SRem:
      case Instruction::URem:
        // X / undef -> undef.  No change.
        // X % undef -> undef.  No change.
        if (Op1LV.isUnknown()) break;

        // X / 0 -> undef.  No change.
        // X % 0 -> undef.  No change.
        if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
          break;

        // undef / X -> 0.   X could be maxint.
        // undef % X -> 0.   X could be 1.
        markForcedConstant(&I, Constant::getNullValue(ITy));
        return true;
      case Instruction::AShr:
        // X >>a undef -> undef.
        if (Op1LV.isUnknown()) break;

        // Shifting by the bitwidth or more is undefined.
        if (Op1LV.isConstant()) {
          if (auto *ShiftAmt = Op1LV.getConstantInt())
            if (ShiftAmt->getLimitedValue() >=
                ShiftAmt->getType()->getScalarSizeInBits())
              break;
        }

        // undef >>a X -> 0
        markForcedConstant(&I, Constant::getNullValue(ITy));
        return true;
      case Instruction::LShr:
      case Instruction::Shl:
        // X << undef -> undef.
        // X >> undef -> undef.
        if (Op1LV.isUnknown()) break;

        // Shifting by the bitwidth or more is undefined.
        if (Op1LV.isConstant()) {
          if (auto *ShiftAmt = Op1LV.getConstantInt())
            if (ShiftAmt->getLimitedValue() >=
                ShiftAmt->getType()->getScalarSizeInBits())
              break;
        }

        // undef << X -> 0
        // undef >> X -> 0
        markForcedConstant(&I, Constant::getNullValue(ITy));
        return true;
      case Instruction::Select:
        Op1LV = getValueState(I.getOperand(1));
        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
        if (Op0LV.isUnknown()) {
          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
            Op1LV = getValueState(I.getOperand(2));
        } else if (Op1LV.isUnknown()) {
          // c ? undef : undef -> undef.  No change.
          Op1LV = getValueState(I.getOperand(2));
          if (Op1LV.isUnknown())
            break;
          // Otherwise, c ? undef : x -> x.
        } else {
          // Leave Op1LV as Operand(1)'s LatticeValue.
        }

        if (Op1LV.isConstant())
          markForcedConstant(&I, Op1LV.getConstant());
        else
          markOverdefined(&I);
        return true;
      case Instruction::Load:
        // A load here means one of two things: a load of undef from a global,
        // a load from an unknown pointer.  Either way, having it return undef
        // is okay.
        break;
      case Instruction::ICmp:
        // X == undef -> undef.  Other comparisons get more complicated.
        Op0LV = getValueState(I.getOperand(0));
        Op1LV = getValueState(I.getOperand(1));

        if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
            cast<ICmpInst>(&I)->isEquality())
          break;
        markOverdefined(&I);
        return true;
      case Instruction::Call:
      case Instruction::Invoke:
      case Instruction::CallBr:
        llvm_unreachable("Call-like instructions should have be handled early");
      default:
        // If we don't know what should happen here, conservatively mark it
        // overdefined.
        markOverdefined(&I);
        return true;
      }
    }

    // Check to see if we have a branch or switch on an undefined value.  If so
    // we force the branch to go one way or the other to make the successor
    // values live.  It doesn't really matter which way we force it.
    Instruction *TI = BB.getTerminator();
    if (auto *BI = dyn_cast<BranchInst>(TI)) {
      if (!BI->isConditional()) continue;
      if (!getValueState(BI->getCondition()).isUnknown())
        continue;

      // If the input to SCCP is actually branch on undef, fix the undef to
      // false.
      if (isa<UndefValue>(BI->getCondition())) {
        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
        markEdgeExecutable(&BB, TI->getSuccessor(1));
        return true;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: Distinguish between dead code and an LLVM "undef" value.
      BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        return true;

      continue;
    }

   if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
      // Indirect branch with no successor ?. Its ok to assume it branches
      // to no target.
      if (IBR->getNumSuccessors() < 1)
        continue;

      if (!getValueState(IBR->getAddress()).isUnknown())
        continue;

      // If the input to SCCP is actually branch on undef, fix the undef to
      // the first successor of the indirect branch.
      if (isa<UndefValue>(IBR->getAddress())) {
        IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
        markEdgeExecutable(&BB, IBR->getSuccessor(0));
        return true;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
      // we can assume the branch has undefined behavior instead.
      BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        return true;

      continue;
    }

    if (auto *SI = dyn_cast<SwitchInst>(TI)) {
      if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
        continue;

      // If the input to SCCP is actually switch on undef, fix the undef to
      // the first constant.
      if (isa<UndefValue>(SI->getCondition())) {
        SI->setCondition(SI->case_begin()->getCaseValue());
        markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
        return true;
      }

      // Otherwise, it is a branch on a symbolic value which is currently
      // considered to be undef.  Make sure some edge is executable, so a
      // branch on "undef" always flows somewhere.
      // FIXME: Distinguish between dead code and an LLVM "undef" value.
      BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
      if (markEdgeExecutable(&BB, DefaultSuccessor))
        return true;

      continue;
    }
  }

  return false;
}

static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
  Constant *Const = nullptr;
  if (V->getType()->isStructTy()) {
    std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
    if (llvm::any_of(IVs,
                     [](const LatticeVal &LV) { return LV.isOverdefined(); }))
      return false;
    std::vector<Constant *> ConstVals;
    auto *ST = cast<StructType>(V->getType());
    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
      LatticeVal V = IVs[i];
      ConstVals.push_back(V.isConstant()
                              ? V.getConstant()
                              : UndefValue::get(ST->getElementType(i)));
    }
    Const = ConstantStruct::get(ST, ConstVals);
  } else {
    const LatticeVal &IV = Solver.getLatticeValueFor(V);
    if (IV.isOverdefined())
      return false;

    Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
  }
  assert(Const && "Constant is nullptr here!");

  // Replacing `musttail` instructions with constant breaks `musttail` invariant
  // unless the call itself can be removed
  CallInst *CI = dyn_cast<CallInst>(V);
  if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
    CallSite CS(CI);
    Function *F = CS.getCalledFunction();

    // Don't zap returns of the callee
    if (F)
      Solver.AddMustTailCallee(F);

    LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI
                      << " as a constant\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');

  // Replaces all of the uses of a variable with uses of the constant.
  V->replaceAllUsesWith(Const);
  return true;
}

// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
// and return true if the function was modified.
static bool runSCCP(Function &F, const DataLayout &DL,
                    const TargetLibraryInfo *TLI) {
  LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
  SCCPSolver Solver(
      DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; });

  // Mark the first block of the function as being executable.
  Solver.MarkBlockExecutable(&F.front());

  // Mark all arguments to the function as being overdefined.
  for (Argument &AI : F.args())
    Solver.markOverdefined(&AI);

  // Solve for constants.
  bool ResolvedUndefs = true;
  while (ResolvedUndefs) {
    Solver.Solve();
    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
  }

  bool MadeChanges = false;

  // If we decided that there are basic blocks that are dead in this function,
  // delete their contents now.  Note that we cannot actually delete the blocks,
  // as we cannot modify the CFG of the function.

  for (BasicBlock &BB : F) {
    if (!Solver.isBlockExecutable(&BB)) {
      LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);

      ++NumDeadBlocks;
      NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);

      MadeChanges = true;
      continue;
    }

    // Iterate over all of the instructions in a function, replacing them with
    // constants if we have found them to be of constant values.
    for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
      Instruction *Inst = &*BI++;
      if (Inst->getType()->isVoidTy() || Inst->isTerminator())
        continue;

      if (tryToReplaceWithConstant(Solver, Inst)) {
        if (isInstructionTriviallyDead(Inst))
          Inst->eraseFromParent();
        // Hey, we just changed something!
        MadeChanges = true;
        ++NumInstRemoved;
      }
    }
  }

  return MadeChanges;
}

PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
  const DataLayout &DL = F.getParent()->getDataLayout();
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  if (!runSCCP(F, DL, &TLI))
    return PreservedAnalyses::all();

  auto PA = PreservedAnalyses();
  PA.preserve<GlobalsAA>();
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

namespace {

//===--------------------------------------------------------------------===//
//
/// SCCP Class - This class uses the SCCPSolver to implement a per-function
/// Sparse Conditional Constant Propagator.
///
class SCCPLegacyPass : public FunctionPass {
public:
  // Pass identification, replacement for typeid
  static char ID;

  SCCPLegacyPass() : FunctionPass(ID) {
    initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.setPreservesCFG();
  }

  // runOnFunction - Run the Sparse Conditional Constant Propagation
  // algorithm, and return true if the function was modified.
  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    const DataLayout &DL = F.getParent()->getDataLayout();
    const TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    return runSCCP(F, DL, TLI);
  }
};

} // end anonymous namespace

char SCCPLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
                      "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
                    "Sparse Conditional Constant Propagation", false, false)

// createSCCPPass - This is the public interface to this file.
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }

static void findReturnsToZap(Function &F,
                             SmallVector<ReturnInst *, 8> &ReturnsToZap,
                             SCCPSolver &Solver) {
  // We can only do this if we know that nothing else can call the function.
  if (!Solver.isArgumentTrackedFunction(&F))
    return;

  // There is a non-removable musttail call site of this function. Zapping
  // returns is not allowed.
  if (Solver.isMustTailCallee(&F)) {
    LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
                      << " due to present musttail call of it\n");
    return;
  }

  assert(
      all_of(F.users(),
             [&Solver](User *U) {
               if (isa<Instruction>(U) &&
                   !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
                 return true;
               // Non-callsite uses are not impacted by zapping. Also, constant
               // uses (like blockaddresses) could stuck around, without being
               // used in the underlying IR, meaning we do not have lattice
               // values for them.
               if (!CallSite(U))
                 return true;
               if (U->getType()->isStructTy()) {
                 return all_of(
                     Solver.getStructLatticeValueFor(U),
                     [](const LatticeVal &LV) { return !LV.isOverdefined(); });
               }
               return !Solver.getLatticeValueFor(U).isOverdefined();
             }) &&
      "We can only zap functions where all live users have a concrete value");

  for (BasicBlock &BB : F) {
    if (CallInst *CI = BB.getTerminatingMustTailCall()) {
      LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
                        << "musttail call : " << *CI << "\n");
      (void)CI;
      return;
    }

    if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
      if (!isa<UndefValue>(RI->getOperand(0)))
        ReturnsToZap.push_back(RI);
  }
}

// Update the condition for terminators that are branching on indeterminate
// values, forcing them to use a specific edge.
static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
  BasicBlock *Dest = nullptr;
  Constant *C = nullptr;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
    if (!isa<ConstantInt>(SI->getCondition())) {
      // Indeterminate switch; use first case value.
      Dest = SI->case_begin()->getCaseSuccessor();
      C = SI->case_begin()->getCaseValue();
    }
  } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
    if (!isa<ConstantInt>(BI->getCondition())) {
      // Indeterminate branch; use false.
      Dest = BI->getSuccessor(1);
      C = ConstantInt::getFalse(BI->getContext());
    }
  } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
    if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
      // Indeterminate indirectbr; use successor 0.
      Dest = IBR->getSuccessor(0);
      C = BlockAddress::get(IBR->getSuccessor(0));
    }
  } else {
    llvm_unreachable("Unexpected terminator instruction");
  }
  if (C) {
    assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
           "Didn't find feasible edge?");
    (void)Dest;

    I->setOperand(0, C);
  }
}

bool llvm::runIPSCCP(
    Module &M, const DataLayout &DL,
    std::function<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
  SCCPSolver Solver(DL, GetTLI);

  // Loop over all functions, marking arguments to those with their addresses
  // taken or that are external as overdefined.
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;

    Solver.addAnalysis(F, getAnalysis(F));

    // Determine if we can track the function's return values. If so, add the
    // function to the solver's set of return-tracked functions.
    if (canTrackReturnsInterprocedurally(&F))
      Solver.AddTrackedFunction(&F);

    // Determine if we can track the function's arguments. If so, add the
    // function to the solver's set of argument-tracked functions.
    if (canTrackArgumentsInterprocedurally(&F)) {
      Solver.AddArgumentTrackedFunction(&F);
      continue;
    }

    // Assume the function is called.
    Solver.MarkBlockExecutable(&F.front());

    // Assume nothing about the incoming arguments.
    for (Argument &AI : F.args())
      Solver.markOverdefined(&AI);
  }

  // Determine if we can track any of the module's global variables. If so, add
  // the global variables we can track to the solver's set of tracked global
  // variables.
  for (GlobalVariable &G : M.globals()) {
    G.removeDeadConstantUsers();
    if (canTrackGlobalVariableInterprocedurally(&G))
      Solver.TrackValueOfGlobalVariable(&G);
  }

  // Solve for constants.
  bool ResolvedUndefs = true;
  Solver.Solve();
  while (ResolvedUndefs) {
    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
    ResolvedUndefs = false;
    for (Function &F : M)
      if (Solver.ResolvedUndefsIn(F)) {
        // We run Solve() after we resolved an undef in a function, because
        // we might deduce a fact that eliminates an undef in another function.
        Solver.Solve();
        ResolvedUndefs = true;
      }
  }

  bool MadeChanges = false;

  // Iterate over all of the instructions in the module, replacing them with
  // constants if we have found them to be of constant values.

  for (Function &F : M) {
    if (F.isDeclaration())
      continue;

    SmallVector<BasicBlock *, 512> BlocksToErase;

    if (Solver.isBlockExecutable(&F.front()))
      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
           ++AI) {
        if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
          ++IPNumArgsElimed;
          continue;
        }
      }

    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
      if (!Solver.isBlockExecutable(&*BB)) {
        LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
        ++NumDeadBlocks;

        MadeChanges = true;

        if (&*BB != &F.front())
          BlocksToErase.push_back(&*BB);
        continue;
      }

      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
        Instruction *Inst = &*BI++;
        if (Inst->getType()->isVoidTy())
          continue;
        if (tryToReplaceWithConstant(Solver, Inst)) {
          if (Inst->isSafeToRemove())
            Inst->eraseFromParent();
          // Hey, we just changed something!
          MadeChanges = true;
          ++IPNumInstRemoved;
        }
      }
    }

    DomTreeUpdater DTU = Solver.getDTU(F);
    // Change dead blocks to unreachable. We do it after replacing constants
    // in all executable blocks, because changeToUnreachable may remove PHI
    // nodes in executable blocks we found values for. The function's entry
    // block is not part of BlocksToErase, so we have to handle it separately.
    for (BasicBlock *BB : BlocksToErase) {
      NumInstRemoved +=
          changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
                              /*PreserveLCSSA=*/false, &DTU);
    }
    if (!Solver.isBlockExecutable(&F.front()))
      NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
                                            /*UseLLVMTrap=*/false,
                                            /*PreserveLCSSA=*/false, &DTU);

    // Now that all instructions in the function are constant folded,
    // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
    // delete dead BBs.
    for (BasicBlock *DeadBB : BlocksToErase) {
      // If there are any PHI nodes in this successor, drop entries for BB now.
      for (Value::user_iterator UI = DeadBB->user_begin(),
                                UE = DeadBB->user_end();
           UI != UE;) {
        // Grab the user and then increment the iterator early, as the user
        // will be deleted. Step past all adjacent uses from the same user.
        auto *I = dyn_cast<Instruction>(*UI);
        do { ++UI; } while (UI != UE && *UI == I);

        // Ignore blockaddress users; BasicBlock's dtor will handle them.
        if (!I) continue;

        // If we have forced an edge for an indeterminate value, then force the
        // terminator to fold to that edge.
        forceIndeterminateEdge(I, Solver);
        BasicBlock *InstBB = I->getParent();
        bool Folded = ConstantFoldTerminator(InstBB,
                                             /*DeleteDeadConditions=*/false,
                                             /*TLI=*/nullptr, &DTU);
        assert(Folded &&
              "Expect TermInst on constantint or blockaddress to be folded");
        (void) Folded;
        // If we folded the terminator to an unconditional branch to another
        // dead block, replace it with Unreachable, to avoid trying to fold that
        // branch again.
        BranchInst *BI = cast<BranchInst>(InstBB->getTerminator());
        if (BI && BI->isUnconditional() &&
            !Solver.isBlockExecutable(BI->getSuccessor(0))) {
          InstBB->getTerminator()->eraseFromParent();
          new UnreachableInst(InstBB->getContext(), InstBB);
        }
      }
      // Mark dead BB for deletion.
      DTU.deleteBB(DeadBB);
    }

    for (BasicBlock &BB : F) {
      for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
        Instruction *Inst = &*BI++;
        if (Solver.getPredicateInfoFor(Inst)) {
          if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
            if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
              Value *Op = II->getOperand(0);
              Inst->replaceAllUsesWith(Op);
              Inst->eraseFromParent();
            }
          }
        }
      }
    }
  }

  // If we inferred constant or undef return values for a function, we replaced
  // all call uses with the inferred value.  This means we don't need to bother
  // actually returning anything from the function.  Replace all return
  // instructions with return undef.
  //
  // Do this in two stages: first identify the functions we should process, then
  // actually zap their returns.  This is important because we can only do this
  // if the address of the function isn't taken.  In cases where a return is the
  // last use of a function, the order of processing functions would affect
  // whether other functions are optimizable.
  SmallVector<ReturnInst*, 8> ReturnsToZap;

  const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
  for (const auto &I : RV) {
    Function *F = I.first;
    if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
      continue;
    findReturnsToZap(*F, ReturnsToZap, Solver);
  }

  for (const auto &F : Solver.getMRVFunctionsTracked()) {
    assert(F->getReturnType()->isStructTy() &&
           "The return type should be a struct");
    StructType *STy = cast<StructType>(F->getReturnType());
    if (Solver.isStructLatticeConstant(F, STy))
      findReturnsToZap(*F, ReturnsToZap, Solver);
  }

  // Zap all returns which we've identified as zap to change.
  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
    Function *F = ReturnsToZap[i]->getParent()->getParent();
    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
  }

  // If we inferred constant or undef values for globals variables, we can
  // delete the global and any stores that remain to it.
  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
         E = TG.end(); I != E; ++I) {
    GlobalVariable *GV = I->first;
    assert(!I->second.isOverdefined() &&
           "Overdefined values should have been taken out of the map!");
    LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
                      << "' is constant!\n");
    while (!GV->use_empty()) {
      StoreInst *SI = cast<StoreInst>(GV->user_back());
      SI->eraseFromParent();
    }
    M.getGlobalList().erase(GV);
    ++IPNumGlobalConst;
  }

  return MadeChanges;
}