reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
//===- ThreadSafety.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A intra-procedural analysis for thread safety (e.g. deadlocks and race
// conditions), based off of an annotation system.
//
// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
// for more information.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/ThreadSafety.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>

using namespace clang;
using namespace threadSafety;

// Key method definition
ThreadSafetyHandler::~ThreadSafetyHandler() = default;

/// Issue a warning about an invalid lock expression
static void warnInvalidLock(ThreadSafetyHandler &Handler,
                            const Expr *MutexExp, const NamedDecl *D,
                            const Expr *DeclExp, StringRef Kind) {
  SourceLocation Loc;
  if (DeclExp)
    Loc = DeclExp->getExprLoc();

  // FIXME: add a note about the attribute location in MutexExp or D
  if (Loc.isValid())
    Handler.handleInvalidLockExp(Kind, Loc);
}

namespace {

/// A set of CapabilityExpr objects, which are compiled from thread safety
/// attributes on a function.
class CapExprSet : public SmallVector<CapabilityExpr, 4> {
public:
  /// Push M onto list, but discard duplicates.
  void push_back_nodup(const CapabilityExpr &CapE) {
    iterator It = std::find_if(begin(), end(),
                               [=](const CapabilityExpr &CapE2) {
      return CapE.equals(CapE2);
    });
    if (It == end())
      push_back(CapE);
  }
};

class FactManager;
class FactSet;

/// This is a helper class that stores a fact that is known at a
/// particular point in program execution.  Currently, a fact is a capability,
/// along with additional information, such as where it was acquired, whether
/// it is exclusive or shared, etc.
///
/// FIXME: this analysis does not currently support re-entrant locking.
class FactEntry : public CapabilityExpr {
private:
  /// Exclusive or shared.
  LockKind LKind;

  /// Where it was acquired.
  SourceLocation AcquireLoc;

  /// True if the lock was asserted.
  bool Asserted;

  /// True if the lock was declared.
  bool Declared;

public:
  FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
            bool Asrt, bool Declrd = false)
      : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
        Declared(Declrd) {}
  virtual ~FactEntry() = default;

  LockKind kind() const { return LKind;      }
  SourceLocation loc() const { return AcquireLoc; }
  bool asserted() const { return Asserted; }
  bool declared() const { return Declared; }

  void setDeclared(bool D) { Declared = D; }

  virtual void
  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
                                SourceLocation JoinLoc, LockErrorKind LEK,
                                ThreadSafetyHandler &Handler) const = 0;
  virtual void handleLock(FactSet &FSet, FactManager &FactMan,
                          const FactEntry &entry, ThreadSafetyHandler &Handler,
                          StringRef DiagKind) const = 0;
  virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
                            const CapabilityExpr &Cp, SourceLocation UnlockLoc,
                            bool FullyRemove, ThreadSafetyHandler &Handler,
                            StringRef DiagKind) const = 0;

  // Return true if LKind >= LK, where exclusive > shared
  bool isAtLeast(LockKind LK) const {
    return  (LKind == LK_Exclusive) || (LK == LK_Shared);
  }
};

using FactID = unsigned short;

/// FactManager manages the memory for all facts that are created during
/// the analysis of a single routine.
class FactManager {
private:
  std::vector<std::unique_ptr<const FactEntry>> Facts;

public:
  FactID newFact(std::unique_ptr<FactEntry> Entry) {
    Facts.push_back(std::move(Entry));
    return static_cast<unsigned short>(Facts.size() - 1);
  }

  const FactEntry &operator[](FactID F) const { return *Facts[F]; }
};

/// A FactSet is the set of facts that are known to be true at a
/// particular program point.  FactSets must be small, because they are
/// frequently copied, and are thus implemented as a set of indices into a
/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
/// locks, so we can get away with doing a linear search for lookup.  Note
/// that a hashtable or map is inappropriate in this case, because lookups
/// may involve partial pattern matches, rather than exact matches.
class FactSet {
private:
  using FactVec = SmallVector<FactID, 4>;

  FactVec FactIDs;

public:
  using iterator = FactVec::iterator;
  using const_iterator = FactVec::const_iterator;

  iterator begin() { return FactIDs.begin(); }
  const_iterator begin() const { return FactIDs.begin(); }

  iterator end() { return FactIDs.end(); }
  const_iterator end() const { return FactIDs.end(); }

  bool isEmpty() const { return FactIDs.size() == 0; }

  // Return true if the set contains only negative facts
  bool isEmpty(FactManager &FactMan) const {
    for (const auto FID : *this) {
      if (!FactMan[FID].negative())
        return false;
    }
    return true;
  }

  void addLockByID(FactID ID) { FactIDs.push_back(ID); }

  FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
    FactID F = FM.newFact(std::move(Entry));
    FactIDs.push_back(F);
    return F;
  }

  bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
    unsigned n = FactIDs.size();
    if (n == 0)
      return false;

    for (unsigned i = 0; i < n-1; ++i) {
      if (FM[FactIDs[i]].matches(CapE)) {
        FactIDs[i] = FactIDs[n-1];
        FactIDs.pop_back();
        return true;
      }
    }
    if (FM[FactIDs[n-1]].matches(CapE)) {
      FactIDs.pop_back();
      return true;
    }
    return false;
  }

  iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
    return std::find_if(begin(), end(), [&](FactID ID) {
      return FM[ID].matches(CapE);
    });
  }

  const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
    auto I = std::find_if(begin(), end(), [&](FactID ID) {
      return FM[ID].matches(CapE);
    });
    return I != end() ? &FM[*I] : nullptr;
  }

  const FactEntry *findLockUniv(FactManager &FM,
                                const CapabilityExpr &CapE) const {
    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
      return FM[ID].matchesUniv(CapE);
    });
    return I != end() ? &FM[*I] : nullptr;
  }

  const FactEntry *findPartialMatch(FactManager &FM,
                                    const CapabilityExpr &CapE) const {
    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
      return FM[ID].partiallyMatches(CapE);
    });
    return I != end() ? &FM[*I] : nullptr;
  }

  bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
      return FM[ID].valueDecl() == Vd;
    });
    return I != end();
  }
};

class ThreadSafetyAnalyzer;

} // namespace

namespace clang {
namespace threadSafety {

class BeforeSet {
private:
  using BeforeVect = SmallVector<const ValueDecl *, 4>;

  struct BeforeInfo {
    BeforeVect Vect;
    int Visited = 0;

    BeforeInfo() = default;
    BeforeInfo(BeforeInfo &&) = default;
  };

  using BeforeMap =
      llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
  using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;

public:
  BeforeSet() = default;

  BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
                              ThreadSafetyAnalyzer& Analyzer);

  BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
                                   ThreadSafetyAnalyzer &Analyzer);

  void checkBeforeAfter(const ValueDecl* Vd,
                        const FactSet& FSet,
                        ThreadSafetyAnalyzer& Analyzer,
                        SourceLocation Loc, StringRef CapKind);

private:
  BeforeMap BMap;
  CycleMap CycMap;
};

} // namespace threadSafety
} // namespace clang

namespace {

class LocalVariableMap;

using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;

/// A side (entry or exit) of a CFG node.
enum CFGBlockSide { CBS_Entry, CBS_Exit };

/// CFGBlockInfo is a struct which contains all the information that is
/// maintained for each block in the CFG.  See LocalVariableMap for more
/// information about the contexts.
struct CFGBlockInfo {
  // Lockset held at entry to block
  FactSet EntrySet;

  // Lockset held at exit from block
  FactSet ExitSet;

  // Context held at entry to block
  LocalVarContext EntryContext;

  // Context held at exit from block
  LocalVarContext ExitContext;

  // Location of first statement in block
  SourceLocation EntryLoc;

  // Location of last statement in block.
  SourceLocation ExitLoc;

  // Used to replay contexts later
  unsigned EntryIndex;

  // Is this block reachable?
  bool Reachable = false;

  const FactSet &getSet(CFGBlockSide Side) const {
    return Side == CBS_Entry ? EntrySet : ExitSet;
  }

  SourceLocation getLocation(CFGBlockSide Side) const {
    return Side == CBS_Entry ? EntryLoc : ExitLoc;
  }

private:
  CFGBlockInfo(LocalVarContext EmptyCtx)
      : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}

public:
  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
};

// A LocalVariableMap maintains a map from local variables to their currently
// valid definitions.  It provides SSA-like functionality when traversing the
// CFG.  Like SSA, each definition or assignment to a variable is assigned a
// unique name (an integer), which acts as the SSA name for that definition.
// The total set of names is shared among all CFG basic blocks.
// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
// with their SSA-names.  Instead, we compute a Context for each point in the
// code, which maps local variables to the appropriate SSA-name.  This map
// changes with each assignment.
//
// The map is computed in a single pass over the CFG.  Subsequent analyses can
// then query the map to find the appropriate Context for a statement, and use
// that Context to look up the definitions of variables.
class LocalVariableMap {
public:
  using Context = LocalVarContext;

  /// A VarDefinition consists of an expression, representing the value of the
  /// variable, along with the context in which that expression should be
  /// interpreted.  A reference VarDefinition does not itself contain this
  /// information, but instead contains a pointer to a previous VarDefinition.
  struct VarDefinition {
  public:
    friend class LocalVariableMap;

    // The original declaration for this variable.
    const NamedDecl *Dec;

    // The expression for this variable, OR
    const Expr *Exp = nullptr;

    // Reference to another VarDefinition
    unsigned Ref = 0;

    // The map with which Exp should be interpreted.
    Context Ctx;

    bool isReference() { return !Exp; }

  private:
    // Create ordinary variable definition
    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
        : Dec(D), Exp(E), Ctx(C) {}

    // Create reference to previous definition
    VarDefinition(const NamedDecl *D, unsigned R, Context C)
        : Dec(D), Ref(R), Ctx(C) {}
  };

private:
  Context::Factory ContextFactory;
  std::vector<VarDefinition> VarDefinitions;
  std::vector<unsigned> CtxIndices;
  std::vector<std::pair<const Stmt *, Context>> SavedContexts;

public:
  LocalVariableMap() {
    // index 0 is a placeholder for undefined variables (aka phi-nodes).
    VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
  }

  /// Look up a definition, within the given context.
  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
    const unsigned *i = Ctx.lookup(D);
    if (!i)
      return nullptr;
    assert(*i < VarDefinitions.size());
    return &VarDefinitions[*i];
  }

  /// Look up the definition for D within the given context.  Returns
  /// NULL if the expression is not statically known.  If successful, also
  /// modifies Ctx to hold the context of the return Expr.
  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
    const unsigned *P = Ctx.lookup(D);
    if (!P)
      return nullptr;

    unsigned i = *P;
    while (i > 0) {
      if (VarDefinitions[i].Exp) {
        Ctx = VarDefinitions[i].Ctx;
        return VarDefinitions[i].Exp;
      }
      i = VarDefinitions[i].Ref;
    }
    return nullptr;
  }

  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }

  /// Return the next context after processing S.  This function is used by
  /// clients of the class to get the appropriate context when traversing the
  /// CFG.  It must be called for every assignment or DeclStmt.
  Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
    if (SavedContexts[CtxIndex+1].first == S) {
      CtxIndex++;
      Context Result = SavedContexts[CtxIndex].second;
      return Result;
    }
    return C;
  }

  void dumpVarDefinitionName(unsigned i) {
    if (i == 0) {
      llvm::errs() << "Undefined";
      return;
    }
    const NamedDecl *Dec = VarDefinitions[i].Dec;
    if (!Dec) {
      llvm::errs() << "<<NULL>>";
      return;
    }
    Dec->printName(llvm::errs());
    llvm::errs() << "." << i << " " << ((const void*) Dec);
  }

  /// Dumps an ASCII representation of the variable map to llvm::errs()
  void dump() {
    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
      const Expr *Exp = VarDefinitions[i].Exp;
      unsigned Ref = VarDefinitions[i].Ref;

      dumpVarDefinitionName(i);
      llvm::errs() << " = ";
      if (Exp) Exp->dump();
      else {
        dumpVarDefinitionName(Ref);
        llvm::errs() << "\n";
      }
    }
  }

  /// Dumps an ASCII representation of a Context to llvm::errs()
  void dumpContext(Context C) {
    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
      const NamedDecl *D = I.getKey();
      D->printName(llvm::errs());
      const unsigned *i = C.lookup(D);
      llvm::errs() << " -> ";
      dumpVarDefinitionName(*i);
      llvm::errs() << "\n";
    }
  }

  /// Builds the variable map.
  void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
                   std::vector<CFGBlockInfo> &BlockInfo);

protected:
  friend class VarMapBuilder;

  // Get the current context index
  unsigned getContextIndex() { return SavedContexts.size()-1; }

  // Save the current context for later replay
  void saveContext(const Stmt *S, Context C) {
    SavedContexts.push_back(std::make_pair(S, C));
  }

  // Adds a new definition to the given context, and returns a new context.
  // This method should be called when declaring a new variable.
  Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
    assert(!Ctx.contains(D));
    unsigned newID = VarDefinitions.size();
    Context NewCtx = ContextFactory.add(Ctx, D, newID);
    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
    return NewCtx;
  }

  // Add a new reference to an existing definition.
  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
    unsigned newID = VarDefinitions.size();
    Context NewCtx = ContextFactory.add(Ctx, D, newID);
    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
    return NewCtx;
  }

  // Updates a definition only if that definition is already in the map.
  // This method should be called when assigning to an existing variable.
  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
    if (Ctx.contains(D)) {
      unsigned newID = VarDefinitions.size();
      Context NewCtx = ContextFactory.remove(Ctx, D);
      NewCtx = ContextFactory.add(NewCtx, D, newID);
      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
      return NewCtx;
    }
    return Ctx;
  }

  // Removes a definition from the context, but keeps the variable name
  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
  Context clearDefinition(const NamedDecl *D, Context Ctx) {
    Context NewCtx = Ctx;
    if (NewCtx.contains(D)) {
      NewCtx = ContextFactory.remove(NewCtx, D);
      NewCtx = ContextFactory.add(NewCtx, D, 0);
    }
    return NewCtx;
  }

  // Remove a definition entirely frmo the context.
  Context removeDefinition(const NamedDecl *D, Context Ctx) {
    Context NewCtx = Ctx;
    if (NewCtx.contains(D)) {
      NewCtx = ContextFactory.remove(NewCtx, D);
    }
    return NewCtx;
  }

  Context intersectContexts(Context C1, Context C2);
  Context createReferenceContext(Context C);
  void intersectBackEdge(Context C1, Context C2);
};

} // namespace

// This has to be defined after LocalVariableMap.
CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
  return CFGBlockInfo(M.getEmptyContext());
}

namespace {

/// Visitor which builds a LocalVariableMap
class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
public:
  LocalVariableMap* VMap;
  LocalVariableMap::Context Ctx;

  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
      : VMap(VM), Ctx(C) {}

  void VisitDeclStmt(const DeclStmt *S);
  void VisitBinaryOperator(const BinaryOperator *BO);
};

} // namespace

// Add new local variables to the variable map
void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
  bool modifiedCtx = false;
  const DeclGroupRef DGrp = S->getDeclGroup();
  for (const auto *D : DGrp) {
    if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
      const Expr *E = VD->getInit();

      // Add local variables with trivial type to the variable map
      QualType T = VD->getType();
      if (T.isTrivialType(VD->getASTContext())) {
        Ctx = VMap->addDefinition(VD, E, Ctx);
        modifiedCtx = true;
      }
    }
  }
  if (modifiedCtx)
    VMap->saveContext(S, Ctx);
}

// Update local variable definitions in variable map
void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
  if (!BO->isAssignmentOp())
    return;

  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();

  // Update the variable map and current context.
  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
    const ValueDecl *VDec = DRE->getDecl();
    if (Ctx.lookup(VDec)) {
      if (BO->getOpcode() == BO_Assign)
        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
      else
        // FIXME -- handle compound assignment operators
        Ctx = VMap->clearDefinition(VDec, Ctx);
      VMap->saveContext(BO, Ctx);
    }
  }
}

// Computes the intersection of two contexts.  The intersection is the
// set of variables which have the same definition in both contexts;
// variables with different definitions are discarded.
LocalVariableMap::Context
LocalVariableMap::intersectContexts(Context C1, Context C2) {
  Context Result = C1;
  for (const auto &P : C1) {
    const NamedDecl *Dec = P.first;
    const unsigned *i2 = C2.lookup(Dec);
    if (!i2)             // variable doesn't exist on second path
      Result = removeDefinition(Dec, Result);
    else if (*i2 != P.second)  // variable exists, but has different definition
      Result = clearDefinition(Dec, Result);
  }
  return Result;
}

// For every variable in C, create a new variable that refers to the
// definition in C.  Return a new context that contains these new variables.
// (We use this for a naive implementation of SSA on loop back-edges.)
LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
  Context Result = getEmptyContext();
  for (const auto &P : C)
    Result = addReference(P.first, P.second, Result);
  return Result;
}

// This routine also takes the intersection of C1 and C2, but it does so by
// altering the VarDefinitions.  C1 must be the result of an earlier call to
// createReferenceContext.
void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
  for (const auto &P : C1) {
    unsigned i1 = P.second;
    VarDefinition *VDef = &VarDefinitions[i1];
    assert(VDef->isReference());

    const unsigned *i2 = C2.lookup(P.first);
    if (!i2 || (*i2 != i1))
      VDef->Ref = 0;    // Mark this variable as undefined
  }
}

// Traverse the CFG in topological order, so all predecessors of a block
// (excluding back-edges) are visited before the block itself.  At
// each point in the code, we calculate a Context, which holds the set of
// variable definitions which are visible at that point in execution.
// Visible variables are mapped to their definitions using an array that
// contains all definitions.
//
// At join points in the CFG, the set is computed as the intersection of
// the incoming sets along each edge, E.g.
//
//                       { Context                 | VarDefinitions }
//   int x = 0;          { x -> x1                 | x1 = 0 }
//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
//
// This is essentially a simpler and more naive version of the standard SSA
// algorithm.  Those definitions that remain in the intersection are from blocks
// that strictly dominate the current block.  We do not bother to insert proper
// phi nodes, because they are not used in our analysis; instead, wherever
// a phi node would be required, we simply remove that definition from the
// context (E.g. x above).
//
// The initial traversal does not capture back-edges, so those need to be
// handled on a separate pass.  Whenever the first pass encounters an
// incoming back edge, it duplicates the context, creating new definitions
// that refer back to the originals.  (These correspond to places where SSA
// might have to insert a phi node.)  On the second pass, these definitions are
// set to NULL if the variable has changed on the back-edge (i.e. a phi
// node was actually required.)  E.g.
//
//                       { Context           | VarDefinitions }
//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
void LocalVariableMap::traverseCFG(CFG *CFGraph,
                                   const PostOrderCFGView *SortedGraph,
                                   std::vector<CFGBlockInfo> &BlockInfo) {
  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);

  CtxIndices.resize(CFGraph->getNumBlockIDs());

  for (const auto *CurrBlock : *SortedGraph) {
    unsigned CurrBlockID = CurrBlock->getBlockID();
    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];

    VisitedBlocks.insert(CurrBlock);

    // Calculate the entry context for the current block
    bool HasBackEdges = false;
    bool CtxInit = true;
    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
      // if *PI -> CurrBlock is a back edge, so skip it
      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
        HasBackEdges = true;
        continue;
      }

      unsigned PrevBlockID = (*PI)->getBlockID();
      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];

      if (CtxInit) {
        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
        CtxInit = false;
      }
      else {
        CurrBlockInfo->EntryContext =
          intersectContexts(CurrBlockInfo->EntryContext,
                            PrevBlockInfo->ExitContext);
      }
    }

    // Duplicate the context if we have back-edges, so we can call
    // intersectBackEdges later.
    if (HasBackEdges)
      CurrBlockInfo->EntryContext =
        createReferenceContext(CurrBlockInfo->EntryContext);

    // Create a starting context index for the current block
    saveContext(nullptr, CurrBlockInfo->EntryContext);
    CurrBlockInfo->EntryIndex = getContextIndex();

    // Visit all the statements in the basic block.
    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
    for (const auto &BI : *CurrBlock) {
      switch (BI.getKind()) {
        case CFGElement::Statement: {
          CFGStmt CS = BI.castAs<CFGStmt>();
          VMapBuilder.Visit(CS.getStmt());
          break;
        }
        default:
          break;
      }
    }
    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;

    // Mark variables on back edges as "unknown" if they've been changed.
    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
      // if CurrBlock -> *SI is *not* a back edge
      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
        continue;

      CFGBlock *FirstLoopBlock = *SI;
      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
      Context LoopEnd   = CurrBlockInfo->ExitContext;
      intersectBackEdge(LoopBegin, LoopEnd);
    }
  }

  // Put an extra entry at the end of the indexed context array
  unsigned exitID = CFGraph->getExit().getBlockID();
  saveContext(nullptr, BlockInfo[exitID].ExitContext);
}

/// Find the appropriate source locations to use when producing diagnostics for
/// each block in the CFG.
static void findBlockLocations(CFG *CFGraph,
                               const PostOrderCFGView *SortedGraph,
                               std::vector<CFGBlockInfo> &BlockInfo) {
  for (const auto *CurrBlock : *SortedGraph) {
    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];

    // Find the source location of the last statement in the block, if the
    // block is not empty.
    if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
    } else {
      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
           BE = CurrBlock->rend(); BI != BE; ++BI) {
        // FIXME: Handle other CFGElement kinds.
        if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
          CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
          break;
        }
      }
    }

    if (CurrBlockInfo->ExitLoc.isValid()) {
      // This block contains at least one statement. Find the source location
      // of the first statement in the block.
      for (const auto &BI : *CurrBlock) {
        // FIXME: Handle other CFGElement kinds.
        if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
          CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
          break;
        }
      }
    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
               CurrBlock != &CFGraph->getExit()) {
      // The block is empty, and has a single predecessor. Use its exit
      // location.
      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
    }
  }
}

namespace {

class LockableFactEntry : public FactEntry {
private:
  /// managed by ScopedLockable object
  bool Managed;

public:
  LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
                    bool Mng = false, bool Asrt = false)
      : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}

  void
  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
                                SourceLocation JoinLoc, LockErrorKind LEK,
                                ThreadSafetyHandler &Handler) const override {
    if (!Managed && !asserted() && !negative() && !isUniversal()) {
      Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
                                        LEK);
    }
  }

  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
                  ThreadSafetyHandler &Handler,
                  StringRef DiagKind) const override {
    Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
  }

  void handleUnlock(FactSet &FSet, FactManager &FactMan,
                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
                    bool FullyRemove, ThreadSafetyHandler &Handler,
                    StringRef DiagKind) const override {
    FSet.removeLock(FactMan, Cp);
    if (!Cp.negative()) {
      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
                                !Cp, LK_Exclusive, UnlockLoc));
    }
  }
};

class ScopedLockableFactEntry : public FactEntry {
private:
  enum UnderlyingCapabilityKind {
    UCK_Acquired,          ///< Any kind of acquired capability.
    UCK_ReleasedShared,    ///< Shared capability that was released.
    UCK_ReleasedExclusive, ///< Exclusive capability that was released.
  };

  using UnderlyingCapability =
      llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;

  SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;

public:
  ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
      : FactEntry(CE, LK_Exclusive, Loc, false) {}

  void addExclusiveLock(const CapabilityExpr &M) {
    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
  }

  void addSharedLock(const CapabilityExpr &M) {
    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
  }

  void addExclusiveUnlock(const CapabilityExpr &M) {
    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
  }

  void addSharedUnlock(const CapabilityExpr &M) {
    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
  }

  void
  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
                                SourceLocation JoinLoc, LockErrorKind LEK,
                                ThreadSafetyHandler &Handler) const override {
    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
      const auto *Entry = FSet.findLock(
          FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
      if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
          (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
        // If this scoped lock manages another mutex, and if the underlying
        // mutex is still/not held, then warn about the underlying mutex.
        Handler.handleMutexHeldEndOfScope(
            "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
            LEK);
      }
    }
  }

  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
                  ThreadSafetyHandler &Handler,
                  StringRef DiagKind) const override {
    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);

      if (UnderlyingMutex.getInt() == UCK_Acquired)
        lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
             DiagKind);
      else
        unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
    }
  }

  void handleUnlock(FactSet &FSet, FactManager &FactMan,
                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
                    bool FullyRemove, ThreadSafetyHandler &Handler,
                    StringRef DiagKind) const override {
    assert(!Cp.negative() && "Managing object cannot be negative.");
    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);

      // Remove/lock the underlying mutex if it exists/is still unlocked; warn
      // on double unlocking/locking if we're not destroying the scoped object.
      ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
      if (UnderlyingMutex.getInt() == UCK_Acquired) {
        unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
      } else {
        LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
                            ? LK_Shared
                            : LK_Exclusive;
        lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
      }
    }
    if (FullyRemove)
      FSet.removeLock(FactMan, Cp);
  }

private:
  void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
            LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
            StringRef DiagKind) const {
    if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
      if (Handler)
        Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
    } else {
      FSet.removeLock(FactMan, !Cp);
      FSet.addLock(FactMan,
                   std::make_unique<LockableFactEntry>(Cp, kind, loc));
    }
  }

  void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
              SourceLocation loc, ThreadSafetyHandler *Handler,
              StringRef DiagKind) const {
    if (FSet.findLock(FactMan, Cp)) {
      FSet.removeLock(FactMan, Cp);
      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
                                !Cp, LK_Exclusive, loc));
    } else if (Handler) {
      Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc);
    }
  }
};

/// Class which implements the core thread safety analysis routines.
class ThreadSafetyAnalyzer {
  friend class BuildLockset;
  friend class threadSafety::BeforeSet;

  llvm::BumpPtrAllocator Bpa;
  threadSafety::til::MemRegionRef Arena;
  threadSafety::SExprBuilder SxBuilder;

  ThreadSafetyHandler &Handler;
  const CXXMethodDecl *CurrentMethod;
  LocalVariableMap LocalVarMap;
  FactManager FactMan;
  std::vector<CFGBlockInfo> BlockInfo;

  BeforeSet *GlobalBeforeSet;

public:
  ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}

  bool inCurrentScope(const CapabilityExpr &CapE);

  void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
               StringRef DiagKind, bool ReqAttr = false);
  void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
                  SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
                  StringRef DiagKind);

  template <typename AttrType>
  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
                   const NamedDecl *D, VarDecl *SelfDecl = nullptr);

  template <class AttrType>
  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
                   const NamedDecl *D,
                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
                   Expr *BrE, bool Neg);

  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
                                     bool &Negate);

  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
                      const CFGBlock* PredBlock,
                      const CFGBlock *CurrBlock);

  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
                        SourceLocation JoinLoc,
                        LockErrorKind LEK1, LockErrorKind LEK2,
                        bool Modify=true);

  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
                        SourceLocation JoinLoc, LockErrorKind LEK1,
                        bool Modify=true) {
    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
  }

  void runAnalysis(AnalysisDeclContext &AC);
};

} // namespace

/// Process acquired_before and acquired_after attributes on Vd.
BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
    ThreadSafetyAnalyzer& Analyzer) {
  // Create a new entry for Vd.
  BeforeInfo *Info = nullptr;
  {
    // Keep InfoPtr in its own scope in case BMap is modified later and the
    // reference becomes invalid.
    std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
    if (!InfoPtr)
      InfoPtr.reset(new BeforeInfo());
    Info = InfoPtr.get();
  }

  for (const auto *At : Vd->attrs()) {
    switch (At->getKind()) {
      case attr::AcquiredBefore: {
        const auto *A = cast<AcquiredBeforeAttr>(At);

        // Read exprs from the attribute, and add them to BeforeVect.
        for (const auto *Arg : A->args()) {
          CapabilityExpr Cp =
            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
          if (const ValueDecl *Cpvd = Cp.valueDecl()) {
            Info->Vect.push_back(Cpvd);
            const auto It = BMap.find(Cpvd);
            if (It == BMap.end())
              insertAttrExprs(Cpvd, Analyzer);
          }
        }
        break;
      }
      case attr::AcquiredAfter: {
        const auto *A = cast<AcquiredAfterAttr>(At);

        // Read exprs from the attribute, and add them to BeforeVect.
        for (const auto *Arg : A->args()) {
          CapabilityExpr Cp =
            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
          if (const ValueDecl *ArgVd = Cp.valueDecl()) {
            // Get entry for mutex listed in attribute
            BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
            ArgInfo->Vect.push_back(Vd);
          }
        }
        break;
      }
      default:
        break;
    }
  }

  return Info;
}

BeforeSet::BeforeInfo *
BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
                                ThreadSafetyAnalyzer &Analyzer) {
  auto It = BMap.find(Vd);
  BeforeInfo *Info = nullptr;
  if (It == BMap.end())
    Info = insertAttrExprs(Vd, Analyzer);
  else
    Info = It->second.get();
  assert(Info && "BMap contained nullptr?");
  return Info;
}

/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
                                 const FactSet& FSet,
                                 ThreadSafetyAnalyzer& Analyzer,
                                 SourceLocation Loc, StringRef CapKind) {
  SmallVector<BeforeInfo*, 8> InfoVect;

  // Do a depth-first traversal of Vd.
  // Return true if there are cycles.
  std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
    if (!Vd)
      return false;

    BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);

    if (Info->Visited == 1)
      return true;

    if (Info->Visited == 2)
      return false;

    if (Info->Vect.empty())
      return false;

    InfoVect.push_back(Info);
    Info->Visited = 1;
    for (const auto *Vdb : Info->Vect) {
      // Exclude mutexes in our immediate before set.
      if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
        StringRef L1 = StartVd->getName();
        StringRef L2 = Vdb->getName();
        Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
      }
      // Transitively search other before sets, and warn on cycles.
      if (traverse(Vdb)) {
        if (CycMap.find(Vd) == CycMap.end()) {
          CycMap.insert(std::make_pair(Vd, true));
          StringRef L1 = Vd->getName();
          Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
        }
      }
    }
    Info->Visited = 2;
    return false;
  };

  traverse(StartVd);

  for (auto *Info : InfoVect)
    Info->Visited = 0;
}

/// Gets the value decl pointer from DeclRefExprs or MemberExprs.
static const ValueDecl *getValueDecl(const Expr *Exp) {
  if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
    return getValueDecl(CE->getSubExpr());

  if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
    return DR->getDecl();

  if (const auto *ME = dyn_cast<MemberExpr>(Exp))
    return ME->getMemberDecl();

  return nullptr;
}

namespace {

template <typename Ty>
class has_arg_iterator_range {
  using yes = char[1];
  using no = char[2];

  template <typename Inner>
  static yes& test(Inner *I, decltype(I->args()) * = nullptr);

  template <typename>
  static no& test(...);

public:
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
};

} // namespace

static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
  return A->getName();
}

static StringRef ClassifyDiagnostic(QualType VDT) {
  // We need to look at the declaration of the type of the value to determine
  // which it is. The type should either be a record or a typedef, or a pointer
  // or reference thereof.
  if (const auto *RT = VDT->getAs<RecordType>()) {
    if (const auto *RD = RT->getDecl())
      if (const auto *CA = RD->getAttr<CapabilityAttr>())
        return ClassifyDiagnostic(CA);
  } else if (const auto *TT = VDT->getAs<TypedefType>()) {
    if (const auto *TD = TT->getDecl())
      if (const auto *CA = TD->getAttr<CapabilityAttr>())
        return ClassifyDiagnostic(CA);
  } else if (VDT->isPointerType() || VDT->isReferenceType())
    return ClassifyDiagnostic(VDT->getPointeeType());

  return "mutex";
}

static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
  assert(VD && "No ValueDecl passed");

  // The ValueDecl is the declaration of a mutex or role (hopefully).
  return ClassifyDiagnostic(VD->getType());
}

template <typename AttrTy>
static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
                               StringRef>::type
ClassifyDiagnostic(const AttrTy *A) {
  if (const ValueDecl *VD = getValueDecl(A->getArg()))
    return ClassifyDiagnostic(VD);
  return "mutex";
}

template <typename AttrTy>
static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
                               StringRef>::type
ClassifyDiagnostic(const AttrTy *A) {
  for (const auto *Arg : A->args()) {
    if (const ValueDecl *VD = getValueDecl(Arg))
      return ClassifyDiagnostic(VD);
  }
  return "mutex";
}

bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
  if (!CurrentMethod)
      return false;
  if (const auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
    const auto *VD = P->clangDecl();
    if (VD)
      return VD->getDeclContext() == CurrentMethod->getDeclContext();
  }
  return false;
}

/// Add a new lock to the lockset, warning if the lock is already there.
/// \param ReqAttr -- true if this is part of an initial Requires attribute.
void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
                                   std::unique_ptr<FactEntry> Entry,
                                   StringRef DiagKind, bool ReqAttr) {
  if (Entry->shouldIgnore())
    return;

  if (!ReqAttr && !Entry->negative()) {
    // look for the negative capability, and remove it from the fact set.
    CapabilityExpr NegC = !*Entry;
    const FactEntry *Nen = FSet.findLock(FactMan, NegC);
    if (Nen) {
      FSet.removeLock(FactMan, NegC);
    }
    else {
      if (inCurrentScope(*Entry) && !Entry->asserted())
        Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
                                      NegC.toString(), Entry->loc());
    }
  }

  // Check before/after constraints
  if (Handler.issueBetaWarnings() &&
      !Entry->asserted() && !Entry->declared()) {
    GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
                                      Entry->loc(), DiagKind);
  }

  // FIXME: Don't always warn when we have support for reentrant locks.
  if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
    if (!Entry->asserted())
      Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
  } else {
    FSet.addLock(FactMan, std::move(Entry));
  }
}

/// Remove a lock from the lockset, warning if the lock is not there.
/// \param UnlockLoc The source location of the unlock (only used in error msg)
void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
                                      SourceLocation UnlockLoc,
                                      bool FullyRemove, LockKind ReceivedKind,
                                      StringRef DiagKind) {
  if (Cp.shouldIgnore())
    return;

  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
  if (!LDat) {
    Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
    return;
  }

  // Generic lock removal doesn't care about lock kind mismatches, but
  // otherwise diagnose when the lock kinds are mismatched.
  if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
    Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
                                      ReceivedKind, LDat->loc(), UnlockLoc);
  }

  LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
                     DiagKind);
}

/// Extract the list of mutexIDs from the attribute on an expression,
/// and push them onto Mtxs, discarding any duplicates.
template <typename AttrType>
void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
                                       const Expr *Exp, const NamedDecl *D,
                                       VarDecl *SelfDecl) {
  if (Attr->args_size() == 0) {
    // The mutex held is the "this" object.
    CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
    if (Cp.isInvalid()) {
       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
       return;
    }
    //else
    if (!Cp.shouldIgnore())
      Mtxs.push_back_nodup(Cp);
    return;
  }

  for (const auto *Arg : Attr->args()) {
    CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
    if (Cp.isInvalid()) {
       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
       continue;
    }
    //else
    if (!Cp.shouldIgnore())
      Mtxs.push_back_nodup(Cp);
  }
}

/// Extract the list of mutexIDs from a trylock attribute.  If the
/// trylock applies to the given edge, then push them onto Mtxs, discarding
/// any duplicates.
template <class AttrType>
void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
                                       const Expr *Exp, const NamedDecl *D,
                                       const CFGBlock *PredBlock,
                                       const CFGBlock *CurrBlock,
                                       Expr *BrE, bool Neg) {
  // Find out which branch has the lock
  bool branch = false;
  if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
    branch = BLE->getValue();
  else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
    branch = ILE->getValue().getBoolValue();

  int branchnum = branch ? 0 : 1;
  if (Neg)
    branchnum = !branchnum;

  // If we've taken the trylock branch, then add the lock
  int i = 0;
  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
    if (*SI == CurrBlock && i == branchnum)
      getMutexIDs(Mtxs, Attr, Exp, D);
  }
}

static bool getStaticBooleanValue(Expr *E, bool &TCond) {
  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
    TCond = false;
    return true;
  } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
    TCond = BLE->getValue();
    return true;
  } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
    TCond = ILE->getValue().getBoolValue();
    return true;
  } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
    return getStaticBooleanValue(CE->getSubExpr(), TCond);
  return false;
}

// If Cond can be traced back to a function call, return the call expression.
// The negate variable should be called with false, and will be set to true
// if the function call is negated, e.g. if (!mu.tryLock(...))
const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
                                                         LocalVarContext C,
                                                         bool &Negate) {
  if (!Cond)
    return nullptr;

  if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
    if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
      return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
    return CallExp;
  }
  else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
  else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
  else if (const auto *FE = dyn_cast<FullExpr>(Cond))
    return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
  else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
    return getTrylockCallExpr(E, C, Negate);
  }
  else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
    if (UOP->getOpcode() == UO_LNot) {
      Negate = !Negate;
      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
    }
    return nullptr;
  }
  else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
      if (BOP->getOpcode() == BO_NE)
        Negate = !Negate;

      bool TCond = false;
      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
        if (!TCond) Negate = !Negate;
        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
      }
      TCond = false;
      if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
        if (!TCond) Negate = !Negate;
        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
      }
      return nullptr;
    }
    if (BOP->getOpcode() == BO_LAnd) {
      // LHS must have been evaluated in a different block.
      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
    }
    if (BOP->getOpcode() == BO_LOr)
      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
    return nullptr;
  } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
    bool TCond, FCond;
    if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
        getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
      if (TCond && !FCond)
        return getTrylockCallExpr(COP->getCond(), C, Negate);
      if (!TCond && FCond) {
        Negate = !Negate;
        return getTrylockCallExpr(COP->getCond(), C, Negate);
      }
    }
  }
  return nullptr;
}

/// Find the lockset that holds on the edge between PredBlock
/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
                                          const FactSet &ExitSet,
                                          const CFGBlock *PredBlock,
                                          const CFGBlock *CurrBlock) {
  Result = ExitSet;

  const Stmt *Cond = PredBlock->getTerminatorCondition();
  // We don't acquire try-locks on ?: branches, only when its result is used.
  if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
    return;

  bool Negate = false;
  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
  StringRef CapDiagKind = "mutex";

  const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
  if (!Exp)
    return;

  auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
  if(!FunDecl || !FunDecl->hasAttrs())
    return;

  CapExprSet ExclusiveLocksToAdd;
  CapExprSet SharedLocksToAdd;

  // If the condition is a call to a Trylock function, then grab the attributes
  for (const auto *Attr : FunDecl->attrs()) {
    switch (Attr->getKind()) {
      case attr::TryAcquireCapability: {
        auto *A = cast<TryAcquireCapabilityAttr>(Attr);
        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
                    Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
                    Negate);
        CapDiagKind = ClassifyDiagnostic(A);
        break;
      };
      case attr::ExclusiveTrylockFunction: {
        const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
        CapDiagKind = ClassifyDiagnostic(A);
        break;
      }
      case attr::SharedTrylockFunction: {
        const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
        CapDiagKind = ClassifyDiagnostic(A);
        break;
      }
      default:
        break;
    }
  }

  // Add and remove locks.
  SourceLocation Loc = Exp->getExprLoc();
  for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
    addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
                                                         LK_Exclusive, Loc),
            CapDiagKind);
  for (const auto &SharedLockToAdd : SharedLocksToAdd)
    addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
                                                         LK_Shared, Loc),
            CapDiagKind);
}

namespace {

/// We use this class to visit different types of expressions in
/// CFGBlocks, and build up the lockset.
/// An expression may cause us to add or remove locks from the lockset, or else
/// output error messages related to missing locks.
/// FIXME: In future, we may be able to not inherit from a visitor.
class BuildLockset : public ConstStmtVisitor<BuildLockset> {
  friend class ThreadSafetyAnalyzer;

  ThreadSafetyAnalyzer *Analyzer;
  FactSet FSet;
  LocalVariableMap::Context LVarCtx;
  unsigned CtxIndex;

  // helper functions
  void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
                          Expr *MutexExp, ProtectedOperationKind POK,
                          StringRef DiagKind, SourceLocation Loc);
  void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
                       StringRef DiagKind);

  void checkAccess(const Expr *Exp, AccessKind AK,
                   ProtectedOperationKind POK = POK_VarAccess);
  void checkPtAccess(const Expr *Exp, AccessKind AK,
                     ProtectedOperationKind POK = POK_VarAccess);

  void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
  void examineArguments(const FunctionDecl *FD,
                        CallExpr::const_arg_iterator ArgBegin,
                        CallExpr::const_arg_iterator ArgEnd,
                        bool SkipFirstParam = false);

public:
  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
      : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
        LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}

  void VisitUnaryOperator(const UnaryOperator *UO);
  void VisitBinaryOperator(const BinaryOperator *BO);
  void VisitCastExpr(const CastExpr *CE);
  void VisitCallExpr(const CallExpr *Exp);
  void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
  void VisitDeclStmt(const DeclStmt *S);
};

} // namespace

/// Warn if the LSet does not contain a lock sufficient to protect access
/// of at least the passed in AccessKind.
void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
                                      AccessKind AK, Expr *MutexExp,
                                      ProtectedOperationKind POK,
                                      StringRef DiagKind, SourceLocation Loc) {
  LockKind LK = getLockKindFromAccessKind(AK);

  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
  if (Cp.isInvalid()) {
    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
    return;
  } else if (Cp.shouldIgnore()) {
    return;
  }

  if (Cp.negative()) {
    // Negative capabilities act like locks excluded
    const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
    if (LDat) {
      Analyzer->Handler.handleFunExcludesLock(
          DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
      return;
    }

    // If this does not refer to a negative capability in the same class,
    // then stop here.
    if (!Analyzer->inCurrentScope(Cp))
      return;

    // Otherwise the negative requirement must be propagated to the caller.
    LDat = FSet.findLock(Analyzer->FactMan, Cp);
    if (!LDat) {
      Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
                                           LK_Shared, Loc);
    }
    return;
  }

  const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
  bool NoError = true;
  if (!LDat) {
    // No exact match found.  Look for a partial match.
    LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
    if (LDat) {
      // Warn that there's no precise match.
      std::string PartMatchStr = LDat->toString();
      StringRef   PartMatchName(PartMatchStr);
      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
                                           LK, Loc, &PartMatchName);
    } else {
      // Warn that there's no match at all.
      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
                                           LK, Loc);
    }
    NoError = false;
  }
  // Make sure the mutex we found is the right kind.
  if (NoError && LDat && !LDat->isAtLeast(LK)) {
    Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
                                         LK, Loc);
  }
}

/// Warn if the LSet contains the given lock.
void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
                                   Expr *MutexExp, StringRef DiagKind) {
  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
  if (Cp.isInvalid()) {
    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
    return;
  } else if (Cp.shouldIgnore()) {
    return;
  }

  const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
  if (LDat) {
    Analyzer->Handler.handleFunExcludesLock(
        DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
  }
}

/// Checks guarded_by and pt_guarded_by attributes.
/// Whenever we identify an access (read or write) to a DeclRefExpr that is
/// marked with guarded_by, we must ensure the appropriate mutexes are held.
/// Similarly, we check if the access is to an expression that dereferences
/// a pointer marked with pt_guarded_by.
void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
                               ProtectedOperationKind POK) {
  Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();

  SourceLocation Loc = Exp->getExprLoc();

  // Local variables of reference type cannot be re-assigned;
  // map them to their initializer.
  while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
    if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
      if (const auto *E = VD->getInit()) {
        // Guard against self-initialization. e.g., int &i = i;
        if (E == Exp)
          break;
        Exp = E;
        continue;
      }
    }
    break;
  }

  if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
    // For dereferences
    if (UO->getOpcode() == UO_Deref)
      checkPtAccess(UO->getSubExpr(), AK, POK);
    return;
  }

  if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
    checkPtAccess(AE->getLHS(), AK, POK);
    return;
  }

  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
    if (ME->isArrow())
      checkPtAccess(ME->getBase(), AK, POK);
    else
      checkAccess(ME->getBase(), AK, POK);
  }

  const ValueDecl *D = getValueDecl(Exp);
  if (!D || !D->hasAttrs())
    return;

  if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
    Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
  }

  for (const auto *I : D->specific_attrs<GuardedByAttr>())
    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
                       ClassifyDiagnostic(I), Loc);
}

/// Checks pt_guarded_by and pt_guarded_var attributes.
/// POK is the same  operationKind that was passed to checkAccess.
void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
                                 ProtectedOperationKind POK) {
  while (true) {
    if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
      Exp = PE->getSubExpr();
      continue;
    }
    if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
      if (CE->getCastKind() == CK_ArrayToPointerDecay) {
        // If it's an actual array, and not a pointer, then it's elements
        // are protected by GUARDED_BY, not PT_GUARDED_BY;
        checkAccess(CE->getSubExpr(), AK, POK);
        return;
      }
      Exp = CE->getSubExpr();
      continue;
    }
    break;
  }

  // Pass by reference warnings are under a different flag.
  ProtectedOperationKind PtPOK = POK_VarDereference;
  if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;

  const ValueDecl *D = getValueDecl(Exp);
  if (!D || !D->hasAttrs())
    return;

  if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
    Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
                                        Exp->getExprLoc());

  for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
                       ClassifyDiagnostic(I), Exp->getExprLoc());
}

/// Process a function call, method call, constructor call,
/// or destructor call.  This involves looking at the attributes on the
/// corresponding function/method/constructor/destructor, issuing warnings,
/// and updating the locksets accordingly.
///
/// FIXME: For classes annotated with one of the guarded annotations, we need
/// to treat const method calls as reads and non-const method calls as writes,
/// and check that the appropriate locks are held. Non-const method calls with
/// the same signature as const method calls can be also treated as reads.
///
void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
                              VarDecl *VD) {
  SourceLocation Loc = Exp->getExprLoc();
  CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
  CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
  CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
  StringRef CapDiagKind = "mutex";

  // Figure out if we're constructing an object of scoped lockable class
  bool isScopedVar = false;
  if (VD) {
    if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
      const CXXRecordDecl* PD = CD->getParent();
      if (PD && PD->hasAttr<ScopedLockableAttr>())
        isScopedVar = true;
    }
  }

  for(const Attr *At : D->attrs()) {
    switch (At->getKind()) {
      // When we encounter a lock function, we need to add the lock to our
      // lockset.
      case attr::AcquireCapability: {
        const auto *A = cast<AcquireCapabilityAttr>(At);
        Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
                                            : ExclusiveLocksToAdd,
                              A, Exp, D, VD);

        CapDiagKind = ClassifyDiagnostic(A);
        break;
      }

      // An assert will add a lock to the lockset, but will not generate
      // a warning if it is already there, and will not generate a warning
      // if it is not removed.
      case attr::AssertExclusiveLock: {
        const auto *A = cast<AssertExclusiveLockAttr>(At);

        CapExprSet AssertLocks;
        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
        for (const auto &AssertLock : AssertLocks)
          Analyzer->addLock(FSet,
                            std::make_unique<LockableFactEntry>(
                                AssertLock, LK_Exclusive, Loc, false, true),
                            ClassifyDiagnostic(A));
        break;
      }
      case attr::AssertSharedLock: {
        const auto *A = cast<AssertSharedLockAttr>(At);

        CapExprSet AssertLocks;
        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
        for (const auto &AssertLock : AssertLocks)
          Analyzer->addLock(FSet,
                            std::make_unique<LockableFactEntry>(
                                AssertLock, LK_Shared, Loc, false, true),
                            ClassifyDiagnostic(A));
        break;
      }

      case attr::AssertCapability: {
        const auto *A = cast<AssertCapabilityAttr>(At);
        CapExprSet AssertLocks;
        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
        for (const auto &AssertLock : AssertLocks)
          Analyzer->addLock(FSet,
                            std::make_unique<LockableFactEntry>(
                                AssertLock,
                                A->isShared() ? LK_Shared : LK_Exclusive, Loc,
                                false, true),
                            ClassifyDiagnostic(A));
        break;
      }

      // When we encounter an unlock function, we need to remove unlocked
      // mutexes from the lockset, and flag a warning if they are not there.
      case attr::ReleaseCapability: {
        const auto *A = cast<ReleaseCapabilityAttr>(At);
        if (A->isGeneric())
          Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
        else if (A->isShared())
          Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
        else
          Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);

        CapDiagKind = ClassifyDiagnostic(A);
        break;
      }

      case attr::RequiresCapability: {
        const auto *A = cast<RequiresCapabilityAttr>(At);
        for (auto *Arg : A->args()) {
          warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
                             POK_FunctionCall, ClassifyDiagnostic(A),
                             Exp->getExprLoc());
          // use for adopting a lock
          if (isScopedVar) {
            Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
                                                : ScopedExclusiveReqs,
                                  A, Exp, D, VD);
          }
        }
        break;
      }

      case attr::LocksExcluded: {
        const auto *A = cast<LocksExcludedAttr>(At);
        for (auto *Arg : A->args())
          warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
        break;
      }

      // Ignore attributes unrelated to thread-safety
      default:
        break;
    }
  }

  // Remove locks first to allow lock upgrading/downgrading.
  // FIXME -- should only fully remove if the attribute refers to 'this'.
  bool Dtor = isa<CXXDestructorDecl>(D);
  for (const auto &M : ExclusiveLocksToRemove)
    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
  for (const auto &M : SharedLocksToRemove)
    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
  for (const auto &M : GenericLocksToRemove)
    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);

  // Add locks.
  for (const auto &M : ExclusiveLocksToAdd)
    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
                                M, LK_Exclusive, Loc, isScopedVar),
                      CapDiagKind);
  for (const auto &M : SharedLocksToAdd)
    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
                                M, LK_Shared, Loc, isScopedVar),
                      CapDiagKind);

  if (isScopedVar) {
    // Add the managing object as a dummy mutex, mapped to the underlying mutex.
    SourceLocation MLoc = VD->getLocation();
    DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
                    VD->getLocation());
    // FIXME: does this store a pointer to DRE?
    CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);

    auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
    for (const auto &M : ExclusiveLocksToAdd)
      ScopedEntry->addExclusiveLock(M);
    for (const auto &M : ScopedExclusiveReqs)
      ScopedEntry->addExclusiveLock(M);
    for (const auto &M : SharedLocksToAdd)
      ScopedEntry->addSharedLock(M);
    for (const auto &M : ScopedSharedReqs)
      ScopedEntry->addSharedLock(M);
    for (const auto &M : ExclusiveLocksToRemove)
      ScopedEntry->addExclusiveUnlock(M);
    for (const auto &M : SharedLocksToRemove)
      ScopedEntry->addSharedUnlock(M);
    Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
  }
}

/// For unary operations which read and write a variable, we need to
/// check whether we hold any required mutexes. Reads are checked in
/// VisitCastExpr.
void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
  switch (UO->getOpcode()) {
    case UO_PostDec:
    case UO_PostInc:
    case UO_PreDec:
    case UO_PreInc:
      checkAccess(UO->getSubExpr(), AK_Written);
      break;
    default:
      break;
  }
}

/// For binary operations which assign to a variable (writes), we need to check
/// whether we hold any required mutexes.
/// FIXME: Deal with non-primitive types.
void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
  if (!BO->isAssignmentOp())
    return;

  // adjust the context
  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);

  checkAccess(BO->getLHS(), AK_Written);
}

/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
/// need to ensure we hold any required mutexes.
/// FIXME: Deal with non-primitive types.
void BuildLockset::VisitCastExpr(const CastExpr *CE) {
  if (CE->getCastKind() != CK_LValueToRValue)
    return;
  checkAccess(CE->getSubExpr(), AK_Read);
}

void BuildLockset::examineArguments(const FunctionDecl *FD,
                                    CallExpr::const_arg_iterator ArgBegin,
                                    CallExpr::const_arg_iterator ArgEnd,
                                    bool SkipFirstParam) {
  // Currently we can't do anything if we don't know the function declaration.
  if (!FD)
    return;

  // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
  // only turns off checking within the body of a function, but we also
  // use it to turn off checking in arguments to the function.  This
  // could result in some false negatives, but the alternative is to
  // create yet another attribute.
  if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
    return;

  const ArrayRef<ParmVarDecl *> Params = FD->parameters();
  auto Param = Params.begin();
  if (SkipFirstParam)
    ++Param;

  // There can be default arguments, so we stop when one iterator is at end().
  for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
       ++Param, ++Arg) {
    QualType Qt = (*Param)->getType();
    if (Qt->isReferenceType())
      checkAccess(*Arg, AK_Read, POK_PassByRef);
  }
}

void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
    const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
    // ME can be null when calling a method pointer
    const CXXMethodDecl *MD = CE->getMethodDecl();

    if (ME && MD) {
      if (ME->isArrow()) {
        if (MD->isConst())
          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
        else // FIXME -- should be AK_Written
          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
      } else {
        if (MD->isConst())
          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
        else     // FIXME -- should be AK_Written
          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
      }
    }

    examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
  } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
    auto OEop = OE->getOperator();
    switch (OEop) {
      case OO_Equal: {
        const Expr *Target = OE->getArg(0);
        const Expr *Source = OE->getArg(1);
        checkAccess(Target, AK_Written);
        checkAccess(Source, AK_Read);
        break;
      }
      case OO_Star:
      case OO_Arrow:
      case OO_Subscript:
        if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
          // Grrr.  operator* can be multiplication...
          checkPtAccess(OE->getArg(0), AK_Read);
        }
        LLVM_FALLTHROUGH;
      default: {
        // TODO: get rid of this, and rely on pass-by-ref instead.
        const Expr *Obj = OE->getArg(0);
        checkAccess(Obj, AK_Read);
        // Check the remaining arguments. For method operators, the first
        // argument is the implicit self argument, and doesn't appear in the
        // FunctionDecl, but for non-methods it does.
        const FunctionDecl *FD = OE->getDirectCallee();
        examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
                         /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
        break;
      }
    }
  } else {
    examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
  }

  auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
  if(!D || !D->hasAttrs())
    return;
  handleCall(Exp, D);
}

void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
  const CXXConstructorDecl *D = Exp->getConstructor();
  if (D && D->isCopyConstructor()) {
    const Expr* Source = Exp->getArg(0);
    checkAccess(Source, AK_Read);
  } else {
    examineArguments(D, Exp->arg_begin(), Exp->arg_end());
  }
}

static CXXConstructorDecl *
findConstructorForByValueReturn(const CXXRecordDecl *RD) {
  // Prefer a move constructor over a copy constructor. If there's more than
  // one copy constructor or more than one move constructor, we arbitrarily
  // pick the first declared such constructor rather than trying to guess which
  // one is more appropriate.
  CXXConstructorDecl *CopyCtor = nullptr;
  for (auto *Ctor : RD->ctors()) {
    if (Ctor->isDeleted())
      continue;
    if (Ctor->isMoveConstructor())
      return Ctor;
    if (!CopyCtor && Ctor->isCopyConstructor())
      CopyCtor = Ctor;
  }
  return CopyCtor;
}

static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
                               SourceLocation Loc) {
  ASTContext &Ctx = CD->getASTContext();
  return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
                                  CD, true, Args, false, false, false, false,
                                  CXXConstructExpr::CK_Complete,
                                  SourceRange(Loc, Loc));
}

void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
  // adjust the context
  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);

  for (auto *D : S->getDeclGroup()) {
    if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
      Expr *E = VD->getInit();
      if (!E)
        continue;
      E = E->IgnoreParens();

      // handle constructors that involve temporaries
      if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
        E = EWC->getSubExpr();
      if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
        E = BTE->getSubExpr();

      if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
        const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
        if (!CtorD || !CtorD->hasAttrs())
          continue;
        handleCall(E, CtorD, VD);
      } else if (isa<CallExpr>(E) && E->isRValue()) {
        // If the object is initialized by a function call that returns a
        // scoped lockable by value, use the attributes on the copy or move
        // constructor to figure out what effect that should have on the
        // lockset.
        // FIXME: Is this really the best way to handle this situation?
        auto *RD = E->getType()->getAsCXXRecordDecl();
        if (!RD || !RD->hasAttr<ScopedLockableAttr>())
          continue;
        CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
        if (!CtorD || !CtorD->hasAttrs())
          continue;
        handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
      }
    }
  }
}

/// Compute the intersection of two locksets and issue warnings for any
/// locks in the symmetric difference.
///
/// This function is used at a merge point in the CFG when comparing the lockset
/// of each branch being merged. For example, given the following sequence:
/// A; if () then B; else C; D; we need to check that the lockset after B and C
/// are the same. In the event of a difference, we use the intersection of these
/// two locksets at the start of D.
///
/// \param FSet1 The first lockset.
/// \param FSet2 The second lockset.
/// \param JoinLoc The location of the join point for error reporting
/// \param LEK1 The error message to report if a mutex is missing from LSet1
/// \param LEK2 The error message to report if a mutex is missing from Lset2
void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
                                            const FactSet &FSet2,
                                            SourceLocation JoinLoc,
                                            LockErrorKind LEK1,
                                            LockErrorKind LEK2,
                                            bool Modify) {
  FactSet FSet1Orig = FSet1;

  // Find locks in FSet2 that conflict or are not in FSet1, and warn.
  for (const auto &Fact : FSet2) {
    const FactEntry *LDat1 = nullptr;
    const FactEntry *LDat2 = &FactMan[Fact];
    FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
    if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];

    if (LDat1) {
      if (LDat1->kind() != LDat2->kind()) {
        Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
                                         LDat2->loc(), LDat1->loc());
        if (Modify && LDat1->kind() != LK_Exclusive) {
          // Take the exclusive lock, which is the one in FSet2.
          *Iter1 = Fact;
        }
      }
      else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
        // The non-asserted lock in FSet2 is the one we want to track.
        *Iter1 = Fact;
      }
    } else {
      LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
                                           Handler);
    }
  }

  // Find locks in FSet1 that are not in FSet2, and remove them.
  for (const auto &Fact : FSet1Orig) {
    const FactEntry *LDat1 = &FactMan[Fact];
    const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);

    if (!LDat2) {
      LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
                                           Handler);
      if (Modify)
        FSet1.removeLock(FactMan, *LDat1);
    }
  }
}

// Return true if block B never continues to its successors.
static bool neverReturns(const CFGBlock *B) {
  if (B->hasNoReturnElement())
    return true;
  if (B->empty())
    return false;

  CFGElement Last = B->back();
  if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
    if (isa<CXXThrowExpr>(S->getStmt()))
      return true;
  }
  return false;
}

/// Check a function's CFG for thread-safety violations.
///
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
/// at the end of each block, and issue warnings for thread safety violations.
/// Each block in the CFG is traversed exactly once.
void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
  // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
  // For now, we just use the walker to set things up.
  threadSafety::CFGWalker walker;
  if (!walker.init(AC))
    return;

  // AC.dumpCFG(true);
  // threadSafety::printSCFG(walker);

  CFG *CFGraph = walker.getGraph();
  const NamedDecl *D = walker.getDecl();
  const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
  CurrentMethod = dyn_cast<CXXMethodDecl>(D);

  if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
    return;

  // FIXME: Do something a bit more intelligent inside constructor and
  // destructor code.  Constructors and destructors must assume unique access
  // to 'this', so checks on member variable access is disabled, but we should
  // still enable checks on other objects.
  if (isa<CXXConstructorDecl>(D))
    return;  // Don't check inside constructors.
  if (isa<CXXDestructorDecl>(D))
    return;  // Don't check inside destructors.

  Handler.enterFunction(CurrentFunction);

  BlockInfo.resize(CFGraph->getNumBlockIDs(),
    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));

  // We need to explore the CFG via a "topological" ordering.
  // That way, we will be guaranteed to have information about required
  // predecessor locksets when exploring a new block.
  const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);

  // Mark entry block as reachable
  BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;

  // Compute SSA names for local variables
  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);

  // Fill in source locations for all CFGBlocks.
  findBlockLocations(CFGraph, SortedGraph, BlockInfo);

  CapExprSet ExclusiveLocksAcquired;
  CapExprSet SharedLocksAcquired;
  CapExprSet LocksReleased;

  // Add locks from exclusive_locks_required and shared_locks_required
  // to initial lockset. Also turn off checking for lock and unlock functions.
  // FIXME: is there a more intelligent way to check lock/unlock functions?
  if (!SortedGraph->empty() && D->hasAttrs()) {
    const CFGBlock *FirstBlock = *SortedGraph->begin();
    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;

    CapExprSet ExclusiveLocksToAdd;
    CapExprSet SharedLocksToAdd;
    StringRef CapDiagKind = "mutex";

    SourceLocation Loc = D->getLocation();
    for (const auto *Attr : D->attrs()) {
      Loc = Attr->getLocation();
      if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
                    nullptr, D);
        CapDiagKind = ClassifyDiagnostic(A);
      } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
        // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
        // We must ignore such methods.
        if (A->args_size() == 0)
          return;
        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
                    nullptr, D);
        getMutexIDs(LocksReleased, A, nullptr, D);
        CapDiagKind = ClassifyDiagnostic(A);
      } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
        if (A->args_size() == 0)
          return;
        getMutexIDs(A->isShared() ? SharedLocksAcquired
                                  : ExclusiveLocksAcquired,
                    A, nullptr, D);
        CapDiagKind = ClassifyDiagnostic(A);
      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
        // Don't try to check trylock functions for now.
        return;
      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
        // Don't try to check trylock functions for now.
        return;
      } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
        // Don't try to check trylock functions for now.
        return;
      }
    }

    // FIXME -- Loc can be wrong here.
    for (const auto &Mu : ExclusiveLocksToAdd) {
      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
      Entry->setDeclared(true);
      addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
    }
    for (const auto &Mu : SharedLocksToAdd) {
      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
      Entry->setDeclared(true);
      addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
    }
  }

  for (const auto *CurrBlock : *SortedGraph) {
    unsigned CurrBlockID = CurrBlock->getBlockID();
    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];

    // Use the default initial lockset in case there are no predecessors.
    VisitedBlocks.insert(CurrBlock);

    // Iterate through the predecessor blocks and warn if the lockset for all
    // predecessors is not the same. We take the entry lockset of the current
    // block to be the intersection of all previous locksets.
    // FIXME: By keeping the intersection, we may output more errors in future
    // for a lock which is not in the intersection, but was in the union. We
    // may want to also keep the union in future. As an example, let's say
    // the intersection contains Mutex L, and the union contains L and M.
    // Later we unlock M. At this point, we would output an error because we
    // never locked M; although the real error is probably that we forgot to
    // lock M on all code paths. Conversely, let's say that later we lock M.
    // In this case, we should compare against the intersection instead of the
    // union because the real error is probably that we forgot to unlock M on
    // all code paths.
    bool LocksetInitialized = false;
    SmallVector<CFGBlock *, 8> SpecialBlocks;
    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
      // if *PI -> CurrBlock is a back edge
      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
        continue;

      unsigned PrevBlockID = (*PI)->getBlockID();
      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];

      // Ignore edges from blocks that can't return.
      if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
        continue;

      // Okay, we can reach this block from the entry.
      CurrBlockInfo->Reachable = true;

      // If the previous block ended in a 'continue' or 'break' statement, then
      // a difference in locksets is probably due to a bug in that block, rather
      // than in some other predecessor. In that case, keep the other
      // predecessor's lockset.
      if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
          SpecialBlocks.push_back(*PI);
          continue;
        }
      }

      FactSet PrevLockset;
      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);

      if (!LocksetInitialized) {
        CurrBlockInfo->EntrySet = PrevLockset;
        LocksetInitialized = true;
      } else {
        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
                         CurrBlockInfo->EntryLoc,
                         LEK_LockedSomePredecessors);
      }
    }

    // Skip rest of block if it's not reachable.
    if (!CurrBlockInfo->Reachable)
      continue;

    // Process continue and break blocks. Assume that the lockset for the
    // resulting block is unaffected by any discrepancies in them.
    for (const auto *PrevBlock : SpecialBlocks) {
      unsigned PrevBlockID = PrevBlock->getBlockID();
      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];

      if (!LocksetInitialized) {
        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
        LocksetInitialized = true;
      } else {
        // Determine whether this edge is a loop terminator for diagnostic
        // purposes. FIXME: A 'break' statement might be a loop terminator, but
        // it might also be part of a switch. Also, a subsequent destructor
        // might add to the lockset, in which case the real issue might be a
        // double lock on the other path.
        const Stmt *Terminator = PrevBlock->getTerminatorStmt();
        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);

        FactSet PrevLockset;
        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
                       PrevBlock, CurrBlock);

        // Do not update EntrySet.
        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
                         PrevBlockInfo->ExitLoc,
                         IsLoop ? LEK_LockedSomeLoopIterations
                                : LEK_LockedSomePredecessors,
                         false);
      }
    }

    BuildLockset LocksetBuilder(this, *CurrBlockInfo);

    // Visit all the statements in the basic block.
    for (const auto &BI : *CurrBlock) {
      switch (BI.getKind()) {
        case CFGElement::Statement: {
          CFGStmt CS = BI.castAs<CFGStmt>();
          LocksetBuilder.Visit(CS.getStmt());
          break;
        }
        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
        case CFGElement::AutomaticObjectDtor: {
          CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
          const auto *DD = AD.getDestructorDecl(AC.getASTContext());
          if (!DD->hasAttrs())
            break;

          // Create a dummy expression,
          auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
          DeclRefExpr DRE(VD->getASTContext(), VD, false,
                          VD->getType().getNonReferenceType(), VK_LValue,
                          AD.getTriggerStmt()->getEndLoc());
          LocksetBuilder.handleCall(&DRE, DD);
          break;
        }
        default:
          break;
      }
    }
    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;

    // For every back edge from CurrBlock (the end of the loop) to another block
    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
    // the one held at the beginning of FirstLoopBlock. We can look up the
    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
      // if CurrBlock -> *SI is *not* a back edge
      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
        continue;

      CFGBlock *FirstLoopBlock = *SI;
      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
                       PreLoop->EntryLoc,
                       LEK_LockedSomeLoopIterations,
                       false);
    }
  }

  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];

  // Skip the final check if the exit block is unreachable.
  if (!Final->Reachable)
    return;

  // By default, we expect all locks held on entry to be held on exit.
  FactSet ExpectedExitSet = Initial->EntrySet;

  // Adjust the expected exit set by adding or removing locks, as declared
  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
  // issue the appropriate warning.
  // FIXME: the location here is not quite right.
  for (const auto &Lock : ExclusiveLocksAcquired)
    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
                                         Lock, LK_Exclusive, D->getLocation()));
  for (const auto &Lock : SharedLocksAcquired)
    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
                                         Lock, LK_Shared, D->getLocation()));
  for (const auto &Lock : LocksReleased)
    ExpectedExitSet.removeLock(FactMan, Lock);

  // FIXME: Should we call this function for all blocks which exit the function?
  intersectAndWarn(ExpectedExitSet, Final->ExitSet,
                   Final->ExitLoc,
                   LEK_LockedAtEndOfFunction,
                   LEK_NotLockedAtEndOfFunction,
                   false);

  Handler.leaveFunction(CurrentFunction);
}

/// Check a function's CFG for thread-safety violations.
///
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
/// at the end of each block, and issue warnings for thread safety violations.
/// Each block in the CFG is traversed exactly once.
void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
                                           ThreadSafetyHandler &Handler,
                                           BeforeSet **BSet) {
  if (!*BSet)
    *BSet = new BeforeSet;
  ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
  Analyzer.runAnalysis(AC);
}

void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }

/// Helper function that returns a LockKind required for the given level
/// of access.
LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
  switch (AK) {
    case AK_Read :
      return LK_Shared;
    case AK_Written :
      return LK_Exclusive;
  }
  llvm_unreachable("Unknown AccessKind");
}