reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
//===-- dfsan.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataFlowSanitizer.
//
// DataFlowSanitizer runtime.  This file defines the public interface to
// DataFlowSanitizer as well as the definition of certain runtime functions
// called automatically by the compiler (specifically the instrumentation pass
// in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
//
// The public interface is defined in include/sanitizer/dfsan_interface.h whose
// functions are prefixed dfsan_ while the compiler interface functions are
// prefixed __dfsan_.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "sanitizer_common/sanitizer_libc.h"

#include "dfsan/dfsan.h"

using namespace __dfsan;

typedef atomic_uint16_t atomic_dfsan_label;
static const dfsan_label kInitializingLabel = -1;

static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);

static atomic_dfsan_label __dfsan_last_label;
static dfsan_label_info __dfsan_label_info[kNumLabels];

Flags __dfsan::flags_data;

SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];

SANITIZER_INTERFACE_ATTRIBUTE uptr __dfsan_shadow_ptr_mask;

// On Linux/x86_64, memory is laid out as follows:
//
// +--------------------+ 0x800000000000 (top of memory)
// | application memory |
// +--------------------+ 0x700000008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x200200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x200000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x000000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x000000000000
//
// To derive a shadow memory address from an application memory address,
// bits 44-46 are cleared to bring the address into the range
// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
// account for the double byte representation of shadow labels and move the
// address into the shadow memory range.  See the function shadow_for below.

// On Linux/MIPS64, memory is laid out as follows:
//
// +--------------------+ 0x10000000000 (top of memory)
// | application memory |
// +--------------------+ 0xF000008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x2200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x2000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

// On Linux/AArch64 (39-bit VMA), memory is laid out as follow:
//
// +--------------------+ 0x8000000000 (top of memory)
// | application memory |
// +--------------------+ 0x7000008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x1200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x1000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

// On Linux/AArch64 (42-bit VMA), memory is laid out as follow:
//
// +--------------------+ 0x40000000000 (top of memory)
// | application memory |
// +--------------------+ 0x3ff00008000 (kAppAddr)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x1200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x8000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

// On Linux/AArch64 (48-bit VMA), memory is laid out as follow:
//
// +--------------------+ 0x1000000000000 (top of memory)
// | application memory |
// +--------------------+ 0xffff00008000 (kAppAddr)
// |       unused       |
// +--------------------+ 0xaaaab0000000 (top of PIE address)
// | application PIE    |
// +--------------------+ 0xaaaaa0000000 (top of PIE address)
// |                    |
// |       unused       |
// |                    |
// +--------------------+ 0x1200000000 (kUnusedAddr)
// |    union table     |
// +--------------------+ 0x8000000000 (kUnionTableAddr)
// |   shadow memory    |
// +--------------------+ 0x0000010000 (kShadowAddr)
// | reserved by kernel |
// +--------------------+ 0x0000000000

typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];

#ifdef DFSAN_RUNTIME_VMA
// Runtime detected VMA size.
int __dfsan::vmaSize;
#endif

static uptr UnusedAddr() {
  return MappingArchImpl<MAPPING_UNION_TABLE_ADDR>()
         + sizeof(dfsan_union_table_t);
}

static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
  return &(*(dfsan_union_table_t *) UnionTableAddr())[l1][l2];
}

// Checks we do not run out of labels.
static void dfsan_check_label(dfsan_label label) {
  if (label == kInitializingLabel) {
    Report("FATAL: DataFlowSanitizer: out of labels\n");
    Die();
  }
}

// Resolves the union of two unequal labels.  Nonequality is a precondition for
// this function (the instrumentation pass inlines the equality test).
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
  if (flags().fast16labels)
    return l1 | l2;
  DCHECK_NE(l1, l2);

  if (l1 == 0)
    return l2;
  if (l2 == 0)
    return l1;

  if (l1 > l2)
    Swap(l1, l2);

  atomic_dfsan_label *table_ent = union_table(l1, l2);
  // We need to deal with the case where two threads concurrently request
  // a union of the same pair of labels.  If the table entry is uninitialized,
  // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
  // (i.e. -1) to mark that we are initializing it.
  dfsan_label label = 0;
  if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
                                     memory_order_acquire)) {
    // Check whether l2 subsumes l1.  We don't need to check whether l1
    // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
    // in the cases we are interested in) a label may only subsume labels
    // created earlier (i.e. with a lower numerical value).
    if (__dfsan_label_info[l2].l1 == l1 ||
        __dfsan_label_info[l2].l2 == l1) {
      label = l2;
    } else {
      label =
        atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
      dfsan_check_label(label);
      __dfsan_label_info[label].l1 = l1;
      __dfsan_label_info[label].l2 = l2;
    }
    atomic_store(table_ent, label, memory_order_release);
  } else if (label == kInitializingLabel) {
    // Another thread is initializing the entry.  Wait until it is finished.
    do {
      internal_sched_yield();
      label = atomic_load(table_ent, memory_order_acquire);
    } while (label == kInitializingLabel);
  }
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
  dfsan_label label = ls[0];
  for (uptr i = 1; i != n; ++i) {
    dfsan_label next_label = ls[i];
    if (label != next_label)
      label = __dfsan_union(label, next_label);
  }
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __dfsan_unimplemented(char *fname) {
  if (flags().warn_unimplemented)
    Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
           fname);
}

// Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
// to try to figure out where labels are being introduced in a nominally
// label-free program.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
  if (flags().warn_nonzero_labels)
    Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
}

// Indirect call to an uninstrumented vararg function. We don't have a way of
// handling these at the moment.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__dfsan_vararg_wrapper(const char *fname) {
  Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
         "function %s\n", fname);
  Die();
}

// Like __dfsan_union, but for use from the client or custom functions.  Hence
// the equality comparison is done here before calling __dfsan_union.
SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_union(dfsan_label l1, dfsan_label l2) {
  if (l1 == l2)
    return l1;
  return __dfsan_union(l1, l2);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_label dfsan_create_label(const char *desc, void *userdata) {
  dfsan_label label =
    atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
  dfsan_check_label(label);
  __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
  __dfsan_label_info[label].desc = desc;
  __dfsan_label_info[label].userdata = userdata;
  return label;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
  for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) {
    // Don't write the label if it is already the value we need it to be.
    // In a program where most addresses are not labeled, it is common that
    // a page of shadow memory is entirely zeroed.  The Linux copy-on-write
    // implementation will share all of the zeroed pages, making a copy of a
    // page when any value is written.  The un-sharing will happen even if
    // the value written does not change the value in memory.  Avoiding the
    // write when both |label| and |*labelp| are zero dramatically reduces
    // the amount of real memory used by large programs.
    if (label == *labelp)
      continue;

    *labelp = label;
  }
}

SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
  __dfsan_set_label(label, addr, size);
}

SANITIZER_INTERFACE_ATTRIBUTE
void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
  for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
    if (*labelp != label)
      *labelp = __dfsan_union(*labelp, label);
}

// Unlike the other dfsan interface functions the behavior of this function
// depends on the label of one of its arguments.  Hence it is implemented as a
// custom function.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
__dfsw_dfsan_get_label(long data, dfsan_label data_label,
                       dfsan_label *ret_label) {
  *ret_label = 0;
  return data_label;
}

SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_read_label(const void *addr, uptr size) {
  if (size == 0)
    return 0;
  return __dfsan_union_load(shadow_for(addr), size);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
  return &__dfsan_label_info[label];
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
dfsan_has_label(dfsan_label label, dfsan_label elem) {
  if (label == elem)
    return true;
  const dfsan_label_info *info = dfsan_get_label_info(label);
  if (info->l1 != 0) {
    return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
  } else {
    return false;
  }
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
  const dfsan_label_info *info = dfsan_get_label_info(label);
  if (info->l1 != 0) {
    return dfsan_has_label_with_desc(info->l1, desc) ||
           dfsan_has_label_with_desc(info->l2, desc);
  } else {
    return internal_strcmp(desc, info->desc) == 0;
  }
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_get_label_count(void) {
  dfsan_label max_label_allocated =
      atomic_load(&__dfsan_last_label, memory_order_relaxed);

  return static_cast<uptr>(max_label_allocated);
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
dfsan_dump_labels(int fd) {
  dfsan_label last_label =
      atomic_load(&__dfsan_last_label, memory_order_relaxed);

  for (uptr l = 1; l <= last_label; ++l) {
    char buf[64];
    internal_snprintf(buf, sizeof(buf), "%u %u %u ", l,
                      __dfsan_label_info[l].l1, __dfsan_label_info[l].l2);
    WriteToFile(fd, buf, internal_strlen(buf));
    if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) {
      WriteToFile(fd, __dfsan_label_info[l].desc,
                  internal_strlen(__dfsan_label_info[l].desc));
    }
    WriteToFile(fd, "\n", 1);
  }
}

void Flags::SetDefaults() {
#define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
#include "dfsan_flags.inc"
#undef DFSAN_FLAG
}

static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
#define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
  RegisterFlag(parser, #Name, Description, &f->Name);
#include "dfsan_flags.inc"
#undef DFSAN_FLAG
}

static void InitializeFlags() {
  SetCommonFlagsDefaults();
  flags().SetDefaults();

  FlagParser parser;
  RegisterCommonFlags(&parser);
  RegisterDfsanFlags(&parser, &flags());
  parser.ParseStringFromEnv("DFSAN_OPTIONS");
  InitializeCommonFlags();
  if (Verbosity()) ReportUnrecognizedFlags();
  if (common_flags()->help) parser.PrintFlagDescriptions();
}

static void InitializePlatformEarly() {
  AvoidCVE_2016_2143();
#ifdef DFSAN_RUNTIME_VMA
  __dfsan::vmaSize =
    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
  if (__dfsan::vmaSize == 39 || __dfsan::vmaSize == 42 ||
      __dfsan::vmaSize == 48) {
    __dfsan_shadow_ptr_mask = ShadowMask();
  } else {
    Printf("FATAL: DataFlowSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %d - Supported 39, 42, and 48\n", __dfsan::vmaSize);
    Die();
  }
#endif
}

static void dfsan_fini() {
  if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) {
    fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly);
    if (fd == kInvalidFd) {
      Report("WARNING: DataFlowSanitizer: unable to open output file %s\n",
             flags().dump_labels_at_exit);
      return;
    }

    Report("INFO: DataFlowSanitizer: dumping labels to %s\n",
           flags().dump_labels_at_exit);
    dfsan_dump_labels(fd);
    CloseFile(fd);
  }
}

extern "C" void dfsan_flush() {
  UnmapOrDie((void*)ShadowAddr(), UnusedAddr() - ShadowAddr());
  if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr()))
    Die();
}

static void dfsan_init(int argc, char **argv, char **envp) {
  InitializeFlags();

  ::InitializePlatformEarly();

  if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr()))
    Die();

  // Protect the region of memory we don't use, to preserve the one-to-one
  // mapping from application to shadow memory. But if ASLR is disabled, Linux
  // will load our executable in the middle of our unused region. This mostly
  // works so long as the program doesn't use too much memory. We support this
  // case by disabling memory protection when ASLR is disabled.
  uptr init_addr = (uptr)&dfsan_init;
  if (!(init_addr >= UnusedAddr() && init_addr < AppAddr()))
    MmapFixedNoAccess(UnusedAddr(), AppAddr() - UnusedAddr());

  InitializeInterceptors();

  // Register the fini callback to run when the program terminates successfully
  // or it is killed by the runtime.
  Atexit(dfsan_fini);
  AddDieCallback(dfsan_fini);

  __dfsan_label_info[kInitializingLabel].desc = "<init label>";
}

#if SANITIZER_CAN_USE_PREINIT_ARRAY
__attribute__((section(".preinit_array"), used))
static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
#endif