reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
//===-- sanitizer_allocator_primary32.h -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif

template<class SizeClassAllocator> struct SizeClassAllocator32LocalCache;

// SizeClassAllocator32 -- allocator for 32-bit address space.
// This allocator can theoretically be used on 64-bit arch, but there it is less
// efficient than SizeClassAllocator64.
//
// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
// be returned by MmapOrDie().
//
// Region:
//   a result of a single call to MmapAlignedOrDieOnFatalError(kRegionSize,
//                                                             kRegionSize).
// Since the regions are aligned by kRegionSize, there are exactly
// kNumPossibleRegions possible regions in the address space and so we keep
// a ByteMap possible_regions to store the size classes of each Region.
// 0 size class means the region is not used by the allocator.
//
// One Region is used to allocate chunks of a single size class.
// A Region looks like this:
// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
//
// In order to avoid false sharing the objects of this class should be
// chache-line aligned.

struct SizeClassAllocator32FlagMasks {  //  Bit masks.
  enum {
    kRandomShuffleChunks = 1,
    kUseSeparateSizeClassForBatch = 2,
  };
};

template <class Params>
class SizeClassAllocator32 {
 private:
  static const u64 kTwoLevelByteMapSize1 =
      (Params::kSpaceSize >> Params::kRegionSizeLog) >> 12;
  static const u64 kMinFirstMapSizeTwoLevelByteMap = 4;

 public:
  using AddressSpaceView = typename Params::AddressSpaceView;
  static const uptr kSpaceBeg = Params::kSpaceBeg;
  static const u64 kSpaceSize = Params::kSpaceSize;
  static const uptr kMetadataSize = Params::kMetadataSize;
  typedef typename Params::SizeClassMap SizeClassMap;
  static const uptr kRegionSizeLog = Params::kRegionSizeLog;
  typedef typename Params::MapUnmapCallback MapUnmapCallback;
  using ByteMap = typename conditional<
      (kTwoLevelByteMapSize1 < kMinFirstMapSizeTwoLevelByteMap),
      FlatByteMap<(Params::kSpaceSize >> Params::kRegionSizeLog),
                  AddressSpaceView>,
      TwoLevelByteMap<kTwoLevelByteMapSize1, 1 << 12, AddressSpaceView>>::type;

  COMPILER_CHECK(!SANITIZER_SIGN_EXTENDED_ADDRESSES ||
                 (kSpaceSize & (kSpaceSize - 1)) == 0);

  static const bool kRandomShuffleChunks = Params::kFlags &
      SizeClassAllocator32FlagMasks::kRandomShuffleChunks;
  static const bool kUseSeparateSizeClassForBatch = Params::kFlags &
      SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch;

  struct TransferBatch {
    static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 2;
    void SetFromArray(void *batch[], uptr count) {
      DCHECK_LE(count, kMaxNumCached);
      count_ = count;
      for (uptr i = 0; i < count; i++)
        batch_[i] = batch[i];
    }
    uptr Count() const { return count_; }
    void Clear() { count_ = 0; }
    void Add(void *ptr) {
      batch_[count_++] = ptr;
      DCHECK_LE(count_, kMaxNumCached);
    }
    void CopyToArray(void *to_batch[]) const {
      for (uptr i = 0, n = Count(); i < n; i++)
        to_batch[i] = batch_[i];
    }

    // How much memory do we need for a batch containing n elements.
    static uptr AllocationSizeRequiredForNElements(uptr n) {
      return sizeof(uptr) * 2 + sizeof(void *) * n;
    }
    static uptr MaxCached(uptr size) {
      return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(size));
    }

    TransferBatch *next;

   private:
    uptr count_;
    void *batch_[kMaxNumCached];
  };

  static const uptr kBatchSize = sizeof(TransferBatch);
  COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
  COMPILER_CHECK(kBatchSize == SizeClassMap::kMaxNumCachedHint * sizeof(uptr));

  static uptr ClassIdToSize(uptr class_id) {
    return (class_id == SizeClassMap::kBatchClassID) ?
        kBatchSize : SizeClassMap::Size(class_id);
  }

  typedef SizeClassAllocator32<Params> ThisT;
  typedef SizeClassAllocator32LocalCache<ThisT> AllocatorCache;

  void Init(s32 release_to_os_interval_ms) {
    possible_regions.Init();
    internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
  }

  s32 ReleaseToOSIntervalMs() const {
    return kReleaseToOSIntervalNever;
  }

  void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
    // This is empty here. Currently only implemented in 64-bit allocator.
  }

  void ForceReleaseToOS() {
    // Currently implemented in 64-bit allocator only.
  }

  void *MapWithCallback(uptr size) {
    void *res = MmapOrDie(size, PrimaryAllocatorName);
    MapUnmapCallback().OnMap((uptr)res, size);
    return res;
  }

  void UnmapWithCallback(uptr beg, uptr size) {
    MapUnmapCallback().OnUnmap(beg, size);
    UnmapOrDie(reinterpret_cast<void *>(beg), size);
  }

  static bool CanAllocate(uptr size, uptr alignment) {
    return size <= SizeClassMap::kMaxSize &&
      alignment <= SizeClassMap::kMaxSize;
  }

  void *GetMetaData(const void *p) {
    CHECK(PointerIsMine(p));
    uptr mem = reinterpret_cast<uptr>(p);
    uptr beg = ComputeRegionBeg(mem);
    uptr size = ClassIdToSize(GetSizeClass(p));
    u32 offset = mem - beg;
    uptr n = offset / (u32)size;  // 32-bit division
    uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
    return reinterpret_cast<void*>(meta);
  }

  NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
                                        uptr class_id) {
    DCHECK_LT(class_id, kNumClasses);
    SizeClassInfo *sci = GetSizeClassInfo(class_id);
    SpinMutexLock l(&sci->mutex);
    if (sci->free_list.empty()) {
      if (UNLIKELY(!PopulateFreeList(stat, c, sci, class_id)))
        return nullptr;
      DCHECK(!sci->free_list.empty());
    }
    TransferBatch *b = sci->free_list.front();
    sci->free_list.pop_front();
    return b;
  }

  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
                                TransferBatch *b) {
    DCHECK_LT(class_id, kNumClasses);
    CHECK_GT(b->Count(), 0);
    SizeClassInfo *sci = GetSizeClassInfo(class_id);
    SpinMutexLock l(&sci->mutex);
    sci->free_list.push_front(b);
  }

  bool PointerIsMine(const void *p) {
    uptr mem = reinterpret_cast<uptr>(p);
    if (SANITIZER_SIGN_EXTENDED_ADDRESSES)
      mem &= (kSpaceSize - 1);
    if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
      return false;
    return GetSizeClass(p) != 0;
  }

  uptr GetSizeClass(const void *p) {
    return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
  }

  void *GetBlockBegin(const void *p) {
    CHECK(PointerIsMine(p));
    uptr mem = reinterpret_cast<uptr>(p);
    uptr beg = ComputeRegionBeg(mem);
    uptr size = ClassIdToSize(GetSizeClass(p));
    u32 offset = mem - beg;
    u32 n = offset / (u32)size;  // 32-bit division
    uptr res = beg + (n * (u32)size);
    return reinterpret_cast<void*>(res);
  }

  uptr GetActuallyAllocatedSize(void *p) {
    CHECK(PointerIsMine(p));
    return ClassIdToSize(GetSizeClass(p));
  }

  static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }

  uptr TotalMemoryUsed() {
    // No need to lock here.
    uptr res = 0;
    for (uptr i = 0; i < kNumPossibleRegions; i++)
      if (possible_regions[i])
        res += kRegionSize;
    return res;
  }

  void TestOnlyUnmap() {
    for (uptr i = 0; i < kNumPossibleRegions; i++)
      if (possible_regions[i])
        UnmapWithCallback((i * kRegionSize), kRegionSize);
  }

  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
  // introspection API.
  void ForceLock() {
    for (uptr i = 0; i < kNumClasses; i++) {
      GetSizeClassInfo(i)->mutex.Lock();
    }
  }

  void ForceUnlock() {
    for (int i = kNumClasses - 1; i >= 0; i--) {
      GetSizeClassInfo(i)->mutex.Unlock();
    }
  }

  // Iterate over all existing chunks.
  // The allocator must be locked when calling this function.
  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
    for (uptr region = 0; region < kNumPossibleRegions; region++)
      if (possible_regions[region]) {
        uptr chunk_size = ClassIdToSize(possible_regions[region]);
        uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
        uptr region_beg = region * kRegionSize;
        for (uptr chunk = region_beg;
             chunk < region_beg + max_chunks_in_region * chunk_size;
             chunk += chunk_size) {
          // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
          callback(chunk, arg);
        }
      }
  }

  void PrintStats() {}

  static uptr AdditionalSize() { return 0; }

  typedef SizeClassMap SizeClassMapT;
  static const uptr kNumClasses = SizeClassMap::kNumClasses;

 private:
  static const uptr kRegionSize = 1 << kRegionSizeLog;
  static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;

  struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) SizeClassInfo {
    StaticSpinMutex mutex;
    IntrusiveList<TransferBatch> free_list;
    u32 rand_state;
  };
  COMPILER_CHECK(sizeof(SizeClassInfo) % kCacheLineSize == 0);

  uptr ComputeRegionId(uptr mem) const {
    if (SANITIZER_SIGN_EXTENDED_ADDRESSES)
      mem &= (kSpaceSize - 1);
    const uptr res = mem >> kRegionSizeLog;
    CHECK_LT(res, kNumPossibleRegions);
    return res;
  }

  uptr ComputeRegionBeg(uptr mem) {
    return mem & ~(kRegionSize - 1);
  }

  uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
    DCHECK_LT(class_id, kNumClasses);
    const uptr res = reinterpret_cast<uptr>(MmapAlignedOrDieOnFatalError(
        kRegionSize, kRegionSize, PrimaryAllocatorName));
    if (UNLIKELY(!res))
      return 0;
    MapUnmapCallback().OnMap(res, kRegionSize);
    stat->Add(AllocatorStatMapped, kRegionSize);
    CHECK(IsAligned(res, kRegionSize));
    possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
    return res;
  }

  SizeClassInfo *GetSizeClassInfo(uptr class_id) {
    DCHECK_LT(class_id, kNumClasses);
    return &size_class_info_array[class_id];
  }

  bool PopulateBatches(AllocatorCache *c, SizeClassInfo *sci, uptr class_id,
                       TransferBatch **current_batch, uptr max_count,
                       uptr *pointers_array, uptr count) {
    // If using a separate class for batches, we do not need to shuffle it.
    if (kRandomShuffleChunks && (!kUseSeparateSizeClassForBatch ||
        class_id != SizeClassMap::kBatchClassID))
      RandomShuffle(pointers_array, count, &sci->rand_state);
    TransferBatch *b = *current_batch;
    for (uptr i = 0; i < count; i++) {
      if (!b) {
        b = c->CreateBatch(class_id, this, (TransferBatch*)pointers_array[i]);
        if (UNLIKELY(!b))
          return false;
        b->Clear();
      }
      b->Add((void*)pointers_array[i]);
      if (b->Count() == max_count) {
        sci->free_list.push_back(b);
        b = nullptr;
      }
    }
    *current_batch = b;
    return true;
  }

  bool PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
                        SizeClassInfo *sci, uptr class_id) {
    const uptr region = AllocateRegion(stat, class_id);
    if (UNLIKELY(!region))
      return false;
    if (kRandomShuffleChunks)
      if (UNLIKELY(sci->rand_state == 0))
        // The random state is initialized from ASLR (PIE) and time.
        sci->rand_state = reinterpret_cast<uptr>(sci) ^ NanoTime();
    const uptr size = ClassIdToSize(class_id);
    const uptr n_chunks = kRegionSize / (size + kMetadataSize);
    const uptr max_count = TransferBatch::MaxCached(size);
    DCHECK_GT(max_count, 0);
    TransferBatch *b = nullptr;
    constexpr uptr kShuffleArraySize = 48;
    uptr shuffle_array[kShuffleArraySize];
    uptr count = 0;
    for (uptr i = region; i < region + n_chunks * size; i += size) {
      shuffle_array[count++] = i;
      if (count == kShuffleArraySize) {
        if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
                                      shuffle_array, count)))
          return false;
        count = 0;
      }
    }
    if (count) {
      if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
                                    shuffle_array, count)))
        return false;
    }
    if (b) {
      CHECK_GT(b->Count(), 0);
      sci->free_list.push_back(b);
    }
    return true;
  }

  ByteMap possible_regions;
  SizeClassInfo size_class_info_array[kNumClasses];
};