reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
/*
 * kmp_wait_release.h -- Wait/Release implementation
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef KMP_WAIT_RELEASE_H
#define KMP_WAIT_RELEASE_H

#include "kmp.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

/*!
@defgroup WAIT_RELEASE Wait/Release operations

The definitions and functions here implement the lowest level thread
synchronizations of suspending a thread and awaking it. They are used to build
higher level operations such as barriers and fork/join.
*/

/*!
@ingroup WAIT_RELEASE
@{
*/

/*!
 * The flag_type describes the storage used for the flag.
 */
enum flag_type {
  flag32, /**< 32 bit flags */
  flag64, /**< 64 bit flags */
  flag_oncore /**< special 64-bit flag for on-core barrier (hierarchical) */
};

/*!
 * Base class for wait/release volatile flag
 */
template <typename P> class kmp_flag_native {
  volatile P *loc;
  flag_type t;

public:
  typedef P flag_t;
  kmp_flag_native(volatile P *p, flag_type ft) : loc(p), t(ft) {}
  volatile P *get() { return loc; }
  void *get_void_p() { return RCAST(void *, CCAST(P *, loc)); }
  void set(volatile P *new_loc) { loc = new_loc; }
  flag_type get_type() { return t; }
  P load() { return *loc; }
  void store(P val) { *loc = val; }
};

/*!
 * Base class for wait/release atomic flag
 */
template <typename P> class kmp_flag {
  std::atomic<P>
      *loc; /**< Pointer to the flag storage that is modified by another thread
             */
  flag_type t; /**< "Type" of the flag in loc */
public:
  typedef P flag_t;
  kmp_flag(std::atomic<P> *p, flag_type ft) : loc(p), t(ft) {}
  /*!
   * @result the pointer to the actual flag
   */
  std::atomic<P> *get() { return loc; }
  /*!
   * @result void* pointer to the actual flag
   */
  void *get_void_p() { return RCAST(void *, loc); }
  /*!
   * @param new_loc in   set loc to point at new_loc
   */
  void set(std::atomic<P> *new_loc) { loc = new_loc; }
  /*!
   * @result the flag_type
   */
  flag_type get_type() { return t; }
  /*!
   * @result flag value
   */
  P load() { return loc->load(std::memory_order_acquire); }
  /*!
   * @param val the new flag value to be stored
   */
  void store(P val) { loc->store(val, std::memory_order_release); }
  // Derived classes must provide the following:
  /*
  kmp_info_t * get_waiter(kmp_uint32 i);
  kmp_uint32 get_num_waiters();
  bool done_check();
  bool done_check_val(P old_loc);
  bool notdone_check();
  P internal_release();
  void suspend(int th_gtid);
  void resume(int th_gtid);
  P set_sleeping();
  P unset_sleeping();
  bool is_sleeping();
  bool is_any_sleeping();
  bool is_sleeping_val(P old_loc);
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished
                    USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32
                    is_constrained);
  */
};

#if OMPT_SUPPORT
OMPT_NOINLINE
static void __ompt_implicit_task_end(kmp_info_t *this_thr,
                                     ompt_state_t ompt_state,
                                     ompt_data_t *tId) {
  int ds_tid = this_thr->th.th_info.ds.ds_tid;
  if (ompt_state == ompt_state_wait_barrier_implicit) {
    this_thr->th.ompt_thread_info.state = ompt_state_overhead;
#if OMPT_OPTIONAL
    void *codeptr = NULL;
    if (ompt_enabled.ompt_callback_sync_region_wait) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
          codeptr);
    }
    if (ompt_enabled.ompt_callback_sync_region) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
          codeptr);
    }
#endif
    if (!KMP_MASTER_TID(ds_tid)) {
      if (ompt_enabled.ompt_callback_implicit_task) {
        int flags = this_thr->th.ompt_thread_info.parallel_flags;
        flags = (flags & ompt_parallel_league) ? ompt_task_initial
                                               : ompt_task_implicit;
        ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
            ompt_scope_end, NULL, tId, 0, ds_tid, flags);
      }
      // return to idle state
      this_thr->th.ompt_thread_info.state = ompt_state_idle;
    } else {
      this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    }
  }
}
#endif

/* Spin wait loop that first does pause/yield, then sleep. A thread that calls
   __kmp_wait_*  must make certain that another thread calls __kmp_release
   to wake it back up to prevent deadlocks!

   NOTE: We may not belong to a team at this point.  */
template <class C, int final_spin, bool cancellable = false,
          bool sleepable = true>
static inline bool
__kmp_wait_template(kmp_info_t *this_thr,
                    C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
#if USE_ITT_BUILD && USE_ITT_NOTIFY
  volatile void *spin = flag->get();
#endif
  kmp_uint32 spins;
  int th_gtid;
  int tasks_completed = FALSE;
  int oversubscribed;
#if !KMP_USE_MONITOR
  kmp_uint64 poll_count;
  kmp_uint64 hibernate_goal;
#else
  kmp_uint32 hibernate;
#endif

  KMP_FSYNC_SPIN_INIT(spin, NULL);
  if (flag->done_check()) {
    KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
    return false;
  }
  th_gtid = this_thr->th.th_info.ds.ds_gtid;
  if (cancellable) {
    kmp_team_t *team = this_thr->th.th_team;
    if (team && team->t.t_cancel_request == cancel_parallel)
      return true;
  }
#if KMP_OS_UNIX
  if (final_spin)
    KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
#endif
  KA_TRACE(20,
           ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
#if KMP_STATS_ENABLED
  stats_state_e thread_state = KMP_GET_THREAD_STATE();
#endif

/* OMPT Behavior:
THIS function is called from
  __kmp_barrier (2 times)  (implicit or explicit barrier in parallel regions)
            these have join / fork behavior

       In these cases, we don't change the state or trigger events in THIS
function.
       Events are triggered in the calling code (__kmp_barrier):

                state := ompt_state_overhead
            barrier-begin
            barrier-wait-begin
                state := ompt_state_wait_barrier
          call join-barrier-implementation (finally arrive here)
          {}
          call fork-barrier-implementation (finally arrive here)
          {}
                state := ompt_state_overhead
            barrier-wait-end
            barrier-end
                state := ompt_state_work_parallel


  __kmp_fork_barrier  (after thread creation, before executing implicit task)
          call fork-barrier-implementation (finally arrive here)
          {} // worker arrive here with state = ompt_state_idle


  __kmp_join_barrier  (implicit barrier at end of parallel region)
                state := ompt_state_barrier_implicit
            barrier-begin
            barrier-wait-begin
          call join-barrier-implementation (finally arrive here
final_spin=FALSE)
          {
          }
  __kmp_fork_barrier  (implicit barrier at end of parallel region)
          call fork-barrier-implementation (finally arrive here final_spin=TRUE)

       Worker after task-team is finished:
            barrier-wait-end
            barrier-end
            implicit-task-end
            idle-begin
                state := ompt_state_idle

       Before leaving, if state = ompt_state_idle
            idle-end
                state := ompt_state_overhead
*/
#if OMPT_SUPPORT
  ompt_state_t ompt_entry_state;
  ompt_data_t *tId;
  if (ompt_enabled.enabled) {
    ompt_entry_state = this_thr->th.ompt_thread_info.state;
    if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit ||
        KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
      ompt_lw_taskteam_t *team =
          this_thr->th.th_team->t.ompt_serialized_team_info;
      if (team) {
        tId = &(team->ompt_task_info.task_data);
      } else {
        tId = OMPT_CUR_TASK_DATA(this_thr);
      }
    } else {
      tId = &(this_thr->th.ompt_thread_info.task_data);
    }
    if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
                       this_thr->th.th_task_team == NULL)) {
      // implicit task is done. Either no taskqueue, or task-team finished
      __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
    }
  }
#endif

  KMP_INIT_YIELD(spins); // Setup for waiting

  if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ||
      __kmp_pause_status == kmp_soft_paused) {
#if KMP_USE_MONITOR
// The worker threads cannot rely on the team struct existing at this point.
// Use the bt values cached in the thread struct instead.
#ifdef KMP_ADJUST_BLOCKTIME
    if (__kmp_pause_status == kmp_soft_paused ||
        (__kmp_zero_bt && !this_thr->th.th_team_bt_set))
      // Force immediate suspend if not set by user and more threads than
      // available procs
      hibernate = 0;
    else
      hibernate = this_thr->th.th_team_bt_intervals;
#else
    hibernate = this_thr->th.th_team_bt_intervals;
#endif /* KMP_ADJUST_BLOCKTIME */

    /* If the blocktime is nonzero, we want to make sure that we spin wait for
       the entirety of the specified #intervals, plus up to one interval more.
       This increment make certain that this thread doesn't go to sleep too
       soon.  */
    if (hibernate != 0)
      hibernate++;

    // Add in the current time value.
    hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
    KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
                  th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
                  hibernate - __kmp_global.g.g_time.dt.t_value));
#else
    if (__kmp_pause_status == kmp_soft_paused) {
      // Force immediate suspend
      hibernate_goal = KMP_NOW();
    } else
      hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
    poll_count = 0;
#endif // KMP_USE_MONITOR
  }

  oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
  KMP_MB();

  // Main wait spin loop
  while (flag->notdone_check()) {
    kmp_task_team_t *task_team = NULL;
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      task_team = this_thr->th.th_task_team;
      /* If the thread's task team pointer is NULL, it means one of 3 things:
         1) A newly-created thread is first being released by
         __kmp_fork_barrier(), and its task team has not been set up yet.
         2) All tasks have been executed to completion.
         3) Tasking is off for this region.  This could be because we are in a
         serialized region (perhaps the outer one), or else tasking was manually
         disabled (KMP_TASKING=0).  */
      if (task_team != NULL) {
        if (TCR_SYNC_4(task_team->tt.tt_active)) {
          if (KMP_TASKING_ENABLED(task_team))
            flag->execute_tasks(
                this_thr, th_gtid, final_spin,
                &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
          else
            this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
        } else {
          KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
#if OMPT_SUPPORT
          // task-team is done now, other cases should be catched above
          if (final_spin && ompt_enabled.enabled)
            __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
#endif
          this_thr->th.th_task_team = NULL;
          this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
        }
      } else {
        this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
      } // if
    } // if

    KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin));
    if (TCR_4(__kmp_global.g.g_done)) {
      if (__kmp_global.g.g_abort)
        __kmp_abort_thread();
      break;
    }

    // If we are oversubscribed, or have waited a bit (and
    // KMP_LIBRARY=throughput), then yield
    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);

#if KMP_STATS_ENABLED
    // Check if thread has been signalled to idle state
    // This indicates that the logical "join-barrier" has finished
    if (this_thr->th.th_stats->isIdle() &&
        KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
      KMP_SET_THREAD_STATE(IDLE);
      KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
    }
#endif
    // Check if the barrier surrounding this wait loop has been cancelled
    if (cancellable) {
      kmp_team_t *team = this_thr->th.th_team;
      if (team && team->t.t_cancel_request == cancel_parallel)
        break;
    }

    // Don't suspend if KMP_BLOCKTIME is set to "infinite"
    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
        __kmp_pause_status != kmp_soft_paused)
      continue;

    // Don't suspend if there is a likelihood of new tasks being spawned.
    if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
      continue;

#if KMP_USE_MONITOR
    // If we have waited a bit more, fall asleep
    if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
      continue;
#else
    if (KMP_BLOCKING(hibernate_goal, poll_count++))
      continue;
#endif
    // Don't suspend if wait loop designated non-sleepable
    // in template parameters
    if (!sleepable)
      continue;

    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
        __kmp_pause_status != kmp_soft_paused)
      continue;

    KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));

#if KMP_OS_UNIX
    if (final_spin)
      KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
#endif
    flag->suspend(th_gtid);
#if KMP_OS_UNIX
    if (final_spin)
      KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
#endif

    if (TCR_4(__kmp_global.g.g_done)) {
      if (__kmp_global.g.g_abort)
        __kmp_abort_thread();
      break;
    } else if (__kmp_tasking_mode != tskm_immediate_exec &&
               this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
      this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
    }
    // TODO: If thread is done with work and times out, disband/free
  }

#if OMPT_SUPPORT
  ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
  if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) {
#if OMPT_OPTIONAL
    if (final_spin) {
      __ompt_implicit_task_end(this_thr, ompt_exit_state, tId);
      ompt_exit_state = this_thr->th.ompt_thread_info.state;
    }
#endif
    if (ompt_exit_state == ompt_state_idle) {
      this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    }
  }
#endif
#if KMP_STATS_ENABLED
  // If we were put into idle state, pop that off the state stack
  if (KMP_GET_THREAD_STATE() == IDLE) {
    KMP_POP_PARTITIONED_TIMER();
    KMP_SET_THREAD_STATE(thread_state);
    this_thr->th.th_stats->resetIdleFlag();
  }
#endif

#if KMP_OS_UNIX
  if (final_spin)
    KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
#endif
  KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
  if (cancellable) {
    kmp_team_t *team = this_thr->th.th_team;
    if (team && team->t.t_cancel_request == cancel_parallel) {
      if (tasks_completed) {
        // undo the previous decrement of unfinished_threads so that the
        // thread can decrement at the join barrier with no problem
        kmp_task_team_t *task_team = this_thr->th.th_task_team;
        std::atomic<kmp_int32> *unfinished_threads =
            &(task_team->tt.tt_unfinished_threads);
        KMP_ATOMIC_INC(unfinished_threads);
      }
      return true;
    }
  }
  return false;
}

/* Release any threads specified as waiting on the flag by releasing the flag
   and resume the waiting thread if indicated by the sleep bit(s). A thread that
   calls __kmp_wait_template must call this function to wake up the potentially
   sleeping thread and prevent deadlocks!  */
template <class C> static inline void __kmp_release_template(C *flag) {
#ifdef KMP_DEBUG
  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
#endif
  KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
  KMP_DEBUG_ASSERT(flag->get());
  KMP_FSYNC_RELEASING(flag->get_void_p());

  flag->internal_release();

  KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
                 flag->load()));

  if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
    // Only need to check sleep stuff if infinite block time not set.
    // Are *any* threads waiting on flag sleeping?
    if (flag->is_any_sleeping()) {
      for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
        // if sleeping waiter exists at i, sets current_waiter to i inside flag
        kmp_info_t *waiter = flag->get_waiter(i);
        if (waiter) {
          int wait_gtid = waiter->th.th_info.ds.ds_gtid;
          // Wake up thread if needed
          KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep "
                        "flag(%p) set\n",
                        gtid, wait_gtid, flag->get()));
          flag->resume(wait_gtid); // unsets flag's current_waiter when done
        }
      }
    }
  }
}

template <typename FlagType> struct flag_traits {};

template <> struct flag_traits<kmp_uint32> {
  typedef kmp_uint32 flag_t;
  static const flag_type t = flag32;
  static inline flag_t tcr(flag_t f) { return TCR_4(f); }
  static inline flag_t test_then_add4(volatile flag_t *f) {
    return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f));
  }
  static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_OR32(f, v);
  }
  static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_AND32(f, v);
  }
};

template <> struct flag_traits<kmp_uint64> {
  typedef kmp_uint64 flag_t;
  static const flag_type t = flag64;
  static inline flag_t tcr(flag_t f) { return TCR_8(f); }
  static inline flag_t test_then_add4(volatile flag_t *f) {
    return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f));
  }
  static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_OR64(f, v);
  }
  static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
    return KMP_TEST_THEN_AND64(f, v);
  }
};

// Basic flag that does not use C11 Atomics
template <typename FlagType>
class kmp_basic_flag_native : public kmp_flag_native<FlagType> {
  typedef flag_traits<FlagType> traits_type;
  FlagType checker; /**< Value to compare flag to to check if flag has been
                       released. */
  kmp_info_t
      *waiting_threads[1]; /**< Array of threads sleeping on this thread. */
  kmp_uint32
      num_waiting_threads; /**< Number of threads sleeping on this thread. */
public:
  kmp_basic_flag_native(volatile FlagType *p)
      : kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
  kmp_basic_flag_native(volatile FlagType *p, kmp_info_t *thr)
      : kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(1) {
    waiting_threads[0] = thr;
  }
  kmp_basic_flag_native(volatile FlagType *p, FlagType c)
      : kmp_flag_native<FlagType>(p, traits_type::t), checker(c),
        num_waiting_threads(0) {}
  /*!
   * param i in   index into waiting_threads
   * @result the thread that is waiting at index i
   */
  kmp_info_t *get_waiter(kmp_uint32 i) {
    KMP_DEBUG_ASSERT(i < num_waiting_threads);
    return waiting_threads[i];
  }
  /*!
   * @result num_waiting_threads
   */
  kmp_uint32 get_num_waiters() { return num_waiting_threads; }
  /*!
   * @param thr in   the thread which is now waiting
   *
   * Insert a waiting thread at index 0.
   */
  void set_waiter(kmp_info_t *thr) {
    waiting_threads[0] = thr;
    num_waiting_threads = 1;
  }
  /*!
   * @result true if the flag object has been released.
   */
  bool done_check() { return traits_type::tcr(*(this->get())) == checker; }
  /*!
   * @param old_loc in   old value of flag
   * @result true if the flag's old value indicates it was released.
   */
  bool done_check_val(FlagType old_loc) { return old_loc == checker; }
  /*!
   * @result true if the flag object is not yet released.
   * Used in __kmp_wait_template like:
   * @code
   * while (flag.notdone_check()) { pause(); }
   * @endcode
   */
  bool notdone_check() { return traits_type::tcr(*(this->get())) != checker; }
  /*!
   * @result Actual flag value before release was applied.
   * Trigger all waiting threads to run by modifying flag to release state.
   */
  void internal_release() {
    (void)traits_type::test_then_add4((volatile FlagType *)this->get());
  }
  /*!
   * @result Actual flag value before sleep bit(s) set.
   * Notes that there is at least one thread sleeping on the flag by setting
   * sleep bit(s).
   */
  FlagType set_sleeping() {
    return traits_type::test_then_or((volatile FlagType *)this->get(),
                                     KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @result Actual flag value before sleep bit(s) cleared.
   * Notes that there are no longer threads sleeping on the flag by clearing
   * sleep bit(s).
   */
  FlagType unset_sleeping() {
    return traits_type::test_then_and((volatile FlagType *)this->get(),
                                      ~KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @param old_loc in   old value of flag
   * Test whether there are threads sleeping on the flag's old value in old_loc.
   */
  bool is_sleeping_val(FlagType old_loc) {
    return old_loc & KMP_BARRIER_SLEEP_STATE;
  }
  /*!
   * Test whether there are threads sleeping on the flag.
   */
  bool is_sleeping() { return is_sleeping_val(*(this->get())); }
  bool is_any_sleeping() { return is_sleeping_val(*(this->get())); }
  kmp_uint8 *get_stolen() { return NULL; }
  enum barrier_type get_bt() { return bs_last_barrier; }
};

template <typename FlagType> class kmp_basic_flag : public kmp_flag<FlagType> {
  typedef flag_traits<FlagType> traits_type;
  FlagType checker; /**< Value to compare flag to to check if flag has been
                       released. */
  kmp_info_t
      *waiting_threads[1]; /**< Array of threads sleeping on this thread. */
  kmp_uint32
      num_waiting_threads; /**< Number of threads sleeping on this thread. */
public:
  kmp_basic_flag(std::atomic<FlagType> *p)
      : kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
  kmp_basic_flag(std::atomic<FlagType> *p, kmp_info_t *thr)
      : kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(1) {
    waiting_threads[0] = thr;
  }
  kmp_basic_flag(std::atomic<FlagType> *p, FlagType c)
      : kmp_flag<FlagType>(p, traits_type::t), checker(c),
        num_waiting_threads(0) {}
  /*!
   * param i in   index into waiting_threads
   * @result the thread that is waiting at index i
   */
  kmp_info_t *get_waiter(kmp_uint32 i) {
    KMP_DEBUG_ASSERT(i < num_waiting_threads);
    return waiting_threads[i];
  }
  /*!
   * @result num_waiting_threads
   */
  kmp_uint32 get_num_waiters() { return num_waiting_threads; }
  /*!
   * @param thr in   the thread which is now waiting
   *
   * Insert a waiting thread at index 0.
   */
  void set_waiter(kmp_info_t *thr) {
    waiting_threads[0] = thr;
    num_waiting_threads = 1;
  }
  /*!
   * @result true if the flag object has been released.
   */
  bool done_check() { return this->load() == checker; }
  /*!
   * @param old_loc in   old value of flag
   * @result true if the flag's old value indicates it was released.
   */
  bool done_check_val(FlagType old_loc) { return old_loc == checker; }
  /*!
   * @result true if the flag object is not yet released.
   * Used in __kmp_wait_template like:
   * @code
   * while (flag.notdone_check()) { pause(); }
   * @endcode
   */
  bool notdone_check() { return this->load() != checker; }
  /*!
   * @result Actual flag value before release was applied.
   * Trigger all waiting threads to run by modifying flag to release state.
   */
  void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); }
  /*!
   * @result Actual flag value before sleep bit(s) set.
   * Notes that there is at least one thread sleeping on the flag by setting
   * sleep bit(s).
   */
  FlagType set_sleeping() {
    return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @result Actual flag value before sleep bit(s) cleared.
   * Notes that there are no longer threads sleeping on the flag by clearing
   * sleep bit(s).
   */
  FlagType unset_sleeping() {
    return KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE);
  }
  /*!
   * @param old_loc in   old value of flag
   * Test whether there are threads sleeping on the flag's old value in old_loc.
   */
  bool is_sleeping_val(FlagType old_loc) {
    return old_loc & KMP_BARRIER_SLEEP_STATE;
  }
  /*!
   * Test whether there are threads sleeping on the flag.
   */
  bool is_sleeping() { return is_sleeping_val(this->load()); }
  bool is_any_sleeping() { return is_sleeping_val(this->load()); }
  kmp_uint8 *get_stolen() { return NULL; }
  enum barrier_type get_bt() { return bs_last_barrier; }
};

class kmp_flag_32 : public kmp_basic_flag<kmp_uint32> {
public:
  kmp_flag_32(std::atomic<kmp_uint32> *p) : kmp_basic_flag<kmp_uint32>(p) {}
  kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr)
      : kmp_basic_flag<kmp_uint32>(p, thr) {}
  kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c)
      : kmp_basic_flag<kmp_uint32>(p, c) {}
  void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); }
  void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); }
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
                    kmp_int32 is_constrained) {
    return __kmp_execute_tasks_32(
        this_thr, gtid, this, final_spin,
        thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
  }
  void wait(kmp_info_t *this_thr,
            int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
    if (final_spin)
      __kmp_wait_template<kmp_flag_32, TRUE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      __kmp_wait_template<kmp_flag_32, FALSE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
  }
  void release() { __kmp_release_template(this); }
  flag_type get_ptr_type() { return flag32; }
};

class kmp_flag_64 : public kmp_basic_flag_native<kmp_uint64> {
public:
  kmp_flag_64(volatile kmp_uint64 *p) : kmp_basic_flag_native<kmp_uint64>(p) {}
  kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr)
      : kmp_basic_flag_native<kmp_uint64>(p, thr) {}
  kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c)
      : kmp_basic_flag_native<kmp_uint64>(p, c) {}
  void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); }
  void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); }
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
                    kmp_int32 is_constrained) {
    return __kmp_execute_tasks_64(
        this_thr, gtid, this, final_spin,
        thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
  }
  void wait(kmp_info_t *this_thr,
            int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
    if (final_spin)
      __kmp_wait_template<kmp_flag_64, TRUE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      __kmp_wait_template<kmp_flag_64, FALSE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
  }
  bool wait_cancellable_nosleep(kmp_info_t *this_thr,
                                int final_spin
                                    USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
    bool retval = false;
    if (final_spin)
      retval = __kmp_wait_template<kmp_flag_64, TRUE, true, false>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      retval = __kmp_wait_template<kmp_flag_64, FALSE, true, false>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    return retval;
  }
  void release() { __kmp_release_template(this); }
  flag_type get_ptr_type() { return flag64; }
};

// Hierarchical 64-bit on-core barrier instantiation
class kmp_flag_oncore : public kmp_flag_native<kmp_uint64> {
  kmp_uint64 checker;
  kmp_info_t *waiting_threads[1];
  kmp_uint32 num_waiting_threads;
  kmp_uint32
      offset; /**< Portion of flag that is of interest for an operation. */
  bool flag_switch; /**< Indicates a switch in flag location. */
  enum barrier_type bt; /**< Barrier type. */
  kmp_info_t *this_thr; /**< Thread that may be redirected to different flag
                           location. */
#if USE_ITT_BUILD
  void *
      itt_sync_obj; /**< ITT object that must be passed to new flag location. */
#endif
  unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) {
    return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
  }

public:
  kmp_flag_oncore(volatile kmp_uint64 *p)
      : kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
        flag_switch(false) {}
  kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx)
      : kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
        offset(idx), flag_switch(false) {}
  kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
                  enum barrier_type bar_t,
                  kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt))
      : kmp_flag_native<kmp_uint64>(p, flag_oncore), checker(c),
        num_waiting_threads(0), offset(idx), flag_switch(false), bt(bar_t),
        this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {}
  kmp_info_t *get_waiter(kmp_uint32 i) {
    KMP_DEBUG_ASSERT(i < num_waiting_threads);
    return waiting_threads[i];
  }
  kmp_uint32 get_num_waiters() { return num_waiting_threads; }
  void set_waiter(kmp_info_t *thr) {
    waiting_threads[0] = thr;
    num_waiting_threads = 1;
  }
  bool done_check_val(kmp_uint64 old_loc) {
    return byteref(&old_loc, offset) == checker;
  }
  bool done_check() { return done_check_val(*get()); }
  bool notdone_check() {
    // Calculate flag_switch
    if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
      flag_switch = true;
    if (byteref(get(), offset) != 1 && !flag_switch)
      return true;
    else if (flag_switch) {
      this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
      kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
                       (kmp_uint64)KMP_BARRIER_STATE_BUMP);
      __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
    }
    return false;
  }
  void internal_release() {
    // Other threads can write their own bytes simultaneously.
    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
      byteref(get(), offset) = 1;
    } else {
      kmp_uint64 mask = 0;
      byteref(&mask, offset) = 1;
      KMP_TEST_THEN_OR64(get(), mask);
    }
  }
  kmp_uint64 set_sleeping() {
    return KMP_TEST_THEN_OR64(get(), KMP_BARRIER_SLEEP_STATE);
  }
  kmp_uint64 unset_sleeping() {
    return KMP_TEST_THEN_AND64(get(), ~KMP_BARRIER_SLEEP_STATE);
  }
  bool is_sleeping_val(kmp_uint64 old_loc) {
    return old_loc & KMP_BARRIER_SLEEP_STATE;
  }
  bool is_sleeping() { return is_sleeping_val(*get()); }
  bool is_any_sleeping() { return is_sleeping_val(*get()); }
  void wait(kmp_info_t *this_thr, int final_spin) {
    if (final_spin)
      __kmp_wait_template<kmp_flag_oncore, TRUE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
    else
      __kmp_wait_template<kmp_flag_oncore, FALSE>(
          this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
  }
  void release() { __kmp_release_template(this); }
  void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); }
  void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); }
  int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
                    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
                    kmp_int32 is_constrained) {
    return __kmp_execute_tasks_oncore(
        this_thr, gtid, this, final_spin,
        thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
  }
  kmp_uint8 *get_stolen() { return NULL; }
  enum barrier_type get_bt() { return bt; }
  flag_type get_ptr_type() { return flag_oncore; }
};

// Used to wake up threads, volatile void* flag is usually the th_sleep_loc
// associated with int gtid.
static inline void __kmp_null_resume_wrapper(int gtid, volatile void *flag) {
  if (!flag)
    return;

  switch (RCAST(kmp_flag_64 *, CCAST(void *, flag))->get_type()) {
  case flag32:
    __kmp_resume_32(gtid, NULL);
    break;
  case flag64:
    __kmp_resume_64(gtid, NULL);
    break;
  case flag_oncore:
    __kmp_resume_oncore(gtid, NULL);
    break;
  }
}

/*!
@}
*/

#endif // KMP_WAIT_RELEASE_H