reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
//===-- sanitizer_allocator_local_cache.h -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

// Cache used by SizeClassAllocator64.
template <class SizeClassAllocator>
struct SizeClassAllocator64LocalCache {
  typedef SizeClassAllocator Allocator;

  void Init(AllocatorGlobalStats *s) {
    stats_.Init();
    if (s)
      s->Register(&stats_);
  }

  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
    Drain(allocator);
    if (s)
      s->Unregister(&stats_);
  }

  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    PerClass *c = &per_class_[class_id];
    if (UNLIKELY(c->count == 0)) {
      if (UNLIKELY(!Refill(c, allocator, class_id)))
        return nullptr;
      DCHECK_GT(c->count, 0);
    }
    CompactPtrT chunk = c->chunks[--c->count];
    stats_.Add(AllocatorStatAllocated, c->class_size);
    return reinterpret_cast<void *>(allocator->CompactPtrToPointer(
        allocator->GetRegionBeginBySizeClass(class_id), chunk));
  }

  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    // If the first allocator call on a new thread is a deallocation, then
    // max_count will be zero, leading to check failure.
    PerClass *c = &per_class_[class_id];
    InitCache(c);
    if (UNLIKELY(c->count == c->max_count))
      Drain(c, allocator, class_id, c->max_count / 2);
    CompactPtrT chunk = allocator->PointerToCompactPtr(
        allocator->GetRegionBeginBySizeClass(class_id),
        reinterpret_cast<uptr>(p));
    c->chunks[c->count++] = chunk;
    stats_.Sub(AllocatorStatAllocated, c->class_size);
  }

  void Drain(SizeClassAllocator *allocator) {
    for (uptr i = 1; i < kNumClasses; i++) {
      PerClass *c = &per_class_[i];
      while (c->count > 0)
        Drain(c, allocator, i, c->count);
    }
  }

 private:
  typedef typename Allocator::SizeClassMapT SizeClassMap;
  static const uptr kNumClasses = SizeClassMap::kNumClasses;
  typedef typename Allocator::CompactPtrT CompactPtrT;

  struct PerClass {
    u32 count;
    u32 max_count;
    uptr class_size;
    CompactPtrT chunks[2 * SizeClassMap::kMaxNumCachedHint];
  };
  PerClass per_class_[kNumClasses];
  AllocatorStats stats_;

  void InitCache(PerClass *c) {
    if (LIKELY(c->max_count))
      return;
    for (uptr i = 1; i < kNumClasses; i++) {
      PerClass *c = &per_class_[i];
      const uptr size = Allocator::ClassIdToSize(i);
      c->max_count = 2 * SizeClassMap::MaxCachedHint(size);
      c->class_size = size;
    }
    DCHECK_NE(c->max_count, 0UL);
  }

  NOINLINE bool Refill(PerClass *c, SizeClassAllocator *allocator,
                       uptr class_id) {
    InitCache(c);
    const uptr num_requested_chunks = c->max_count / 2;
    if (UNLIKELY(!allocator->GetFromAllocator(&stats_, class_id, c->chunks,
                                              num_requested_chunks)))
      return false;
    c->count = num_requested_chunks;
    return true;
  }

  NOINLINE void Drain(PerClass *c, SizeClassAllocator *allocator, uptr class_id,
                      uptr count) {
    CHECK_GE(c->count, count);
    const uptr first_idx_to_drain = c->count - count;
    c->count -= count;
    allocator->ReturnToAllocator(&stats_, class_id,
                                 &c->chunks[first_idx_to_drain], count);
  }
};

// Cache used by SizeClassAllocator32.
template <class SizeClassAllocator>
struct SizeClassAllocator32LocalCache {
  typedef SizeClassAllocator Allocator;
  typedef typename Allocator::TransferBatch TransferBatch;

  void Init(AllocatorGlobalStats *s) {
    stats_.Init();
    if (s)
      s->Register(&stats_);
  }

  // Returns a TransferBatch suitable for class_id.
  TransferBatch *CreateBatch(uptr class_id, SizeClassAllocator *allocator,
                             TransferBatch *b) {
    if (uptr batch_class_id = per_class_[class_id].batch_class_id)
      return (TransferBatch*)Allocate(allocator, batch_class_id);
    return b;
  }

  // Destroys TransferBatch b.
  void DestroyBatch(uptr class_id, SizeClassAllocator *allocator,
                    TransferBatch *b) {
    if (uptr batch_class_id = per_class_[class_id].batch_class_id)
      Deallocate(allocator, batch_class_id, b);
  }

  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
    Drain(allocator);
    if (s)
      s->Unregister(&stats_);
  }

  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    PerClass *c = &per_class_[class_id];
    if (UNLIKELY(c->count == 0)) {
      if (UNLIKELY(!Refill(c, allocator, class_id)))
        return nullptr;
      DCHECK_GT(c->count, 0);
    }
    void *res = c->batch[--c->count];
    PREFETCH(c->batch[c->count - 1]);
    stats_.Add(AllocatorStatAllocated, c->class_size);
    return res;
  }

  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
    CHECK_NE(class_id, 0UL);
    CHECK_LT(class_id, kNumClasses);
    // If the first allocator call on a new thread is a deallocation, then
    // max_count will be zero, leading to check failure.
    PerClass *c = &per_class_[class_id];
    InitCache(c);
    if (UNLIKELY(c->count == c->max_count))
      Drain(c, allocator, class_id);
    c->batch[c->count++] = p;
    stats_.Sub(AllocatorStatAllocated, c->class_size);
  }

  void Drain(SizeClassAllocator *allocator) {
    for (uptr i = 1; i < kNumClasses; i++) {
      PerClass *c = &per_class_[i];
      while (c->count > 0)
        Drain(c, allocator, i);
    }
  }

 private:
  typedef typename Allocator::SizeClassMapT SizeClassMap;
  static const uptr kBatchClassID = SizeClassMap::kBatchClassID;
  static const uptr kNumClasses = SizeClassMap::kNumClasses;
  // If kUseSeparateSizeClassForBatch is true, all TransferBatch objects are
  // allocated from kBatchClassID size class (except for those that are needed
  // for kBatchClassID itself). The goal is to have TransferBatches in a totally
  // different region of RAM to improve security.
  static const bool kUseSeparateSizeClassForBatch =
      Allocator::kUseSeparateSizeClassForBatch;

  struct PerClass {
    uptr count;
    uptr max_count;
    uptr class_size;
    uptr batch_class_id;
    void *batch[2 * TransferBatch::kMaxNumCached];
  };
  PerClass per_class_[kNumClasses];
  AllocatorStats stats_;

  void InitCache(PerClass *c) {
    if (LIKELY(c->max_count))
      return;
    const uptr batch_class_id = SizeClassMap::ClassID(sizeof(TransferBatch));
    for (uptr i = 1; i < kNumClasses; i++) {
      PerClass *c = &per_class_[i];
      const uptr size = Allocator::ClassIdToSize(i);
      const uptr max_cached = TransferBatch::MaxCached(size);
      c->max_count = 2 * max_cached;
      c->class_size = size;
      // Precompute the class id to use to store batches for the current class
      // id. 0 means the class size is large enough to store a batch within one
      // of the chunks. If using a separate size class, it will always be
      // kBatchClassID, except for kBatchClassID itself.
      if (kUseSeparateSizeClassForBatch) {
        c->batch_class_id = (i == kBatchClassID) ? 0 : kBatchClassID;
      } else {
        c->batch_class_id = (size <
          TransferBatch::AllocationSizeRequiredForNElements(max_cached)) ?
              batch_class_id : 0;
      }
    }
    DCHECK_NE(c->max_count, 0UL);
  }

  NOINLINE bool Refill(PerClass *c, SizeClassAllocator *allocator,
                       uptr class_id) {
    InitCache(c);
    TransferBatch *b = allocator->AllocateBatch(&stats_, this, class_id);
    if (UNLIKELY(!b))
      return false;
    CHECK_GT(b->Count(), 0);
    b->CopyToArray(c->batch);
    c->count = b->Count();
    DestroyBatch(class_id, allocator, b);
    return true;
  }

  NOINLINE void Drain(PerClass *c, SizeClassAllocator *allocator,
                      uptr class_id) {
    const uptr count = Min(c->max_count / 2, c->count);
    const uptr first_idx_to_drain = c->count - count;
    TransferBatch *b = CreateBatch(
        class_id, allocator, (TransferBatch *)c->batch[first_idx_to_drain]);
    // Failure to allocate a batch while releasing memory is non recoverable.
    // TODO(alekseys): Figure out how to do it without allocating a new batch.
    if (UNLIKELY(!b)) {
      Report("FATAL: Internal error: %s's allocator failed to allocate a "
             "transfer batch.\n", SanitizerToolName);
      Die();
    }
    b->SetFromArray(&c->batch[first_idx_to_drain], count);
    c->count -= count;
    allocator->DeallocateBatch(&stats_, class_id, b);
  }
};