reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
//===-- xray_profiling.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This is the implementation of a profiling handler.
//
//===----------------------------------------------------------------------===//
#include <memory>
#include <time.h>

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "xray/xray_interface.h"
#include "xray/xray_log_interface.h"
#include "xray_buffer_queue.h"
#include "xray_flags.h"
#include "xray_profile_collector.h"
#include "xray_profiling_flags.h"
#include "xray_recursion_guard.h"
#include "xray_tsc.h"
#include "xray_utils.h"
#include <pthread.h>

namespace __xray {

namespace {

static atomic_sint32_t ProfilerLogFlushStatus = {
    XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};

static atomic_sint32_t ProfilerLogStatus = {
    XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};

static SpinMutex ProfilerOptionsMutex;

struct ProfilingData {
  atomic_uintptr_t Allocators;
  atomic_uintptr_t FCT;
};

static pthread_key_t ProfilingKey;

// We use a global buffer queue, which gets initialized once at initialisation
// time, and gets reset when profiling is "done".
static std::aligned_storage<sizeof(BufferQueue), alignof(BufferQueue)>::type
    BufferQueueStorage;
static BufferQueue *BQ = nullptr;

thread_local FunctionCallTrie::Allocators::Buffers ThreadBuffers;
thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
                                  alignof(FunctionCallTrie::Allocators)>::type
    AllocatorsStorage;
thread_local std::aligned_storage<sizeof(FunctionCallTrie),
                                  alignof(FunctionCallTrie)>::type
    FunctionCallTrieStorage;
thread_local ProfilingData TLD{{0}, {0}};
thread_local atomic_uint8_t ReentranceGuard{0};

// We use a separate guard for ensuring that for this thread, if we're already
// cleaning up, that any signal handlers don't attempt to cleanup nor
// initialise.
thread_local atomic_uint8_t TLDInitGuard{0};

// We also use a separate latch to signal that the thread is exiting, and
// non-essential work should be ignored (things like recording events, etc.).
thread_local atomic_uint8_t ThreadExitingLatch{0};

static ProfilingData *getThreadLocalData() XRAY_NEVER_INSTRUMENT {
  thread_local auto ThreadOnce = []() XRAY_NEVER_INSTRUMENT {
    pthread_setspecific(ProfilingKey, &TLD);
    return false;
  }();
  (void)ThreadOnce;

  RecursionGuard TLDInit(TLDInitGuard);
  if (!TLDInit)
    return nullptr;

  if (atomic_load_relaxed(&ThreadExitingLatch))
    return nullptr;

  uptr Allocators = 0;
  if (atomic_compare_exchange_strong(&TLD.Allocators, &Allocators, 1,
                                     memory_order_acq_rel)) {
    bool Success = false;
    auto AllocatorsUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
      if (!Success)
        atomic_store(&TLD.Allocators, 0, memory_order_release);
    });

    // Acquire a set of buffers for this thread.
    if (BQ == nullptr)
      return nullptr;

    if (BQ->getBuffer(ThreadBuffers.NodeBuffer) != BufferQueue::ErrorCode::Ok)
      return nullptr;
    auto NodeBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
      if (!Success)
        BQ->releaseBuffer(ThreadBuffers.NodeBuffer);
    });

    if (BQ->getBuffer(ThreadBuffers.RootsBuffer) != BufferQueue::ErrorCode::Ok)
      return nullptr;
    auto RootsBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
      if (!Success)
        BQ->releaseBuffer(ThreadBuffers.RootsBuffer);
    });

    if (BQ->getBuffer(ThreadBuffers.ShadowStackBuffer) !=
        BufferQueue::ErrorCode::Ok)
      return nullptr;
    auto ShadowStackBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
      if (!Success)
        BQ->releaseBuffer(ThreadBuffers.ShadowStackBuffer);
    });

    if (BQ->getBuffer(ThreadBuffers.NodeIdPairBuffer) !=
        BufferQueue::ErrorCode::Ok)
      return nullptr;

    Success = true;
    new (&AllocatorsStorage) FunctionCallTrie::Allocators(
        FunctionCallTrie::InitAllocatorsFromBuffers(ThreadBuffers));
    Allocators = reinterpret_cast<uptr>(
        reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage));
    atomic_store(&TLD.Allocators, Allocators, memory_order_release);
  }

  if (Allocators == 1)
    return nullptr;

  uptr FCT = 0;
  if (atomic_compare_exchange_strong(&TLD.FCT, &FCT, 1, memory_order_acq_rel)) {
    new (&FunctionCallTrieStorage)
        FunctionCallTrie(*reinterpret_cast<FunctionCallTrie::Allocators *>(
            atomic_load_relaxed(&TLD.Allocators)));
    FCT = reinterpret_cast<uptr>(
        reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage));
    atomic_store(&TLD.FCT, FCT, memory_order_release);
  }

  if (FCT == 1)
    return nullptr;

  return &TLD;
}

static void cleanupTLD() XRAY_NEVER_INSTRUMENT {
  auto FCT = atomic_exchange(&TLD.FCT, 0, memory_order_acq_rel);
  if (FCT == reinterpret_cast<uptr>(reinterpret_cast<FunctionCallTrie *>(
                 &FunctionCallTrieStorage)))
    reinterpret_cast<FunctionCallTrie *>(FCT)->~FunctionCallTrie();

  auto Allocators = atomic_exchange(&TLD.Allocators, 0, memory_order_acq_rel);
  if (Allocators ==
      reinterpret_cast<uptr>(
          reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
    reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators)->~Allocators();
}

static void postCurrentThreadFCT(ProfilingData &T) XRAY_NEVER_INSTRUMENT {
  RecursionGuard TLDInit(TLDInitGuard);
  if (!TLDInit)
    return;

  uptr P = atomic_exchange(&T.FCT, 0, memory_order_acq_rel);
  if (P != reinterpret_cast<uptr>(
               reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage)))
    return;

  auto FCT = reinterpret_cast<FunctionCallTrie *>(P);
  DCHECK_NE(FCT, nullptr);

  uptr A = atomic_exchange(&T.Allocators, 0, memory_order_acq_rel);
  if (A !=
      reinterpret_cast<uptr>(
          reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
    return;

  auto Allocators = reinterpret_cast<FunctionCallTrie::Allocators *>(A);
  DCHECK_NE(Allocators, nullptr);

  // Always move the data into the profile collector.
  profileCollectorService::post(BQ, std::move(*FCT), std::move(*Allocators),
                                std::move(ThreadBuffers), GetTid());

  // Re-initialize the ThreadBuffers object to a known "default" state.
  ThreadBuffers = FunctionCallTrie::Allocators::Buffers{};
}

} // namespace

const char *profilingCompilerDefinedFlags() XRAY_NEVER_INSTRUMENT {
#ifdef XRAY_PROFILER_DEFAULT_OPTIONS
  return SANITIZER_STRINGIFY(XRAY_PROFILER_DEFAULT_OPTIONS);
#else
  return "";
#endif
}

XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&ProfilerLogStatus, memory_order_acquire) !=
      XRayLogInitStatus::XRAY_LOG_FINALIZED) {
    if (Verbosity())
      Report("Not flushing profiles, profiling not been finalized.\n");
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  }

  RecursionGuard SignalGuard(ReentranceGuard);
  if (!SignalGuard) {
    if (Verbosity())
      Report("Cannot finalize properly inside a signal handler!\n");
    atomic_store(&ProfilerLogFlushStatus,
                 XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
                 memory_order_release);
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  }

  s32 Previous = atomic_exchange(&ProfilerLogFlushStatus,
                                 XRayLogFlushStatus::XRAY_LOG_FLUSHING,
                                 memory_order_acq_rel);
  if (Previous == XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
    if (Verbosity())
      Report("Not flushing profiles, implementation still flushing.\n");
    return XRayLogFlushStatus::XRAY_LOG_FLUSHING;
  }

  // At this point, we'll create the file that will contain the profile, but
  // only if the options say so.
  if (!profilingFlags()->no_flush) {
    // First check whether we have data in the profile collector service
    // before we try and write anything down.
    XRayBuffer B = profileCollectorService::nextBuffer({nullptr, 0});
    if (B.Data == nullptr) {
      if (Verbosity())
        Report("profiling: No data to flush.\n");
    } else {
      LogWriter *LW = LogWriter::Open();
      if (LW == nullptr) {
        if (Verbosity())
          Report("profiling: Failed to flush to file, dropping data.\n");
      } else {
        // Now for each of the buffers, write out the profile data as we would
        // see it in memory, verbatim.
        while (B.Data != nullptr && B.Size != 0) {
          LW->WriteAll(reinterpret_cast<const char *>(B.Data),
                       reinterpret_cast<const char *>(B.Data) + B.Size);
          B = profileCollectorService::nextBuffer(B);
        }
      }
      LogWriter::Close(LW);
    }
  }

  profileCollectorService::reset();

  atomic_store(&ProfilerLogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
               memory_order_release);
  atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
               memory_order_release);

  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

void profilingHandleArg0(int32_t FuncId,
                         XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
  unsigned char CPU;
  auto TSC = readTSC(CPU);
  RecursionGuard G(ReentranceGuard);
  if (!G)
    return;

  auto Status = atomic_load(&ProfilerLogStatus, memory_order_acquire);
  if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_UNINITIALIZED ||
               Status == XRayLogInitStatus::XRAY_LOG_INITIALIZING))
    return;

  if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_FINALIZED ||
               Status == XRayLogInitStatus::XRAY_LOG_FINALIZING)) {
    postCurrentThreadFCT(TLD);
    return;
  }

  auto T = getThreadLocalData();
  if (T == nullptr)
    return;

  auto FCT = reinterpret_cast<FunctionCallTrie *>(atomic_load_relaxed(&T->FCT));
  switch (Entry) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY:
    FCT->enterFunction(FuncId, TSC, CPU);
    break;
  case XRayEntryType::EXIT:
  case XRayEntryType::TAIL:
    FCT->exitFunction(FuncId, TSC, CPU);
    break;
  default:
    // FIXME: Handle bugs.
    break;
  }
}

void profilingHandleArg1(int32_t FuncId, XRayEntryType Entry,
                         uint64_t) XRAY_NEVER_INSTRUMENT {
  return profilingHandleArg0(FuncId, Entry);
}

XRayLogInitStatus profilingFinalize() XRAY_NEVER_INSTRUMENT {
  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
                                      XRayLogInitStatus::XRAY_LOG_FINALIZING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Cannot finalize profile, the profiling is not initialized.\n");
    return static_cast<XRayLogInitStatus>(CurrentStatus);
  }

  // Mark then finalize the current generation of buffers. This allows us to let
  // the threads currently holding onto new buffers still use them, but let the
  // last reference do the memory cleanup.
  DCHECK_NE(BQ, nullptr);
  BQ->finalize();

  // Wait a grace period to allow threads to see that we're finalizing.
  SleepForMillis(profilingFlags()->grace_period_ms);

  // If we for some reason are entering this function from an instrumented
  // handler, we bail out.
  RecursionGuard G(ReentranceGuard);
  if (!G)
    return static_cast<XRayLogInitStatus>(CurrentStatus);

  // Post the current thread's data if we have any.
  postCurrentThreadFCT(TLD);

  // Then we force serialize the log data.
  profileCollectorService::serialize();

  atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
               memory_order_release);
  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

XRayLogInitStatus
profilingLoggingInit(size_t, size_t, void *Options,
                     size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  RecursionGuard G(ReentranceGuard);
  if (!G)
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;

  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
                                      XRayLogInitStatus::XRAY_LOG_INITIALIZING,
                                      memory_order_acq_rel)) {
    if (Verbosity())
      Report("Cannot initialize already initialised profiling "
             "implementation.\n");
    return static_cast<XRayLogInitStatus>(CurrentStatus);
  }

  {
    SpinMutexLock Lock(&ProfilerOptionsMutex);
    FlagParser ConfigParser;
    ProfilerFlags Flags;
    Flags.setDefaults();
    registerProfilerFlags(&ConfigParser, &Flags);
    ConfigParser.ParseString(profilingCompilerDefinedFlags());
    const char *Env = GetEnv("XRAY_PROFILING_OPTIONS");
    if (Env == nullptr)
      Env = "";
    ConfigParser.ParseString(Env);

    // Then parse the configuration string provided.
    ConfigParser.ParseString(static_cast<const char *>(Options));
    if (Verbosity())
      ReportUnrecognizedFlags();
    *profilingFlags() = Flags;
  }

  // We need to reset the profile data collection implementation now.
  profileCollectorService::reset();

  // Then also reset the buffer queue implementation.
  if (BQ == nullptr) {
    bool Success = false;
    new (&BufferQueueStorage)
        BufferQueue(profilingFlags()->per_thread_allocator_max,
                    profilingFlags()->buffers_max, Success);
    if (!Success) {
      if (Verbosity())
        Report("Failed to initialize preallocated memory buffers!");
      atomic_store(&ProfilerLogStatus,
                   XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
                   memory_order_release);
      return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
    }

    // If we've succeded, set the global pointer to the initialised storage.
    BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
  } else {
    BQ->finalize();
    auto InitStatus = BQ->init(profilingFlags()->per_thread_allocator_max,
                               profilingFlags()->buffers_max);

    if (InitStatus != BufferQueue::ErrorCode::Ok) {
      if (Verbosity())
        Report("Failed to initialize preallocated memory buffers; error: %s",
               BufferQueue::getErrorString(InitStatus));
      atomic_store(&ProfilerLogStatus,
                   XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
                   memory_order_release);
      return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
    }

    DCHECK(!BQ->finalizing());
  }

  // We need to set up the exit handlers.
  static pthread_once_t Once = PTHREAD_ONCE_INIT;
  pthread_once(
      &Once, +[] {
        pthread_key_create(
            &ProfilingKey, +[](void *P) XRAY_NEVER_INSTRUMENT {
              if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
                return;

              if (P == nullptr)
                return;

              auto T = reinterpret_cast<ProfilingData *>(P);
              if (atomic_load_relaxed(&T->Allocators) == 0)
                return;

              {
                // If we're somehow executing this while inside a
                // non-reentrant-friendly context, we skip attempting to post
                // the current thread's data.
                RecursionGuard G(ReentranceGuard);
                if (!G)
                  return;

                postCurrentThreadFCT(*T);
              }
            });

        // We also need to set up an exit handler, so that we can get the
        // profile information at exit time. We use the C API to do this, to not
        // rely on C++ ABI functions for registering exit handlers.
        Atexit(+[]() XRAY_NEVER_INSTRUMENT {
          if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
            return;

          auto Cleanup =
              at_scope_exit([]() XRAY_NEVER_INSTRUMENT { cleanupTLD(); });

          // Finalize and flush.
          if (profilingFinalize() != XRAY_LOG_FINALIZED ||
              profilingFlush() != XRAY_LOG_FLUSHED)
            return;

          if (Verbosity())
            Report("XRay Profile flushed at exit.");
        });
      });

  __xray_log_set_buffer_iterator(profileCollectorService::nextBuffer);
  __xray_set_handler(profilingHandleArg0);
  __xray_set_handler_arg1(profilingHandleArg1);

  atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
               memory_order_release);
  if (Verbosity())
    Report("XRay Profiling init successful.\n");

  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

bool profilingDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  // Set up the flag defaults from the static defaults and the
  // compiler-provided defaults.
  {
    SpinMutexLock Lock(&ProfilerOptionsMutex);
    auto *F = profilingFlags();
    F->setDefaults();
    FlagParser ProfilingParser;
    registerProfilerFlags(&ProfilingParser, F);
    ProfilingParser.ParseString(profilingCompilerDefinedFlags());
  }

  XRayLogImpl Impl{
      profilingLoggingInit,
      profilingFinalize,
      profilingHandleArg0,
      profilingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-profiling", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
    if (Verbosity())
      Report("Cannot register XRay Profiling mode to 'xray-profiling'; error = "
             "%d\n",
             RegistrationResult);
    return false;
  }

  if (!internal_strcmp(flags()->xray_mode, "xray-profiling"))
    __xray_log_select_mode("xray_profiling");
  return true;
}

} // namespace __xray

static auto UNUSED Unused = __xray::profilingDynamicInitializer();