1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
| /*
* kmp_wait_release.h -- Wait/Release implementation
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef KMP_WAIT_RELEASE_H
#define KMP_WAIT_RELEASE_H
#include "kmp.h"
#include "kmp_itt.h"
#include "kmp_stats.h"
#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif
/*!
@defgroup WAIT_RELEASE Wait/Release operations
The definitions and functions here implement the lowest level thread
synchronizations of suspending a thread and awaking it. They are used to build
higher level operations such as barriers and fork/join.
*/
/*!
@ingroup WAIT_RELEASE
@{
*/
/*!
* The flag_type describes the storage used for the flag.
*/
enum flag_type {
flag32, /**< 32 bit flags */
flag64, /**< 64 bit flags */
flag_oncore /**< special 64-bit flag for on-core barrier (hierarchical) */
};
/*!
* Base class for wait/release volatile flag
*/
template <typename P> class kmp_flag_native {
volatile P *loc;
flag_type t;
public:
typedef P flag_t;
kmp_flag_native(volatile P *p, flag_type ft) : loc(p), t(ft) {}
volatile P *get() { return loc; }
void *get_void_p() { return RCAST(void *, CCAST(P *, loc)); }
void set(volatile P *new_loc) { loc = new_loc; }
flag_type get_type() { return t; }
P load() { return *loc; }
void store(P val) { *loc = val; }
};
/*!
* Base class for wait/release atomic flag
*/
template <typename P> class kmp_flag {
std::atomic<P>
*loc; /**< Pointer to the flag storage that is modified by another thread
*/
flag_type t; /**< "Type" of the flag in loc */
public:
typedef P flag_t;
kmp_flag(std::atomic<P> *p, flag_type ft) : loc(p), t(ft) {}
/*!
* @result the pointer to the actual flag
*/
std::atomic<P> *get() { return loc; }
/*!
* @result void* pointer to the actual flag
*/
void *get_void_p() { return RCAST(void *, loc); }
/*!
* @param new_loc in set loc to point at new_loc
*/
void set(std::atomic<P> *new_loc) { loc = new_loc; }
/*!
* @result the flag_type
*/
flag_type get_type() { return t; }
/*!
* @result flag value
*/
P load() { return loc->load(std::memory_order_acquire); }
/*!
* @param val the new flag value to be stored
*/
void store(P val) { loc->store(val, std::memory_order_release); }
// Derived classes must provide the following:
/*
kmp_info_t * get_waiter(kmp_uint32 i);
kmp_uint32 get_num_waiters();
bool done_check();
bool done_check_val(P old_loc);
bool notdone_check();
P internal_release();
void suspend(int th_gtid);
void resume(int th_gtid);
P set_sleeping();
P unset_sleeping();
bool is_sleeping();
bool is_any_sleeping();
bool is_sleeping_val(P old_loc);
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
int *thread_finished
USE_ITT_BUILD_ARG(void * itt_sync_obj), kmp_int32
is_constrained);
*/
};
#if OMPT_SUPPORT
OMPT_NOINLINE
static void __ompt_implicit_task_end(kmp_info_t *this_thr,
ompt_state_t ompt_state,
ompt_data_t *tId) {
int ds_tid = this_thr->th.th_info.ds.ds_tid;
if (ompt_state == ompt_state_wait_barrier_implicit) {
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
#if OMPT_OPTIONAL
void *codeptr = NULL;
if (ompt_enabled.ompt_callback_sync_region_wait) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
codeptr);
}
if (ompt_enabled.ompt_callback_sync_region) {
ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
codeptr);
}
#endif
if (!KMP_MASTER_TID(ds_tid)) {
if (ompt_enabled.ompt_callback_implicit_task) {
int flags = this_thr->th.ompt_thread_info.parallel_flags;
flags = (flags & ompt_parallel_league) ? ompt_task_initial
: ompt_task_implicit;
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
ompt_scope_end, NULL, tId, 0, ds_tid, flags);
}
// return to idle state
this_thr->th.ompt_thread_info.state = ompt_state_idle;
} else {
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
}
}
}
#endif
/* Spin wait loop that first does pause/yield, then sleep. A thread that calls
__kmp_wait_* must make certain that another thread calls __kmp_release
to wake it back up to prevent deadlocks!
NOTE: We may not belong to a team at this point. */
template <class C, int final_spin, bool cancellable = false,
bool sleepable = true>
static inline bool
__kmp_wait_template(kmp_info_t *this_thr,
C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
#if USE_ITT_BUILD && USE_ITT_NOTIFY
volatile void *spin = flag->get();
#endif
kmp_uint32 spins;
int th_gtid;
int tasks_completed = FALSE;
int oversubscribed;
#if !KMP_USE_MONITOR
kmp_uint64 poll_count;
kmp_uint64 hibernate_goal;
#else
kmp_uint32 hibernate;
#endif
KMP_FSYNC_SPIN_INIT(spin, NULL);
if (flag->done_check()) {
KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
return false;
}
th_gtid = this_thr->th.th_info.ds.ds_gtid;
if (cancellable) {
kmp_team_t *team = this_thr->th.th_team;
if (team && team->t.t_cancel_request == cancel_parallel)
return true;
}
#if KMP_OS_UNIX
if (final_spin)
KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
#endif
KA_TRACE(20,
("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
#if KMP_STATS_ENABLED
stats_state_e thread_state = KMP_GET_THREAD_STATE();
#endif
/* OMPT Behavior:
THIS function is called from
__kmp_barrier (2 times) (implicit or explicit barrier in parallel regions)
these have join / fork behavior
In these cases, we don't change the state or trigger events in THIS
function.
Events are triggered in the calling code (__kmp_barrier):
state := ompt_state_overhead
barrier-begin
barrier-wait-begin
state := ompt_state_wait_barrier
call join-barrier-implementation (finally arrive here)
{}
call fork-barrier-implementation (finally arrive here)
{}
state := ompt_state_overhead
barrier-wait-end
barrier-end
state := ompt_state_work_parallel
__kmp_fork_barrier (after thread creation, before executing implicit task)
call fork-barrier-implementation (finally arrive here)
{} // worker arrive here with state = ompt_state_idle
__kmp_join_barrier (implicit barrier at end of parallel region)
state := ompt_state_barrier_implicit
barrier-begin
barrier-wait-begin
call join-barrier-implementation (finally arrive here
final_spin=FALSE)
{
}
__kmp_fork_barrier (implicit barrier at end of parallel region)
call fork-barrier-implementation (finally arrive here final_spin=TRUE)
Worker after task-team is finished:
barrier-wait-end
barrier-end
implicit-task-end
idle-begin
state := ompt_state_idle
Before leaving, if state = ompt_state_idle
idle-end
state := ompt_state_overhead
*/
#if OMPT_SUPPORT
ompt_state_t ompt_entry_state;
ompt_data_t *tId;
if (ompt_enabled.enabled) {
ompt_entry_state = this_thr->th.ompt_thread_info.state;
if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit ||
KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
ompt_lw_taskteam_t *team =
this_thr->th.th_team->t.ompt_serialized_team_info;
if (team) {
tId = &(team->ompt_task_info.task_data);
} else {
tId = OMPT_CUR_TASK_DATA(this_thr);
}
} else {
tId = &(this_thr->th.ompt_thread_info.task_data);
}
if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
this_thr->th.th_task_team == NULL)) {
// implicit task is done. Either no taskqueue, or task-team finished
__ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
}
}
#endif
KMP_INIT_YIELD(spins); // Setup for waiting
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ||
__kmp_pause_status == kmp_soft_paused) {
#if KMP_USE_MONITOR
// The worker threads cannot rely on the team struct existing at this point.
// Use the bt values cached in the thread struct instead.
#ifdef KMP_ADJUST_BLOCKTIME
if (__kmp_pause_status == kmp_soft_paused ||
(__kmp_zero_bt && !this_thr->th.th_team_bt_set))
// Force immediate suspend if not set by user and more threads than
// available procs
hibernate = 0;
else
hibernate = this_thr->th.th_team_bt_intervals;
#else
hibernate = this_thr->th.th_team_bt_intervals;
#endif /* KMP_ADJUST_BLOCKTIME */
/* If the blocktime is nonzero, we want to make sure that we spin wait for
the entirety of the specified #intervals, plus up to one interval more.
This increment make certain that this thread doesn't go to sleep too
soon. */
if (hibernate != 0)
hibernate++;
// Add in the current time value.
hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
hibernate - __kmp_global.g.g_time.dt.t_value));
#else
if (__kmp_pause_status == kmp_soft_paused) {
// Force immediate suspend
hibernate_goal = KMP_NOW();
} else
hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
poll_count = 0;
#endif // KMP_USE_MONITOR
}
oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
KMP_MB();
// Main wait spin loop
while (flag->notdone_check()) {
kmp_task_team_t *task_team = NULL;
if (__kmp_tasking_mode != tskm_immediate_exec) {
task_team = this_thr->th.th_task_team;
/* If the thread's task team pointer is NULL, it means one of 3 things:
1) A newly-created thread is first being released by
__kmp_fork_barrier(), and its task team has not been set up yet.
2) All tasks have been executed to completion.
3) Tasking is off for this region. This could be because we are in a
serialized region (perhaps the outer one), or else tasking was manually
disabled (KMP_TASKING=0). */
if (task_team != NULL) {
if (TCR_SYNC_4(task_team->tt.tt_active)) {
if (KMP_TASKING_ENABLED(task_team))
flag->execute_tasks(
this_thr, th_gtid, final_spin,
&tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
else
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
} else {
KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
#if OMPT_SUPPORT
// task-team is done now, other cases should be catched above
if (final_spin && ompt_enabled.enabled)
__ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
#endif
this_thr->th.th_task_team = NULL;
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
}
} else {
this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
} // if
} // if
KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin));
if (TCR_4(__kmp_global.g.g_done)) {
if (__kmp_global.g.g_abort)
__kmp_abort_thread();
break;
}
// If we are oversubscribed, or have waited a bit (and
// KMP_LIBRARY=throughput), then yield
KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
#if KMP_STATS_ENABLED
// Check if thread has been signalled to idle state
// This indicates that the logical "join-barrier" has finished
if (this_thr->th.th_stats->isIdle() &&
KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
KMP_SET_THREAD_STATE(IDLE);
KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
}
#endif
// Check if the barrier surrounding this wait loop has been cancelled
if (cancellable) {
kmp_team_t *team = this_thr->th.th_team;
if (team && team->t.t_cancel_request == cancel_parallel)
break;
}
// Don't suspend if KMP_BLOCKTIME is set to "infinite"
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
__kmp_pause_status != kmp_soft_paused)
continue;
// Don't suspend if there is a likelihood of new tasks being spawned.
if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
continue;
#if KMP_USE_MONITOR
// If we have waited a bit more, fall asleep
if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
continue;
#else
if (KMP_BLOCKING(hibernate_goal, poll_count++))
continue;
#endif
// Don't suspend if wait loop designated non-sleepable
// in template parameters
if (!sleepable)
continue;
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
__kmp_pause_status != kmp_soft_paused)
continue;
KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));
#if KMP_OS_UNIX
if (final_spin)
KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
#endif
flag->suspend(th_gtid);
#if KMP_OS_UNIX
if (final_spin)
KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true);
#endif
if (TCR_4(__kmp_global.g.g_done)) {
if (__kmp_global.g.g_abort)
__kmp_abort_thread();
break;
} else if (__kmp_tasking_mode != tskm_immediate_exec &&
this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
}
// TODO: If thread is done with work and times out, disband/free
}
#if OMPT_SUPPORT
ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) {
#if OMPT_OPTIONAL
if (final_spin) {
__ompt_implicit_task_end(this_thr, ompt_exit_state, tId);
ompt_exit_state = this_thr->th.ompt_thread_info.state;
}
#endif
if (ompt_exit_state == ompt_state_idle) {
this_thr->th.ompt_thread_info.state = ompt_state_overhead;
}
}
#endif
#if KMP_STATS_ENABLED
// If we were put into idle state, pop that off the state stack
if (KMP_GET_THREAD_STATE() == IDLE) {
KMP_POP_PARTITIONED_TIMER();
KMP_SET_THREAD_STATE(thread_state);
this_thr->th.th_stats->resetIdleFlag();
}
#endif
#if KMP_OS_UNIX
if (final_spin)
KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false);
#endif
KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin));
if (cancellable) {
kmp_team_t *team = this_thr->th.th_team;
if (team && team->t.t_cancel_request == cancel_parallel) {
if (tasks_completed) {
// undo the previous decrement of unfinished_threads so that the
// thread can decrement at the join barrier with no problem
kmp_task_team_t *task_team = this_thr->th.th_task_team;
std::atomic<kmp_int32> *unfinished_threads =
&(task_team->tt.tt_unfinished_threads);
KMP_ATOMIC_INC(unfinished_threads);
}
return true;
}
}
return false;
}
/* Release any threads specified as waiting on the flag by releasing the flag
and resume the waiting thread if indicated by the sleep bit(s). A thread that
calls __kmp_wait_template must call this function to wake up the potentially
sleeping thread and prevent deadlocks! */
template <class C> static inline void __kmp_release_template(C *flag) {
#ifdef KMP_DEBUG
int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
#endif
KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
KMP_DEBUG_ASSERT(flag->get());
KMP_FSYNC_RELEASING(flag->get_void_p());
flag->internal_release();
KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
flag->load()));
if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
// Only need to check sleep stuff if infinite block time not set.
// Are *any* threads waiting on flag sleeping?
if (flag->is_any_sleeping()) {
for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
// if sleeping waiter exists at i, sets current_waiter to i inside flag
kmp_info_t *waiter = flag->get_waiter(i);
if (waiter) {
int wait_gtid = waiter->th.th_info.ds.ds_gtid;
// Wake up thread if needed
KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep "
"flag(%p) set\n",
gtid, wait_gtid, flag->get()));
flag->resume(wait_gtid); // unsets flag's current_waiter when done
}
}
}
}
}
template <typename FlagType> struct flag_traits {};
template <> struct flag_traits<kmp_uint32> {
typedef kmp_uint32 flag_t;
static const flag_type t = flag32;
static inline flag_t tcr(flag_t f) { return TCR_4(f); }
static inline flag_t test_then_add4(volatile flag_t *f) {
return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f));
}
static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
return KMP_TEST_THEN_OR32(f, v);
}
static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
return KMP_TEST_THEN_AND32(f, v);
}
};
template <> struct flag_traits<kmp_uint64> {
typedef kmp_uint64 flag_t;
static const flag_type t = flag64;
static inline flag_t tcr(flag_t f) { return TCR_8(f); }
static inline flag_t test_then_add4(volatile flag_t *f) {
return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f));
}
static inline flag_t test_then_or(volatile flag_t *f, flag_t v) {
return KMP_TEST_THEN_OR64(f, v);
}
static inline flag_t test_then_and(volatile flag_t *f, flag_t v) {
return KMP_TEST_THEN_AND64(f, v);
}
};
// Basic flag that does not use C11 Atomics
template <typename FlagType>
class kmp_basic_flag_native : public kmp_flag_native<FlagType> {
typedef flag_traits<FlagType> traits_type;
FlagType checker; /**< Value to compare flag to to check if flag has been
released. */
kmp_info_t
*waiting_threads[1]; /**< Array of threads sleeping on this thread. */
kmp_uint32
num_waiting_threads; /**< Number of threads sleeping on this thread. */
public:
kmp_basic_flag_native(volatile FlagType *p)
: kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
kmp_basic_flag_native(volatile FlagType *p, kmp_info_t *thr)
: kmp_flag_native<FlagType>(p, traits_type::t), num_waiting_threads(1) {
waiting_threads[0] = thr;
}
kmp_basic_flag_native(volatile FlagType *p, FlagType c)
: kmp_flag_native<FlagType>(p, traits_type::t), checker(c),
num_waiting_threads(0) {}
/*!
* param i in index into waiting_threads
* @result the thread that is waiting at index i
*/
kmp_info_t *get_waiter(kmp_uint32 i) {
KMP_DEBUG_ASSERT(i < num_waiting_threads);
return waiting_threads[i];
}
/*!
* @result num_waiting_threads
*/
kmp_uint32 get_num_waiters() { return num_waiting_threads; }
/*!
* @param thr in the thread which is now waiting
*
* Insert a waiting thread at index 0.
*/
void set_waiter(kmp_info_t *thr) {
waiting_threads[0] = thr;
num_waiting_threads = 1;
}
/*!
* @result true if the flag object has been released.
*/
bool done_check() { return traits_type::tcr(*(this->get())) == checker; }
/*!
* @param old_loc in old value of flag
* @result true if the flag's old value indicates it was released.
*/
bool done_check_val(FlagType old_loc) { return old_loc == checker; }
/*!
* @result true if the flag object is not yet released.
* Used in __kmp_wait_template like:
* @code
* while (flag.notdone_check()) { pause(); }
* @endcode
*/
bool notdone_check() { return traits_type::tcr(*(this->get())) != checker; }
/*!
* @result Actual flag value before release was applied.
* Trigger all waiting threads to run by modifying flag to release state.
*/
void internal_release() {
(void)traits_type::test_then_add4((volatile FlagType *)this->get());
}
/*!
* @result Actual flag value before sleep bit(s) set.
* Notes that there is at least one thread sleeping on the flag by setting
* sleep bit(s).
*/
FlagType set_sleeping() {
return traits_type::test_then_or((volatile FlagType *)this->get(),
KMP_BARRIER_SLEEP_STATE);
}
/*!
* @result Actual flag value before sleep bit(s) cleared.
* Notes that there are no longer threads sleeping on the flag by clearing
* sleep bit(s).
*/
FlagType unset_sleeping() {
return traits_type::test_then_and((volatile FlagType *)this->get(),
~KMP_BARRIER_SLEEP_STATE);
}
/*!
* @param old_loc in old value of flag
* Test whether there are threads sleeping on the flag's old value in old_loc.
*/
bool is_sleeping_val(FlagType old_loc) {
return old_loc & KMP_BARRIER_SLEEP_STATE;
}
/*!
* Test whether there are threads sleeping on the flag.
*/
bool is_sleeping() { return is_sleeping_val(*(this->get())); }
bool is_any_sleeping() { return is_sleeping_val(*(this->get())); }
kmp_uint8 *get_stolen() { return NULL; }
enum barrier_type get_bt() { return bs_last_barrier; }
};
template <typename FlagType> class kmp_basic_flag : public kmp_flag<FlagType> {
typedef flag_traits<FlagType> traits_type;
FlagType checker; /**< Value to compare flag to to check if flag has been
released. */
kmp_info_t
*waiting_threads[1]; /**< Array of threads sleeping on this thread. */
kmp_uint32
num_waiting_threads; /**< Number of threads sleeping on this thread. */
public:
kmp_basic_flag(std::atomic<FlagType> *p)
: kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(0) {}
kmp_basic_flag(std::atomic<FlagType> *p, kmp_info_t *thr)
: kmp_flag<FlagType>(p, traits_type::t), num_waiting_threads(1) {
waiting_threads[0] = thr;
}
kmp_basic_flag(std::atomic<FlagType> *p, FlagType c)
: kmp_flag<FlagType>(p, traits_type::t), checker(c),
num_waiting_threads(0) {}
/*!
* param i in index into waiting_threads
* @result the thread that is waiting at index i
*/
kmp_info_t *get_waiter(kmp_uint32 i) {
KMP_DEBUG_ASSERT(i < num_waiting_threads);
return waiting_threads[i];
}
/*!
* @result num_waiting_threads
*/
kmp_uint32 get_num_waiters() { return num_waiting_threads; }
/*!
* @param thr in the thread which is now waiting
*
* Insert a waiting thread at index 0.
*/
void set_waiter(kmp_info_t *thr) {
waiting_threads[0] = thr;
num_waiting_threads = 1;
}
/*!
* @result true if the flag object has been released.
*/
bool done_check() { return this->load() == checker; }
/*!
* @param old_loc in old value of flag
* @result true if the flag's old value indicates it was released.
*/
bool done_check_val(FlagType old_loc) { return old_loc == checker; }
/*!
* @result true if the flag object is not yet released.
* Used in __kmp_wait_template like:
* @code
* while (flag.notdone_check()) { pause(); }
* @endcode
*/
bool notdone_check() { return this->load() != checker; }
/*!
* @result Actual flag value before release was applied.
* Trigger all waiting threads to run by modifying flag to release state.
*/
void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); }
/*!
* @result Actual flag value before sleep bit(s) set.
* Notes that there is at least one thread sleeping on the flag by setting
* sleep bit(s).
*/
FlagType set_sleeping() {
return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE);
}
/*!
* @result Actual flag value before sleep bit(s) cleared.
* Notes that there are no longer threads sleeping on the flag by clearing
* sleep bit(s).
*/
FlagType unset_sleeping() {
return KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE);
}
/*!
* @param old_loc in old value of flag
* Test whether there are threads sleeping on the flag's old value in old_loc.
*/
bool is_sleeping_val(FlagType old_loc) {
return old_loc & KMP_BARRIER_SLEEP_STATE;
}
/*!
* Test whether there are threads sleeping on the flag.
*/
bool is_sleeping() { return is_sleeping_val(this->load()); }
bool is_any_sleeping() { return is_sleeping_val(this->load()); }
kmp_uint8 *get_stolen() { return NULL; }
enum barrier_type get_bt() { return bs_last_barrier; }
};
class kmp_flag_32 : public kmp_basic_flag<kmp_uint32> {
public:
kmp_flag_32(std::atomic<kmp_uint32> *p) : kmp_basic_flag<kmp_uint32>(p) {}
kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr)
: kmp_basic_flag<kmp_uint32>(p, thr) {}
kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c)
: kmp_basic_flag<kmp_uint32>(p, c) {}
void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); }
void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); }
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
return __kmp_execute_tasks_32(
this_thr, gtid, this, final_spin,
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}
void wait(kmp_info_t *this_thr,
int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
if (final_spin)
__kmp_wait_template<kmp_flag_32, TRUE>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
else
__kmp_wait_template<kmp_flag_32, FALSE>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
}
void release() { __kmp_release_template(this); }
flag_type get_ptr_type() { return flag32; }
};
class kmp_flag_64 : public kmp_basic_flag_native<kmp_uint64> {
public:
kmp_flag_64(volatile kmp_uint64 *p) : kmp_basic_flag_native<kmp_uint64>(p) {}
kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr)
: kmp_basic_flag_native<kmp_uint64>(p, thr) {}
kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c)
: kmp_basic_flag_native<kmp_uint64>(p, c) {}
void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); }
void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); }
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
return __kmp_execute_tasks_64(
this_thr, gtid, this, final_spin,
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}
void wait(kmp_info_t *this_thr,
int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
if (final_spin)
__kmp_wait_template<kmp_flag_64, TRUE>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
else
__kmp_wait_template<kmp_flag_64, FALSE>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
}
bool wait_cancellable_nosleep(kmp_info_t *this_thr,
int final_spin
USE_ITT_BUILD_ARG(void *itt_sync_obj)) {
bool retval = false;
if (final_spin)
retval = __kmp_wait_template<kmp_flag_64, TRUE, true, false>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
else
retval = __kmp_wait_template<kmp_flag_64, FALSE, true, false>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
return retval;
}
void release() { __kmp_release_template(this); }
flag_type get_ptr_type() { return flag64; }
};
// Hierarchical 64-bit on-core barrier instantiation
class kmp_flag_oncore : public kmp_flag_native<kmp_uint64> {
kmp_uint64 checker;
kmp_info_t *waiting_threads[1];
kmp_uint32 num_waiting_threads;
kmp_uint32
offset; /**< Portion of flag that is of interest for an operation. */
bool flag_switch; /**< Indicates a switch in flag location. */
enum barrier_type bt; /**< Barrier type. */
kmp_info_t *this_thr; /**< Thread that may be redirected to different flag
location. */
#if USE_ITT_BUILD
void *
itt_sync_obj; /**< ITT object that must be passed to new flag location. */
#endif
unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) {
return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
}
public:
kmp_flag_oncore(volatile kmp_uint64 *p)
: kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
flag_switch(false) {}
kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx)
: kmp_flag_native<kmp_uint64>(p, flag_oncore), num_waiting_threads(0),
offset(idx), flag_switch(false) {}
kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
enum barrier_type bar_t,
kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt))
: kmp_flag_native<kmp_uint64>(p, flag_oncore), checker(c),
num_waiting_threads(0), offset(idx), flag_switch(false), bt(bar_t),
this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {}
kmp_info_t *get_waiter(kmp_uint32 i) {
KMP_DEBUG_ASSERT(i < num_waiting_threads);
return waiting_threads[i];
}
kmp_uint32 get_num_waiters() { return num_waiting_threads; }
void set_waiter(kmp_info_t *thr) {
waiting_threads[0] = thr;
num_waiting_threads = 1;
}
bool done_check_val(kmp_uint64 old_loc) {
return byteref(&old_loc, offset) == checker;
}
bool done_check() { return done_check_val(*get()); }
bool notdone_check() {
// Calculate flag_switch
if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
flag_switch = true;
if (byteref(get(), offset) != 1 && !flag_switch)
return true;
else if (flag_switch) {
this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
(kmp_uint64)KMP_BARRIER_STATE_BUMP);
__kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
}
return false;
}
void internal_release() {
// Other threads can write their own bytes simultaneously.
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
byteref(get(), offset) = 1;
} else {
kmp_uint64 mask = 0;
byteref(&mask, offset) = 1;
KMP_TEST_THEN_OR64(get(), mask);
}
}
kmp_uint64 set_sleeping() {
return KMP_TEST_THEN_OR64(get(), KMP_BARRIER_SLEEP_STATE);
}
kmp_uint64 unset_sleeping() {
return KMP_TEST_THEN_AND64(get(), ~KMP_BARRIER_SLEEP_STATE);
}
bool is_sleeping_val(kmp_uint64 old_loc) {
return old_loc & KMP_BARRIER_SLEEP_STATE;
}
bool is_sleeping() { return is_sleeping_val(*get()); }
bool is_any_sleeping() { return is_sleeping_val(*get()); }
void wait(kmp_info_t *this_thr, int final_spin) {
if (final_spin)
__kmp_wait_template<kmp_flag_oncore, TRUE>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
else
__kmp_wait_template<kmp_flag_oncore, FALSE>(
this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj));
}
void release() { __kmp_release_template(this); }
void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); }
void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); }
int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin,
int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
kmp_int32 is_constrained) {
return __kmp_execute_tasks_oncore(
this_thr, gtid, this, final_spin,
thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
}
kmp_uint8 *get_stolen() { return NULL; }
enum barrier_type get_bt() { return bt; }
flag_type get_ptr_type() { return flag_oncore; }
};
// Used to wake up threads, volatile void* flag is usually the th_sleep_loc
// associated with int gtid.
static inline void __kmp_null_resume_wrapper(int gtid, volatile void *flag) {
if (!flag)
return;
switch (RCAST(kmp_flag_64 *, CCAST(void *, flag))->get_type()) {
case flag32:
__kmp_resume_32(gtid, NULL);
break;
case flag64:
__kmp_resume_64(gtid, NULL);
break;
case flag_oncore:
__kmp_resume_oncore(gtid, NULL);
break;
}
}
/*!
@}
*/
#endif // KMP_WAIT_RELEASE_H
|