reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. This is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// In ICF, two sections are considered identical if they have the same
// section flags, section data, and relocations. Relocations are tricky,
// because two relocations are considered the same if they have the same
// relocation types, values, and if they point to the same sections *in
// terms of ICF*.
//
// Here is an example. If foo and bar defined below are compiled to the
// same machine instructions, ICF can and should merge the two, although
// their relocations point to each other.
//
//   void foo() { bar(); }
//   void bar() { foo(); }
//
// If you merge the two, their relocations point to the same section and
// thus you know they are mergeable, but how do you know they are
// mergeable in the first place? This is not an easy problem to solve.
//
// What we are doing in LLD is to partition sections into equivalence
// classes. Sections in the same equivalence class when the algorithm
// terminates are considered identical. Here are details:
//
// 1. First, we partition sections using their hash values as keys. Hash
//    values contain section types, section contents and numbers of
//    relocations. During this step, relocation targets are not taken into
//    account. We just put sections that apparently differ into different
//    equivalence classes.
//
// 2. Next, for each equivalence class, we visit sections to compare
//    relocation targets. Relocation targets are considered equivalent if
//    their targets are in the same equivalence class. Sections with
//    different relocation targets are put into different equivalence
//    clases.
//
// 3. If we split an equivalence class in step 2, two relocations
//    previously target the same equivalence class may now target
//    different equivalence classes. Therefore, we repeat step 2 until a
//    convergence is obtained.
//
// 4. For each equivalence class C, pick an arbitrary section in C, and
//    merge all the other sections in C with it.
//
// For small programs, this algorithm needs 3-5 iterations. For large
// programs such as Chromium, it takes more than 20 iterations.
//
// This algorithm was mentioned as an "optimistic algorithm" in [1],
// though gold implements a different algorithm than this.
//
// We parallelize each step so that multiple threads can work on different
// equivalence classes concurrently. That gave us a large performance
// boost when applying ICF on large programs. For example, MSVC link.exe
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
// faster than MSVC or gold though.
//
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
// in the Gold Linker
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
//
//===----------------------------------------------------------------------===//

#include "ICF.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Writer.h"
#include "lld/Common/Threads.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <atomic>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;

namespace lld {
namespace elf {
namespace {
template <class ELFT> class ICF {
public:
  void run();

private:
  void segregate(size_t begin, size_t end, bool constant);

  template <class RelTy>
  bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
                  const InputSection *b, ArrayRef<RelTy> relsB);

  template <class RelTy>
  bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
                  const InputSection *b, ArrayRef<RelTy> relsB);

  bool equalsConstant(const InputSection *a, const InputSection *b);
  bool equalsVariable(const InputSection *a, const InputSection *b);

  size_t findBoundary(size_t begin, size_t end);

  void forEachClassRange(size_t begin, size_t end,
                         llvm::function_ref<void(size_t, size_t)> fn);

  void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);

  std::vector<InputSection *> sections;

  // We repeat the main loop while `Repeat` is true.
  std::atomic<bool> repeat;

  // The main loop counter.
  int cnt = 0;

  // We have two locations for equivalence classes. On the first iteration
  // of the main loop, Class[0] has a valid value, and Class[1] contains
  // garbage. We read equivalence classes from slot 0 and write to slot 1.
  // So, Class[0] represents the current class, and Class[1] represents
  // the next class. On each iteration, we switch their roles and use them
  // alternately.
  //
  // Why are we doing this? Recall that other threads may be working on
  // other equivalence classes in parallel. They may read sections that we
  // are updating. We cannot update equivalence classes in place because
  // it breaks the invariance that all possibly-identical sections must be
  // in the same equivalence class at any moment. In other words, the for
  // loop to update equivalence classes is not atomic, and that is
  // observable from other threads. By writing new classes to other
  // places, we can keep the invariance.
  //
  // Below, `Current` has the index of the current class, and `Next` has
  // the index of the next class. If threading is enabled, they are either
  // (0, 1) or (1, 0).
  //
  // Note on single-thread: if that's the case, they are always (0, 0)
  // because we can safely read the next class without worrying about race
  // conditions. Using the same location makes this algorithm converge
  // faster because it uses results of the same iteration earlier.
  int current = 0;
  int next = 0;
};
}

// Returns true if section S is subject of ICF.
static bool isEligible(InputSection *s) {
  if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
    return false;

  // Don't merge writable sections. .data.rel.ro sections are marked as writable
  // but are semantically read-only.
  if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
      !s->name.startswith(".data.rel.ro."))
    return false;

  // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
  // so we don't consider them for ICF individually.
  if (s->flags & SHF_LINK_ORDER)
    return false;

  // Don't merge synthetic sections as their Data member is not valid and empty.
  // The Data member needs to be valid for ICF as it is used by ICF to determine
  // the equality of section contents.
  if (isa<SyntheticSection>(s))
    return false;

  // .init and .fini contains instructions that must be executed to initialize
  // and finalize the process. They cannot and should not be merged.
  if (s->name == ".init" || s->name == ".fini")
    return false;

  // A user program may enumerate sections named with a C identifier using
  // __start_* and __stop_* symbols. We cannot ICF any such sections because
  // that could change program semantics.
  if (isValidCIdentifier(s->name))
    return false;

  return true;
}

// Split an equivalence class into smaller classes.
template <class ELFT>
void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) {
  // This loop rearranges sections in [Begin, End) so that all sections
  // that are equal in terms of equals{Constant,Variable} are contiguous
  // in [Begin, End).
  //
  // The algorithm is quadratic in the worst case, but that is not an
  // issue in practice because the number of the distinct sections in
  // each range is usually very small.

  while (begin < end) {
    // Divide [Begin, End) into two. Let Mid be the start index of the
    // second group.
    auto bound =
        std::stable_partition(sections.begin() + begin + 1,
                              sections.begin() + end, [&](InputSection *s) {
                                if (constant)
                                  return equalsConstant(sections[begin], s);
                                return equalsVariable(sections[begin], s);
                              });
    size_t mid = bound - sections.begin();

    // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
    // updating the sections in [Begin, Mid). We use Mid as an equivalence
    // class ID because every group ends with a unique index.
    for (size_t i = begin; i < mid; ++i)
      sections[i]->eqClass[next] = mid;

    // If we created a group, we need to iterate the main loop again.
    if (mid != end)
      repeat = true;

    begin = mid;
  }
}

// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
                           const InputSection *secB, ArrayRef<RelTy> rb) {
  for (size_t i = 0; i < ra.size(); ++i) {
    if (ra[i].r_offset != rb[i].r_offset ||
        ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
      return false;

    uint64_t addA = getAddend<ELFT>(ra[i]);
    uint64_t addB = getAddend<ELFT>(rb[i]);

    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
    if (&sa == &sb) {
      if (addA == addB)
        continue;
      return false;
    }

    auto *da = dyn_cast<Defined>(&sa);
    auto *db = dyn_cast<Defined>(&sb);

    // Placeholder symbols generated by linker scripts look the same now but
    // may have different values later.
    if (!da || !db || da->scriptDefined || db->scriptDefined)
      return false;

    // Relocations referring to absolute symbols are constant-equal if their
    // values are equal.
    if (!da->section && !db->section && da->value + addA == db->value + addB)
      continue;
    if (!da->section || !db->section)
      return false;

    if (da->section->kind() != db->section->kind())
      return false;

    // Relocations referring to InputSections are constant-equal if their
    // section offsets are equal.
    if (isa<InputSection>(da->section)) {
      if (da->value + addA == db->value + addB)
        continue;
      return false;
    }

    // Relocations referring to MergeInputSections are constant-equal if their
    // offsets in the output section are equal.
    auto *x = dyn_cast<MergeInputSection>(da->section);
    if (!x)
      return false;
    auto *y = cast<MergeInputSection>(db->section);
    if (x->getParent() != y->getParent())
      return false;

    uint64_t offsetA =
        sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
    uint64_t offsetB =
        sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
    if (offsetA != offsetB)
      return false;
  }

  return true;
}

// Compare "non-moving" part of two InputSections, namely everything
// except relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
  if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
      a->getSize() != b->getSize() || a->data() != b->data())
    return false;

  // If two sections have different output sections, we cannot merge them.
  assert(a->getParent() && b->getParent());
  if (a->getParent() != b->getParent())
    return false;

  if (a->areRelocsRela)
    return constantEq(a, a->template relas<ELFT>(), b,
                      b->template relas<ELFT>());
  return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
}

// Compare two lists of relocations. Returns true if all pairs of
// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
                           const InputSection *secB, ArrayRef<RelTy> rb) {
  assert(ra.size() == rb.size());

  for (size_t i = 0; i < ra.size(); ++i) {
    // The two sections must be identical.
    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
    if (&sa == &sb)
      continue;

    auto *da = cast<Defined>(&sa);
    auto *db = cast<Defined>(&sb);

    // We already dealt with absolute and non-InputSection symbols in
    // constantEq, and for InputSections we have already checked everything
    // except the equivalence class.
    if (!da->section)
      continue;
    auto *x = dyn_cast<InputSection>(da->section);
    if (!x)
      continue;
    auto *y = cast<InputSection>(db->section);

    // Ineligible sections are in the special equivalence class 0.
    // They can never be the same in terms of the equivalence class.
    if (x->eqClass[current] == 0)
      return false;
    if (x->eqClass[current] != y->eqClass[current])
      return false;
  };

  return true;
}

// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
  if (a->areRelocsRela)
    return variableEq(a, a->template relas<ELFT>(), b,
                      b->template relas<ELFT>());
  return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
}

template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
  uint32_t eqClass = sections[begin]->eqClass[current];
  for (size_t i = begin + 1; i < end; ++i)
    if (eqClass != sections[i]->eqClass[current])
      return i;
  return end;
}

// Sections in the same equivalence class are contiguous in Sections
// vector. Therefore, Sections vector can be considered as contiguous
// groups of sections, grouped by the class.
//
// This function calls Fn on every group within [Begin, End).
template <class ELFT>
void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
                                  llvm::function_ref<void(size_t, size_t)> fn) {
  while (begin < end) {
    size_t mid = findBoundary(begin, end);
    fn(begin, mid);
    begin = mid;
  }
}

// Call Fn on each equivalence class.
template <class ELFT>
void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
  // If threading is disabled or the number of sections are
  // too small to use threading, call Fn sequentially.
  if (!threadsEnabled || sections.size() < 1024) {
    forEachClassRange(0, sections.size(), fn);
    ++cnt;
    return;
  }

  current = cnt % 2;
  next = (cnt + 1) % 2;

  // Shard into non-overlapping intervals, and call Fn in parallel.
  // The sharding must be completed before any calls to Fn are made
  // so that Fn can modify the Chunks in its shard without causing data
  // races.
  const size_t numShards = 256;
  size_t step = sections.size() / numShards;
  size_t boundaries[numShards + 1];
  boundaries[0] = 0;
  boundaries[numShards] = sections.size();

  parallelForEachN(1, numShards, [&](size_t i) {
    boundaries[i] = findBoundary((i - 1) * step, sections.size());
  });

  parallelForEachN(1, numShards + 1, [&](size_t i) {
    if (boundaries[i - 1] < boundaries[i])
      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
  });
  ++cnt;
}

// Combine the hashes of the sections referenced by the given section into its
// hash.
template <class ELFT, class RelTy>
static void combineRelocHashes(unsigned cnt, InputSection *isec,
                               ArrayRef<RelTy> rels) {
  uint32_t hash = isec->eqClass[cnt % 2];
  for (RelTy rel : rels) {
    Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
    if (auto *d = dyn_cast<Defined>(&s))
      if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
        hash += relSec->eqClass[cnt % 2];
  }
  // Set MSB to 1 to avoid collisions with non-hash IDs.
  isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
}

static void print(const Twine &s) {
  if (config->printIcfSections)
    message(s);
}

// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
  // Collect sections to merge.
  for (InputSectionBase *sec : inputSections) {
    auto *s = cast<InputSection>(sec);
    if (isEligible(s))
      sections.push_back(s);
  }

  // Initially, we use hash values to partition sections.
  parallelForEach(sections, [&](InputSection *s) {
    s->eqClass[0] = xxHash64(s->data());
  });

  for (unsigned cnt = 0; cnt != 2; ++cnt) {
    parallelForEach(sections, [&](InputSection *s) {
      if (s->areRelocsRela)
        combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
      else
        combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
    });
  }

  // From now on, sections in Sections vector are ordered so that sections
  // in the same equivalence class are consecutive in the vector.
  llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
    return a->eqClass[0] < b->eqClass[0];
  });

  // Compare static contents and assign unique IDs for each static content.
  forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });

  // Split groups by comparing relocations until convergence is obtained.
  do {
    repeat = false;
    forEachClass(
        [&](size_t begin, size_t end) { segregate(begin, end, false); });
  } while (repeat);

  log("ICF needed " + Twine(cnt) + " iterations");

  // Merge sections by the equivalence class.
  forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
    if (end - begin == 1)
      return;
    print("selected section " + toString(sections[begin]));
    for (size_t i = begin + 1; i < end; ++i) {
      print("  removing identical section " + toString(sections[i]));
      sections[begin]->replace(sections[i]);

      // At this point we know sections merged are fully identical and hence
      // we want to remove duplicate implicit dependencies such as link order
      // and relocation sections.
      for (InputSection *isec : sections[i]->dependentSections)
        isec->markDead();
    }
  });

  // InputSectionDescription::sections is populated by processSectionCommands().
  // ICF may fold some input sections assigned to output sections. Remove them.
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      for (BaseCommand *sub_base : sec->sectionCommands)
        if (auto *isd = dyn_cast<InputSectionDescription>(sub_base))
          llvm::erase_if(isd->sections,
                         [](InputSection *isec) { return !isec->isLive(); });
}

// ICF entry point function.
template <class ELFT> void doIcf() { ICF<ELFT>().run(); }

template void doIcf<ELF32LE>();
template void doIcf<ELF32BE>();
template void doIcf<ELF64LE>();
template void doIcf<ELF64BE>();

} // namespace elf
} // namespace lld