1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
| /*
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege,
* Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include <isl/id.h>
#include <isl/space.h>
#include <isl/constraint.h>
#include <isl/ilp.h>
#include <isl/val.h>
#include <isl_ast_build_expr.h>
#include <isl_ast_private.h>
#include <isl_ast_build_private.h>
#include <isl_sort.h>
/* Compute the "opposite" of the (numerator of the) argument of a div
* with denominator "d".
*
* In particular, compute
*
* -aff + (d - 1)
*/
static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
__isl_take isl_val *d)
{
aff = isl_aff_neg(aff);
aff = isl_aff_add_constant_val(aff, d);
aff = isl_aff_add_constant_si(aff, -1);
return aff;
}
/* Internal data structure used inside isl_ast_expr_add_term.
* The domain of "build" is used to simplify the expressions.
* "build" needs to be set by the caller of isl_ast_expr_add_term.
* "cst" is the constant term of the expression in which the added term
* appears. It may be modified by isl_ast_expr_add_term.
*
* "v" is the coefficient of the term that is being constructed and
* is set internally by isl_ast_expr_add_term.
*/
struct isl_ast_add_term_data {
isl_ast_build *build;
isl_val *cst;
isl_val *v;
};
/* Given the numerator "aff" of the argument of an integer division
* with denominator "d", check if it can be made non-negative over
* data->build->domain by stealing part of the constant term of
* the expression in which the integer division appears.
*
* In particular, the outer expression is of the form
*
* v * floor(aff/d) + cst
*
* We already know that "aff" itself may attain negative values.
* Here we check if aff + d*floor(cst/v) is non-negative, such
* that we could rewrite the expression to
*
* v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
*
* Note that aff + d*floor(cst/v) can only possibly be non-negative
* if data->cst and data->v have the same sign.
* Similarly, if floor(cst/v) is zero, then there is no point in
* checking again.
*/
static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
isl_aff *shifted;
isl_val *shift;
int is_zero;
int non_neg;
if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
return 0;
shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
shift = isl_val_floor(shift);
is_zero = isl_val_is_zero(shift);
if (is_zero < 0 || is_zero) {
isl_val_free(shift);
return is_zero < 0 ? -1 : 0;
}
shift = isl_val_mul(shift, isl_val_copy(d));
shifted = isl_aff_copy(aff);
shifted = isl_aff_add_constant_val(shifted, shift);
non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
isl_aff_free(shifted);
return non_neg;
}
/* Given the numerator "aff' of the argument of an integer division
* with denominator "d", steal part of the constant term of
* the expression in which the integer division appears to make it
* non-negative over data->build->domain.
*
* In particular, the outer expression is of the form
*
* v * floor(aff/d) + cst
*
* We know that "aff" itself may attain negative values,
* but that aff + d*floor(cst/v) is non-negative.
* Find the minimal positive value that we need to add to "aff"
* to make it positive and adjust data->cst accordingly.
* That is, compute the minimal value "m" of "aff" over
* data->build->domain and take
*
* s = ceil(m/d)
*
* such that
*
* aff + d * s >= 0
*
* and rewrite the expression to
*
* v * floor((aff + s*d)/d) + (cst - v*s)
*/
static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
isl_set *domain;
isl_val *shift, *t;
domain = isl_ast_build_get_domain(data->build);
shift = isl_set_min_val(domain, aff);
isl_set_free(domain);
shift = isl_val_neg(shift);
shift = isl_val_div(shift, isl_val_copy(d));
shift = isl_val_ceil(shift);
t = isl_val_copy(shift);
t = isl_val_mul(t, isl_val_copy(data->v));
data->cst = isl_val_sub(data->cst, t);
shift = isl_val_mul(shift, isl_val_copy(d));
return isl_aff_add_constant_val(aff, shift);
}
/* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
* The result is simplified in terms of data->build->domain.
* This function may change (the sign of) data->v.
*
* "ls" is known to be non-NULL.
*
* Let the div be of the form floor(e/d).
* If the ast_build_prefer_pdiv option is set then we check if "e"
* is non-negative, so that we can generate
*
* (pdiv_q, expr(e), expr(d))
*
* instead of
*
* (fdiv_q, expr(e), expr(d))
*
* If the ast_build_prefer_pdiv option is set and
* if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
* If so, we can rewrite
*
* floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
*
* and still use pdiv_q, while changing the sign of data->v.
*
* Otherwise, we check if
*
* e + d*floor(cst/v)
*
* is non-negative and if so, replace floor(e/d) by
*
* floor((e + s*d)/d) - s
*
* with s the minimal shift that makes the argument non-negative.
*/
static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
__isl_keep isl_local_space *ls, int pos)
{
isl_ctx *ctx = isl_local_space_get_ctx(ls);
isl_aff *aff;
isl_ast_expr *num, *den;
isl_val *d;
enum isl_ast_op_type type;
aff = isl_local_space_get_div(ls, pos);
d = isl_aff_get_denominator_val(aff);
aff = isl_aff_scale_val(aff, isl_val_copy(d));
den = isl_ast_expr_from_val(isl_val_copy(d));
type = isl_ast_op_fdiv_q;
if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
if (non_neg >= 0 && !non_neg) {
isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
isl_val_copy(d));
non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
if (non_neg >= 0 && non_neg) {
data->v = isl_val_neg(data->v);
isl_aff_free(aff);
aff = opp;
} else
isl_aff_free(opp);
}
if (non_neg >= 0 && !non_neg) {
non_neg = is_non_neg_after_stealing(aff, d, data);
if (non_neg >= 0 && non_neg)
aff = steal_from_cst(aff, d, data);
}
if (non_neg < 0)
aff = isl_aff_free(aff);
else if (non_neg)
type = isl_ast_op_pdiv_q;
}
isl_val_free(d);
num = isl_ast_expr_from_aff(aff, data->build);
return isl_ast_expr_alloc_binary(type, num, den);
}
/* Create an isl_ast_expr evaluating the specified dimension of "ls".
* The result is simplified in terms of data->build->domain.
* This function may change (the sign of) data->v.
*
* The isl_ast_expr is constructed based on the type of the dimension.
* - divs are constructed by var_div
* - set variables are constructed from the iterator isl_ids in data->build
* - parameters are constructed from the isl_ids in "ls"
*/
static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
{
isl_ctx *ctx = isl_local_space_get_ctx(ls);
isl_id *id;
if (type == isl_dim_div)
return var_div(data, ls, pos);
if (type == isl_dim_set) {
id = isl_ast_build_get_iterator_id(data->build, pos);
return isl_ast_expr_from_id(id);
}
if (!isl_local_space_has_dim_id(ls, type, pos))
isl_die(ctx, isl_error_internal, "unnamed dimension",
return NULL);
id = isl_local_space_get_dim_id(ls, type, pos);
return isl_ast_expr_from_id(id);
}
/* Does "expr" represent the zero integer?
*/
static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
{
if (!expr)
return -1;
if (expr->type != isl_ast_expr_int)
return 0;
return isl_val_is_zero(expr->u.v);
}
/* Create an expression representing the sum of "expr1" and "expr2",
* provided neither of the two expressions is identically zero.
*/
static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
{
if (!expr1 || !expr2)
goto error;
if (ast_expr_is_zero(expr1)) {
isl_ast_expr_free(expr1);
return expr2;
}
if (ast_expr_is_zero(expr2)) {
isl_ast_expr_free(expr2);
return expr1;
}
return isl_ast_expr_add(expr1, expr2);
error:
isl_ast_expr_free(expr1);
isl_ast_expr_free(expr2);
return NULL;
}
/* Subtract expr2 from expr1.
*
* If expr2 is zero, we simply return expr1.
* If expr1 is zero, we return
*
* (isl_ast_op_minus, expr2)
*
* Otherwise, we return
*
* (isl_ast_op_sub, expr1, expr2)
*/
static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
{
if (!expr1 || !expr2)
goto error;
if (ast_expr_is_zero(expr2)) {
isl_ast_expr_free(expr2);
return expr1;
}
if (ast_expr_is_zero(expr1)) {
isl_ast_expr_free(expr1);
return isl_ast_expr_neg(expr2);
}
return isl_ast_expr_sub(expr1, expr2);
error:
isl_ast_expr_free(expr1);
isl_ast_expr_free(expr2);
return NULL;
}
/* Return an isl_ast_expr that represents
*
* v * (aff mod d)
*
* v is assumed to be non-negative.
* The result is simplified in terms of build->domain.
*/
static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
__isl_keep isl_aff *aff, __isl_keep isl_val *d,
__isl_keep isl_ast_build *build)
{
isl_ast_expr *expr;
isl_ast_expr *c;
if (!aff)
return NULL;
expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
c = isl_ast_expr_from_val(isl_val_copy(d));
expr = isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r, expr, c);
if (!isl_val_is_one(v)) {
c = isl_ast_expr_from_val(isl_val_copy(v));
expr = isl_ast_expr_mul(c, expr);
}
return expr;
}
/* Create an isl_ast_expr that scales "expr" by "v".
*
* If v is 1, we simply return expr.
* If v is -1, we return
*
* (isl_ast_op_minus, expr)
*
* Otherwise, we return
*
* (isl_ast_op_mul, expr(v), expr)
*/
static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
__isl_take isl_val *v)
{
isl_ast_expr *c;
if (!expr || !v)
goto error;
if (isl_val_is_one(v)) {
isl_val_free(v);
return expr;
}
if (isl_val_is_negone(v)) {
isl_val_free(v);
expr = isl_ast_expr_neg(expr);
} else {
c = isl_ast_expr_from_val(v);
expr = isl_ast_expr_mul(c, expr);
}
return expr;
error:
isl_val_free(v);
isl_ast_expr_free(expr);
return NULL;
}
/* Add an expression for "*v" times the specified dimension of "ls"
* to expr.
* If the dimension is an integer division, then this function
* may modify data->cst in order to make the numerator non-negative.
* The result is simplified in terms of data->build->domain.
*
* Let e be the expression for the specified dimension,
* multiplied by the absolute value of "*v".
* If "*v" is negative, we create
*
* (isl_ast_op_sub, expr, e)
*
* except when expr is trivially zero, in which case we create
*
* (isl_ast_op_minus, e)
*
* instead.
*
* If "*v" is positive, we simply create
*
* (isl_ast_op_add, expr, e)
*
*/
static __isl_give isl_ast_expr *isl_ast_expr_add_term(
__isl_take isl_ast_expr *expr,
__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
__isl_take isl_val *v, struct isl_ast_add_term_data *data)
{
isl_ast_expr *term;
if (!expr)
return NULL;
data->v = v;
term = var(data, ls, type, pos);
v = data->v;
if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
v = isl_val_neg(v);
term = scale(term, v);
return ast_expr_sub(expr, term);
} else {
term = scale(term, v);
return ast_expr_add(expr, term);
}
}
/* Add an expression for "v" to expr.
*/
static __isl_give isl_ast_expr *isl_ast_expr_add_int(
__isl_take isl_ast_expr *expr, __isl_take isl_val *v)
{
isl_ast_expr *expr_int;
if (!expr || !v)
goto error;
if (isl_val_is_zero(v)) {
isl_val_free(v);
return expr;
}
if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
v = isl_val_neg(v);
expr_int = isl_ast_expr_from_val(v);
return ast_expr_sub(expr, expr_int);
} else {
expr_int = isl_ast_expr_from_val(v);
return ast_expr_add(expr, expr_int);
}
error:
isl_ast_expr_free(expr);
isl_val_free(v);
return NULL;
}
/* Internal data structure used inside extract_modulos.
*
* If any modulo expressions are detected in "aff", then the
* expression is removed from "aff" and added to either "pos" or "neg"
* depending on the sign of the coefficient of the modulo expression
* inside "aff".
*
* "add" is an expression that needs to be added to "aff" at the end of
* the computation. It is NULL as long as no modulos have been extracted.
*
* "i" is the position in "aff" of the div under investigation
* "v" is the coefficient in "aff" of the div
* "div" is the argument of the div, with the denominator removed
* "d" is the original denominator of the argument of the div
*
* "nonneg" is an affine expression that is non-negative over "build"
* and that can be used to extract a modulo expression from "div".
* In particular, if "sign" is 1, then the coefficients of "nonneg"
* are equal to those of "div" modulo "d". If "sign" is -1, then
* the coefficients of "nonneg" are opposite to those of "div" modulo "d".
* If "sign" is 0, then no such affine expression has been found (yet).
*/
struct isl_extract_mod_data {
isl_ast_build *build;
isl_aff *aff;
isl_ast_expr *pos;
isl_ast_expr *neg;
isl_aff *add;
int i;
isl_val *v;
isl_val *d;
isl_aff *div;
isl_aff *nonneg;
int sign;
};
/* Given that data->v * div_i in data->aff is equal to
*
* f * (term - (arg mod d))
*
* with data->d * f = data->v, add
*
* f * term
*
* to data->add and
*
* abs(f) * (arg mod d)
*
* to data->neg or data->pos depending on the sign of -f.
*/
static int extract_term_and_mod(struct isl_extract_mod_data *data,
__isl_take isl_aff *term, __isl_take isl_aff *arg)
{
isl_ast_expr *expr;
int s;
data->v = isl_val_div(data->v, isl_val_copy(data->d));
s = isl_val_sgn(data->v);
data->v = isl_val_abs(data->v);
expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
isl_aff_free(arg);
if (s > 0)
data->neg = ast_expr_add(data->neg, expr);
else
data->pos = ast_expr_add(data->pos, expr);
data->aff = isl_aff_set_coefficient_si(data->aff,
isl_dim_div, data->i, 0);
if (s < 0)
data->v = isl_val_neg(data->v);
term = isl_aff_scale_val(term, isl_val_copy(data->v));
if (!data->add)
data->add = term;
else
data->add = isl_aff_add(data->add, term);
if (!data->add)
return -1;
return 0;
}
/* Given that data->v * div_i in data->aff is of the form
*
* f * d * floor(div/d)
*
* with div nonnegative on data->build, rewrite it as
*
* f * (div - (div mod d)) = f * div - f * (div mod d)
*
* and add
*
* f * div
*
* to data->add and
*
* abs(f) * (div mod d)
*
* to data->neg or data->pos depending on the sign of -f.
*/
static int extract_mod(struct isl_extract_mod_data *data)
{
return extract_term_and_mod(data, isl_aff_copy(data->div),
isl_aff_copy(data->div));
}
/* Given that data->v * div_i in data->aff is of the form
*
* f * d * floor(div/d) (1)
*
* check if div is non-negative on data->build and, if so,
* extract the corresponding modulo from data->aff.
* If not, then check if
*
* -div + d - 1
*
* is non-negative on data->build. If so, replace (1) by
*
* -f * d * floor((-div + d - 1)/d)
*
* and extract the corresponding modulo from data->aff.
*
* This function may modify data->div.
*/
static int extract_nonneg_mod(struct isl_extract_mod_data *data)
{
int mod;
mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
if (mod < 0)
goto error;
if (mod)
return extract_mod(data);
data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
if (mod < 0)
goto error;
if (mod) {
data->v = isl_val_neg(data->v);
return extract_mod(data);
}
return 0;
error:
data->aff = isl_aff_free(data->aff);
return -1;
}
/* Is the affine expression of constraint "c" "simpler" than data->nonneg
* for use in extracting a modulo expression?
*
* We currently only consider the constant term of the affine expression.
* In particular, we prefer the affine expression with the smallest constant
* term.
* This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
* then we would pick x >= 0
*
* More detailed heuristics could be used if it turns out that there is a need.
*/
static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
__isl_keep isl_constraint *c)
{
isl_val *v1, *v2;
int simpler;
if (!data->nonneg)
return 1;
v1 = isl_val_abs(isl_constraint_get_constant_val(c));
v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
simpler = isl_val_lt(v1, v2);
isl_val_free(v1);
isl_val_free(v2);
return simpler;
}
/* Check if the coefficients of "c" are either equal or opposite to those
* of data->div modulo data->d. If so, and if "c" is "simpler" than
* data->nonneg, then replace data->nonneg by the affine expression of "c"
* and set data->sign accordingly.
*
* Both "c" and data->div are assumed not to involve any integer divisions.
*
* Before we start the actual comparison, we first quickly check if
* "c" and data->div have the same non-zero coefficients.
* If not, then we assume that "c" is not of the desired form.
* Note that while the coefficients of data->div can be reasonably expected
* not to involve any coefficients that are multiples of d, "c" may
* very well involve such coefficients. This means that we may actually
* miss some cases.
*
* If the constant term is "too large", then the constraint is rejected,
* where "too large" is fairly arbitrarily set to 1 << 15.
* We do this to avoid picking up constraints that bound a variable
* by a very large number, say the largest or smallest possible
* variable in the representation of some integer type.
*/
static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
void *user)
{
struct isl_extract_mod_data *data = user;
enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
int i, t;
int n[2];
int parallel = 1, opposite = 1;
for (t = 0; t < 2; ++t) {
n[t] = isl_constraint_dim(c, c_type[t]);
for (i = 0; i < n[t]; ++i) {
int a, b;
a = isl_constraint_involves_dims(c, c_type[t], i, 1);
b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
if (a != b)
parallel = opposite = 0;
}
}
if (parallel || opposite) {
isl_val *v;
v = isl_val_abs(isl_constraint_get_constant_val(c));
if (isl_val_cmp_si(v, 1 << 15) > 0)
parallel = opposite = 0;
isl_val_free(v);
}
for (t = 0; t < 2; ++t) {
for (i = 0; i < n[t]; ++i) {
isl_val *v1, *v2;
if (!parallel && !opposite)
break;
v1 = isl_constraint_get_coefficient_val(c,
c_type[t], i);
v2 = isl_aff_get_coefficient_val(data->div,
a_type[t], i);
if (parallel) {
v1 = isl_val_sub(v1, isl_val_copy(v2));
parallel = isl_val_is_divisible_by(v1, data->d);
v1 = isl_val_add(v1, isl_val_copy(v2));
}
if (opposite) {
v1 = isl_val_add(v1, isl_val_copy(v2));
opposite = isl_val_is_divisible_by(v1, data->d);
}
isl_val_free(v1);
isl_val_free(v2);
}
}
if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
isl_aff_free(data->nonneg);
data->nonneg = isl_constraint_get_aff(c);
data->sign = parallel ? 1 : -1;
}
isl_constraint_free(c);
if (data->sign != 0 && data->nonneg == NULL)
return isl_stat_error;
return isl_stat_ok;
}
/* Given that data->v * div_i in data->aff is of the form
*
* f * d * floor(div/d) (1)
*
* see if we can find an expression div' that is non-negative over data->build
* and that is related to div through
*
* div' = div + d * e
*
* or
*
* div' = -div + d - 1 + d * e
*
* with e some affine expression.
* If so, we write (1) as
*
* f * div + f * (div' mod d)
*
* or
*
* -f * (-div + d - 1) - f * (div' mod d)
*
* exploiting (in the second case) the fact that
*
* f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
*
*
* We first try to find an appropriate expression for div'
* from the constraints of data->build->domain (which is therefore
* guaranteed to be non-negative on data->build), where we remove
* any integer divisions from the constraints and skip this step
* if "div" itself involves any integer divisions.
* If we cannot find an appropriate expression this way, then
* we pass control to extract_nonneg_mod where check
* if div or "-div + d -1" themselves happen to be
* non-negative on data->build.
*
* While looking for an appropriate constraint in data->build->domain,
* we ignore the constant term, so after finding such a constraint,
* we still need to fix up the constant term.
* In particular, if a is the constant term of "div"
* (or d - 1 - the constant term of "div" if data->sign < 0)
* and b is the constant term of the constraint, then we need to find
* a non-negative constant c such that
*
* b + c \equiv a mod d
*
* We therefore take
*
* c = (a - b) mod d
*
* and add it to b to obtain the constant term of div'.
* If this constant term is "too negative", then we add an appropriate
* multiple of d to make it positive.
*
*
* Note that the above is a only a very simple heuristic for finding an
* appropriate expression. We could try a bit harder by also considering
* sums of constraints that involve disjoint sets of variables or
* we could consider arbitrary linear combinations of constraints,
* although that could potentially be much more expensive as it involves
* the solution of an LP problem.
*
* In particular, if v_i is a column vector representing constraint i,
* w represents div and e_i is the i-th unit vector, then we are looking
* for a solution of the constraints
*
* \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
*
* with \lambda_i >= 0 and alpha_i of unrestricted sign.
* If we are not just interested in a non-negative expression, but
* also in one with a minimal range, then we don't just want
* c = \sum_i lambda_i v_i to be non-negative over the domain,
* but also beta - c = \sum_i mu_i v_i, where beta is a scalar
* that we want to minimize and we now also have to take into account
* the constant terms of the constraints.
* Alternatively, we could first compute the dual of the domain
* and plug in the constraints on the coefficients.
*/
static int try_extract_mod(struct isl_extract_mod_data *data)
{
isl_basic_set *hull;
isl_val *v1, *v2;
int r, n;
if (!data->build)
goto error;
n = isl_aff_dim(data->div, isl_dim_div);
if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
return extract_nonneg_mod(data);
hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
hull = isl_basic_set_remove_divs(hull);
data->sign = 0;
data->nonneg = NULL;
r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
data);
isl_basic_set_free(hull);
if (!data->sign || r < 0) {
isl_aff_free(data->nonneg);
if (r < 0)
goto error;
return extract_nonneg_mod(data);
}
v1 = isl_aff_get_constant_val(data->div);
v2 = isl_aff_get_constant_val(data->nonneg);
if (data->sign < 0) {
v1 = isl_val_neg(v1);
v1 = isl_val_add(v1, isl_val_copy(data->d));
v1 = isl_val_sub_ui(v1, 1);
}
v1 = isl_val_sub(v1, isl_val_copy(v2));
v1 = isl_val_mod(v1, isl_val_copy(data->d));
v1 = isl_val_add(v1, v2);
v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
v2 = isl_val_ceil(v2);
if (isl_val_is_neg(v2)) {
v2 = isl_val_mul(v2, isl_val_copy(data->d));
v1 = isl_val_sub(v1, isl_val_copy(v2));
}
data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
isl_val_free(v2);
if (data->sign < 0) {
data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
data->v = isl_val_neg(data->v);
}
return extract_term_and_mod(data,
isl_aff_copy(data->div), data->nonneg);
error:
data->aff = isl_aff_free(data->aff);
return -1;
}
/* Check if "data->aff" involves any (implicit) modulo computations based
* on div "data->i".
* If so, remove them from aff and add expressions corresponding
* to those modulo computations to data->pos and/or data->neg.
*
* "aff" is assumed to be an integer affine expression.
*
* In particular, check if (v * div_j) is of the form
*
* f * m * floor(a / m)
*
* and, if so, rewrite it as
*
* f * (a - (a mod m)) = f * a - f * (a mod m)
*
* and extract out -f * (a mod m).
* In particular, if f > 0, we add (f * (a mod m)) to *neg.
* If f < 0, we add ((-f) * (a mod m)) to *pos.
*
* Note that in order to represent "a mod m" as
*
* (isl_ast_op_pdiv_r, a, m)
*
* we need to make sure that a is non-negative.
* If not, we check if "-a + m - 1" is non-negative.
* If so, we can rewrite
*
* floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
*
* and still extract a modulo.
*/
static int extract_modulo(struct isl_extract_mod_data *data)
{
data->div = isl_aff_get_div(data->aff, data->i);
data->d = isl_aff_get_denominator_val(data->div);
if (isl_val_is_divisible_by(data->v, data->d)) {
data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
if (try_extract_mod(data) < 0)
data->aff = isl_aff_free(data->aff);
}
isl_aff_free(data->div);
isl_val_free(data->d);
return 0;
}
/* Check if "aff" involves any (implicit) modulo computations.
* If so, remove them from aff and add expressions corresponding
* to those modulo computations to *pos and/or *neg.
* We only do this if the option ast_build_prefer_pdiv is set.
*
* "aff" is assumed to be an integer affine expression.
*
* A modulo expression is of the form
*
* a mod m = a - m * floor(a / m)
*
* To detect them in aff, we look for terms of the form
*
* f * m * floor(a / m)
*
* rewrite them as
*
* f * (a - (a mod m)) = f * a - f * (a mod m)
*
* and extract out -f * (a mod m).
* In particular, if f > 0, we add (f * (a mod m)) to *neg.
* If f < 0, we add ((-f) * (a mod m)) to *pos.
*/
static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
__isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
__isl_keep isl_ast_build *build)
{
struct isl_extract_mod_data data = { build, aff, *pos, *neg };
isl_ctx *ctx;
int n;
if (!aff)
return NULL;
ctx = isl_aff_get_ctx(aff);
if (!isl_options_get_ast_build_prefer_pdiv(ctx))
return aff;
n = isl_aff_dim(data.aff, isl_dim_div);
for (data.i = 0; data.i < n; ++data.i) {
data.v = isl_aff_get_coefficient_val(data.aff,
isl_dim_div, data.i);
if (!data.v)
return isl_aff_free(aff);
if (isl_val_is_zero(data.v) ||
isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
isl_val_free(data.v);
continue;
}
if (extract_modulo(&data) < 0)
data.aff = isl_aff_free(data.aff);
isl_val_free(data.v);
if (!data.aff)
break;
}
if (data.add)
data.aff = isl_aff_add(data.aff, data.add);
*pos = data.pos;
*neg = data.neg;
return data.aff;
}
/* Check if aff involves any non-integer coefficients.
* If so, split aff into
*
* aff = aff1 + (aff2 / d)
*
* with both aff1 and aff2 having only integer coefficients.
* Return aff1 and add (aff2 / d) to *expr.
*/
static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
__isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
{
int i, j, n;
isl_aff *rat = NULL;
isl_local_space *ls = NULL;
isl_ast_expr *rat_expr;
isl_val *v, *d;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
if (!aff)
return NULL;
d = isl_aff_get_denominator_val(aff);
if (!d)
goto error;
if (isl_val_is_one(d)) {
isl_val_free(d);
return aff;
}
aff = isl_aff_scale_val(aff, isl_val_copy(d));
ls = isl_aff_get_domain_local_space(aff);
rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
for (i = 0; i < 3; ++i) {
n = isl_aff_dim(aff, t[i]);
for (j = 0; j < n; ++j) {
isl_aff *rat_j;
v = isl_aff_get_coefficient_val(aff, t[i], j);
if (!v)
goto error;
if (isl_val_is_divisible_by(v, d)) {
isl_val_free(v);
continue;
}
rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
l[i], j);
rat_j = isl_aff_scale_val(rat_j, v);
rat = isl_aff_add(rat, rat_j);
}
}
v = isl_aff_get_constant_val(aff);
if (isl_val_is_divisible_by(v, d)) {
isl_val_free(v);
} else {
isl_aff *rat_0;
rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
rat = isl_aff_add(rat, rat_0);
}
isl_local_space_free(ls);
aff = isl_aff_sub(aff, isl_aff_copy(rat));
aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
rat_expr = isl_ast_expr_from_aff(rat, build);
rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
*expr = ast_expr_add(*expr, rat_expr);
return aff;
error:
isl_aff_free(rat);
isl_local_space_free(ls);
isl_aff_free(aff);
isl_val_free(d);
return NULL;
}
/* Construct an isl_ast_expr that evaluates the affine expression "aff",
* The result is simplified in terms of build->domain.
*
* We first extract hidden modulo computations from the affine expression
* and then add terms for each variable with a non-zero coefficient.
* Finally, if the affine expression has a non-trivial denominator,
* we divide the resulting isl_ast_expr by this denominator.
*/
__isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
__isl_keep isl_ast_build *build)
{
int i, j;
int n;
isl_val *v;
isl_ctx *ctx = isl_aff_get_ctx(aff);
isl_ast_expr *expr, *expr_neg;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
isl_local_space *ls;
struct isl_ast_add_term_data data;
if (!aff)
return NULL;
expr = isl_ast_expr_alloc_int_si(ctx, 0);
expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
aff = extract_rational(aff, &expr, build);
aff = extract_modulos(aff, &expr, &expr_neg, build);
expr = ast_expr_sub(expr, expr_neg);
ls = isl_aff_get_domain_local_space(aff);
data.build = build;
data.cst = isl_aff_get_constant_val(aff);
for (i = 0; i < 3; ++i) {
n = isl_aff_dim(aff, t[i]);
for (j = 0; j < n; ++j) {
v = isl_aff_get_coefficient_val(aff, t[i], j);
if (!v)
expr = isl_ast_expr_free(expr);
if (isl_val_is_zero(v)) {
isl_val_free(v);
continue;
}
expr = isl_ast_expr_add_term(expr,
ls, l[i], j, v, &data);
}
}
expr = isl_ast_expr_add_int(expr, data.cst);
isl_local_space_free(ls);
isl_aff_free(aff);
return expr;
}
/* Add terms to "expr" for each variable in "aff" with a coefficient
* with sign equal to "sign".
* The result is simplified in terms of data->build->domain.
*/
static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
__isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
{
int i, j;
isl_val *v;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
isl_local_space *ls;
ls = isl_aff_get_domain_local_space(aff);
for (i = 0; i < 3; ++i) {
int n = isl_aff_dim(aff, t[i]);
for (j = 0; j < n; ++j) {
v = isl_aff_get_coefficient_val(aff, t[i], j);
if (sign * isl_val_sgn(v) <= 0) {
isl_val_free(v);
continue;
}
v = isl_val_abs(v);
expr = isl_ast_expr_add_term(expr,
ls, l[i], j, v, data);
}
}
isl_local_space_free(ls);
return expr;
}
/* Should the constant term "v" be considered positive?
*
* A positive constant will be added to "pos" by the caller,
* while a negative constant will be added to "neg".
* If either "pos" or "neg" is exactly zero, then we prefer
* to add the constant "v" to that side, irrespective of the sign of "v".
* This results in slightly shorter expressions and may reduce the risk
* of overflows.
*/
static int constant_is_considered_positive(__isl_keep isl_val *v,
__isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
{
if (ast_expr_is_zero(pos))
return 1;
if (ast_expr_is_zero(neg))
return 0;
return isl_val_is_pos(v);
}
/* Check if the equality
*
* aff = 0
*
* represents a stride constraint on the integer division "pos".
*
* In particular, if the integer division "pos" is equal to
*
* floor(e/d)
*
* then check if aff is equal to
*
* e - d floor(e/d)
*
* or its opposite.
*
* If so, the equality is exactly
*
* e mod d = 0
*
* Note that in principle we could also accept
*
* e - d floor(e'/d)
*
* where e and e' differ by a constant.
*/
static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
{
isl_aff *div;
isl_val *c, *d;
int eq;
div = isl_aff_get_div(aff, pos);
c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
d = isl_aff_get_denominator_val(div);
eq = isl_val_abs_eq(c, d);
if (eq >= 0 && eq) {
aff = isl_aff_copy(aff);
aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
div = isl_aff_scale_val(div, d);
if (isl_val_is_pos(c))
div = isl_aff_neg(div);
eq = isl_aff_plain_is_equal(div, aff);
isl_aff_free(aff);
} else
isl_val_free(d);
isl_val_free(c);
isl_aff_free(div);
return eq;
}
/* Are all coefficients of "aff" (zero or) negative?
*/
static int all_negative_coefficients(__isl_keep isl_aff *aff)
{
int i, n;
if (!aff)
return 0;
n = isl_aff_dim(aff, isl_dim_param);
for (i = 0; i < n; ++i)
if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
return 0;
n = isl_aff_dim(aff, isl_dim_in);
for (i = 0; i < n; ++i)
if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
return 0;
return 1;
}
/* Give an equality of the form
*
* aff = e - d floor(e/d) = 0
*
* or
*
* aff = -e + d floor(e/d) = 0
*
* with the integer division "pos" equal to floor(e/d),
* construct the AST expression
*
* (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
*
* If e only has negative coefficients, then construct
*
* (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0))
*
* instead.
*/
static __isl_give isl_ast_expr *extract_stride_constraint(
__isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
{
isl_ctx *ctx;
isl_val *c;
isl_ast_expr *expr, *cst;
if (!aff)
return NULL;
ctx = isl_aff_get_ctx(aff);
c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
if (all_negative_coefficients(aff))
aff = isl_aff_neg(aff);
cst = isl_ast_expr_from_val(isl_val_abs(c));
expr = isl_ast_expr_from_aff(aff, build);
expr = isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r, expr, cst);
cst = isl_ast_expr_alloc_int_si(ctx, 0);
expr = isl_ast_expr_alloc_binary(isl_ast_op_eq, expr, cst);
return expr;
}
/* Construct an isl_ast_expr that evaluates the condition "constraint",
* The result is simplified in terms of build->domain.
*
* We first check if the constraint is an equality of the form
*
* e - d floor(e/d) = 0
*
* i.e.,
*
* e mod d = 0
*
* If so, we convert it to
*
* (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0))
*
* Otherwise, let the constraint by either "a >= 0" or "a == 0".
* We first extract hidden modulo computations from "a"
* and then collect all the terms with a positive coefficient in cons_pos
* and the terms with a negative coefficient in cons_neg.
*
* The result is then of the form
*
* (isl_ast_op_ge, expr(pos), expr(-neg)))
*
* or
*
* (isl_ast_op_eq, expr(pos), expr(-neg)))
*
* However, if the first expression is an integer constant (and the second
* is not), then we swap the two expressions. This ensures that we construct,
* e.g., "i <= 5" rather than "5 >= i".
*
* Furthermore, is there are no terms with positive coefficients (or no terms
* with negative coefficients), then the constant term is added to "pos"
* (or "neg"), ignoring the sign of the constant term.
*/
static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
__isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
{
int i, n;
isl_ctx *ctx;
isl_ast_expr *expr_pos;
isl_ast_expr *expr_neg;
isl_ast_expr *expr;
isl_aff *aff;
int eq;
enum isl_ast_op_type type;
struct isl_ast_add_term_data data;
if (!constraint)
return NULL;
aff = isl_constraint_get_aff(constraint);
eq = isl_constraint_is_equality(constraint);
isl_constraint_free(constraint);
n = isl_aff_dim(aff, isl_dim_div);
if (eq && n > 0)
for (i = 0; i < n; ++i) {
int is_stride;
is_stride = is_stride_constraint(aff, i);
if (is_stride < 0)
goto error;
if (is_stride)
return extract_stride_constraint(aff, i, build);
}
ctx = isl_aff_get_ctx(aff);
expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
data.build = build;
data.cst = isl_aff_get_constant_val(aff);
expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
data.cst = isl_val_neg(data.cst);
expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
data.cst = isl_val_neg(data.cst);
if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
} else {
data.cst = isl_val_neg(data.cst);
expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
}
if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
type = eq ? isl_ast_op_eq : isl_ast_op_le;
expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
} else {
type = eq ? isl_ast_op_eq : isl_ast_op_ge;
expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
}
isl_aff_free(aff);
return expr;
error:
isl_aff_free(aff);
return NULL;
}
/* Wrapper around isl_constraint_cmp_last_non_zero for use
* as a callback to isl_constraint_list_sort.
* If isl_constraint_cmp_last_non_zero cannot tell the constraints
* apart, then use isl_constraint_plain_cmp instead.
*/
static int cmp_constraint(__isl_keep isl_constraint *a,
__isl_keep isl_constraint *b, void *user)
{
int cmp;
cmp = isl_constraint_cmp_last_non_zero(a, b);
if (cmp != 0)
return cmp;
return isl_constraint_plain_cmp(a, b);
}
/* Construct an isl_ast_expr that evaluates the conditions defining "bset".
* The result is simplified in terms of build->domain.
*
* If "bset" is not bounded by any constraint, then we construct
* the expression "1", i.e., "true".
*
* Otherwise, we sort the constraints, putting constraints that involve
* integer divisions after those that do not, and construct an "and"
* of the ast expressions of the individual constraints.
*
* Each constraint is added to the generated constraints of the build
* after it has been converted to an AST expression so that it can be used
* to simplify the following constraints. This may change the truth value
* of subsequent constraints that do not satisfy the earlier constraints,
* but this does not affect the outcome of the conjunction as it is
* only true if all the conjuncts are true (no matter in what order
* they are evaluated). In particular, the constraints that do not
* involve integer divisions may serve to simplify some constraints
* that do involve integer divisions.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
__isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
{
int i, n;
isl_constraint *c;
isl_constraint_list *list;
isl_ast_expr *res;
isl_set *set;
list = isl_basic_set_get_constraint_list(bset);
isl_basic_set_free(bset);
list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
if (!list)
return NULL;
n = isl_constraint_list_n_constraint(list);
if (n == 0) {
isl_ctx *ctx = isl_constraint_list_get_ctx(list);
isl_constraint_list_free(list);
return isl_ast_expr_alloc_int_si(ctx, 1);
}
build = isl_ast_build_copy(build);
c = isl_constraint_list_get_constraint(list, 0);
bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
set = isl_set_from_basic_set(bset);
res = isl_ast_expr_from_constraint(c, build);
build = isl_ast_build_restrict_generated(build, set);
for (i = 1; i < n; ++i) {
isl_ast_expr *expr;
c = isl_constraint_list_get_constraint(list, i);
bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
set = isl_set_from_basic_set(bset);
expr = isl_ast_expr_from_constraint(c, build);
build = isl_ast_build_restrict_generated(build, set);
res = isl_ast_expr_and(res, expr);
}
isl_constraint_list_free(list);
isl_ast_build_free(build);
return res;
}
/* Construct an isl_ast_expr that evaluates the conditions defining "set".
* The result is simplified in terms of build->domain.
*
* If "set" is an (obviously) empty set, then return the expression "0".
*
* If there are multiple disjuncts in the description of the set,
* then subsequent disjuncts are simplified in a context where
* the previous disjuncts have been removed from build->domain.
* In particular, constraints that ensure that there is no overlap
* with these previous disjuncts, can be removed.
* This is mostly useful for disjuncts that are only defined by
* a single constraint (relative to the build domain) as the opposite
* of that single constraint can then be removed from the other disjuncts.
* In order not to increase the number of disjuncts in the build domain
* after subtracting the previous disjuncts of "set", the simple hull
* is computed after taking the difference with each of these disjuncts.
* This means that constraints that prevent overlap with a union
* of multiple previous disjuncts are not removed.
*
* "set" lives in the internal schedule space.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
int i, n;
isl_basic_set *bset;
isl_basic_set_list *list;
isl_set *domain;
isl_ast_expr *res;
list = isl_set_get_basic_set_list(set);
isl_set_free(set);
if (!list)
return NULL;
n = isl_basic_set_list_n_basic_set(list);
if (n == 0) {
isl_ctx *ctx = isl_ast_build_get_ctx(build);
isl_basic_set_list_free(list);
return isl_ast_expr_from_val(isl_val_zero(ctx));
}
domain = isl_ast_build_get_domain(build);
bset = isl_basic_set_list_get_basic_set(list, 0);
set = isl_set_from_basic_set(isl_basic_set_copy(bset));
res = isl_ast_build_expr_from_basic_set(build, bset);
for (i = 1; i < n; ++i) {
isl_ast_expr *expr;
isl_set *rest;
rest = isl_set_subtract(isl_set_copy(domain), set);
rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
domain = isl_set_intersect(domain, rest);
bset = isl_basic_set_list_get_basic_set(list, i);
set = isl_set_from_basic_set(isl_basic_set_copy(bset));
bset = isl_basic_set_gist(bset,
isl_set_simple_hull(isl_set_copy(domain)));
expr = isl_ast_build_expr_from_basic_set(build, bset);
res = isl_ast_expr_or(res, expr);
}
isl_set_free(domain);
isl_set_free(set);
isl_basic_set_list_free(list);
return res;
}
/* Construct an isl_ast_expr that evaluates the conditions defining "set".
* The result is simplified in terms of build->domain.
*
* If "set" is an (obviously) empty set, then return the expression "0".
*
* "set" lives in the external schedule space.
*
* The internal AST expression generation assumes that there are
* no unknown divs, so make sure an explicit representation is available.
* Since the set comes from the outside, it may have constraints that
* are redundant with respect to the build domain. Remove them first.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_set(
__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
if (isl_ast_build_need_schedule_map(build)) {
isl_multi_aff *ma;
ma = isl_ast_build_get_schedule_map_multi_aff(build);
set = isl_set_preimage_multi_aff(set, ma);
}
set = isl_set_compute_divs(set);
set = isl_ast_build_compute_gist(build, set);
return isl_ast_build_expr_from_set_internal(build, set);
}
/* State of data about previous pieces in
* isl_ast_build_expr_from_pw_aff_internal.
*
* isl_state_none: no data about previous pieces
* isl_state_single: data about a single previous piece
* isl_state_min: data represents minimum of several pieces
* isl_state_max: data represents maximum of several pieces
*/
enum isl_from_pw_aff_state {
isl_state_none,
isl_state_single,
isl_state_min,
isl_state_max
};
/* Internal date structure representing a single piece in the input of
* isl_ast_build_expr_from_pw_aff_internal.
*
* If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
* If "state" is isl_state_single, then "set_list" and "aff_list" contain the
* single previous subpiece.
* If "state" is isl_state_min, then "set_list" and "aff_list" contain
* a sequence of several previous subpieces that are equal to the minimum
* of the entries in "aff_list" over the union of "set_list"
* If "state" is isl_state_max, then "set_list" and "aff_list" contain
* a sequence of several previous subpieces that are equal to the maximum
* of the entries in "aff_list" over the union of "set_list"
*
* During the construction of the pieces, "set" is NULL.
* After the construction, "set" is set to the union of the elements
* in "set_list", at which point "set_list" is set to NULL.
*/
struct isl_from_pw_aff_piece {
enum isl_from_pw_aff_state state;
isl_set *set;
isl_set_list *set_list;
isl_aff_list *aff_list;
};
/* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
*
* "build" specifies the domain against which the result is simplified.
* "dom" is the domain of the entire isl_pw_aff.
*
* "n" is the number of pieces constructed already.
* In particular, during the construction of the pieces, "n" points to
* the piece that is being constructed. After the construction of the
* pieces, "n" is set to the total number of pieces.
* "max" is the total number of allocated entries.
* "p" contains the individual pieces.
*/
struct isl_from_pw_aff_data {
isl_ast_build *build;
isl_set *dom;
int n;
int max;
struct isl_from_pw_aff_piece *p;
};
/* Initialize "data" based on "build" and "pa".
*/
static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
__isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
{
int n;
isl_ctx *ctx;
ctx = isl_pw_aff_get_ctx(pa);
n = isl_pw_aff_n_piece(pa);
if (n == 0)
isl_die(ctx, isl_error_invalid,
"cannot handle void expression", return isl_stat_error);
data->max = n;
data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
if (!data->p)
return isl_stat_error;
data->build = build;
data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
data->n = 0;
return isl_stat_ok;
}
/* Free all memory allocated for "data".
*/
static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
{
int i;
isl_set_free(data->dom);
if (!data->p)
return;
for (i = 0; i < data->max; ++i) {
isl_set_free(data->p[i].set);
isl_set_list_free(data->p[i].set_list);
isl_aff_list_free(data->p[i].aff_list);
}
free(data->p);
}
/* Initialize the current entry of "data" to an unused piece.
*/
static void set_none(struct isl_from_pw_aff_data *data)
{
data->p[data->n].state = isl_state_none;
data->p[data->n].set_list = NULL;
data->p[data->n].aff_list = NULL;
}
/* Store "set" and "aff" in the current entry of "data" as a single subpiece.
*/
static void set_single(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff)
{
data->p[data->n].state = isl_state_single;
data->p[data->n].set_list = isl_set_list_from_set(set);
data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
}
/* Extend the current entry of "data" with "set" and "aff"
* as a minimum expression.
*/
static isl_stat extend_min(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff)
{
int n = data->n;
data->p[n].state = isl_state_min;
data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
if (!data->p[n].set_list || !data->p[n].aff_list)
return isl_stat_error;
return isl_stat_ok;
}
/* Extend the current entry of "data" with "set" and "aff"
* as a maximum expression.
*/
static isl_stat extend_max(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff)
{
int n = data->n;
data->p[n].state = isl_state_max;
data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
if (!data->p[n].set_list || !data->p[n].aff_list)
return isl_stat_error;
return isl_stat_ok;
}
/* Extend the domain of the current entry of "data", which is assumed
* to contain a single subpiece, with "set". If "replace" is set,
* then also replace the affine function by "aff". Otherwise,
* simply free "aff".
*/
static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
{
int n = data->n;
isl_set *set_n;
set_n = isl_set_list_get_set(data->p[n].set_list, 0);
set_n = isl_set_union(set_n, set);
data->p[n].set_list =
isl_set_list_set_set(data->p[n].set_list, 0, set_n);
if (replace)
data->p[n].aff_list =
isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
else
isl_aff_free(aff);
if (!data->p[n].set_list || !data->p[n].aff_list)
return isl_stat_error;
return isl_stat_ok;
}
/* Construct an isl_ast_expr from "list" within "build".
* If "state" is isl_state_single, then "list" contains a single entry and
* an isl_ast_expr is constructed for that entry.
* Otherwise a min or max expression is constructed from "list"
* depending on "state".
*/
static __isl_give isl_ast_expr *ast_expr_from_aff_list(
__isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
__isl_keep isl_ast_build *build)
{
int i, n;
isl_aff *aff;
isl_ast_expr *expr;
enum isl_ast_op_type op_type;
if (state == isl_state_single) {
aff = isl_aff_list_get_aff(list, 0);
isl_aff_list_free(list);
return isl_ast_expr_from_aff(aff, build);
}
n = isl_aff_list_n_aff(list);
op_type = state == isl_state_min ? isl_ast_op_min : isl_ast_op_max;
expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
if (!expr)
goto error;
for (i = 0; i < n; ++i) {
isl_ast_expr *expr_i;
aff = isl_aff_list_get_aff(list, i);
expr_i = isl_ast_expr_from_aff(aff, build);
if (!expr_i)
goto error;
expr->u.op.args[i] = expr_i;
}
isl_aff_list_free(list);
return expr;
error:
isl_aff_list_free(list);
isl_ast_expr_free(expr);
return NULL;
}
/* Extend the expression in "next" to take into account
* the piece at position "pos" in "data", allowing for a further extension
* for the next piece(s).
* In particular, "next" is set to a select operation that selects
* an isl_ast_expr corresponding to data->aff_list on data->set and
* to an expression that will be filled in by later calls.
* Return a pointer to this location.
* Afterwards, the state of "data" is set to isl_state_none.
*
* The constraints of data->set are added to the generated
* constraints of the build such that they can be exploited to simplify
* the AST expression constructed from data->aff_list.
*/
static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
int pos, isl_ast_expr **next)
{
isl_ctx *ctx;
isl_ast_build *build;
isl_ast_expr *ternary, *arg;
isl_set *set, *gist;
set = data->p[pos].set;
data->p[pos].set = NULL;
ctx = isl_ast_build_get_ctx(data->build);
ternary = isl_ast_expr_alloc_op(ctx, isl_ast_op_select, 3);
gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
arg = isl_ast_build_expr_from_set_internal(data->build, gist);
ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
build = isl_ast_build_copy(data->build);
build = isl_ast_build_restrict_generated(build, set);
arg = ast_expr_from_aff_list(data->p[pos].aff_list,
data->p[pos].state, build);
data->p[pos].aff_list = NULL;
isl_ast_build_free(build);
ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
data->p[pos].state = isl_state_none;
if (!ternary)
return NULL;
*next = ternary;
return &ternary->u.op.args[2];
}
/* Extend the expression in "next" to take into account
* the final piece, located at position "pos" in "data".
* In particular, "next" is set to evaluate data->aff_list
* and the domain is ignored.
* Return isl_stat_ok on success and isl_stat_error on failure.
*
* The constraints of data->set are however added to the generated
* constraints of the build such that they can be exploited to simplify
* the AST expression constructed from data->aff_list.
*/
static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
int pos, isl_ast_expr **next)
{
isl_ast_build *build;
if (data->p[pos].state == isl_state_none)
isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
"cannot handle void expression", return isl_stat_error);
build = isl_ast_build_copy(data->build);
build = isl_ast_build_restrict_generated(build, data->p[pos].set);
data->p[pos].set = NULL;
*next = ast_expr_from_aff_list(data->p[pos].aff_list,
data->p[pos].state, build);
data->p[pos].aff_list = NULL;
isl_ast_build_free(build);
data->p[pos].state = isl_state_none;
if (!*next)
return isl_stat_error;
return isl_stat_ok;
}
/* Return -1 if the piece "p1" should be sorted before "p2"
* and 1 if it should be sorted after "p2".
* Return 0 if they do not need to be sorted in a specific order.
*
* Pieces are sorted according to the number of disjuncts
* in their domains.
*/
static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
{
const struct isl_from_pw_aff_piece *piece1 = p1;
const struct isl_from_pw_aff_piece *piece2 = p2;
int n1, n2;
n1 = isl_set_n_basic_set(piece1->set);
n2 = isl_set_n_basic_set(piece2->set);
return n1 - n2;
}
/* Construct an isl_ast_expr from the pieces in "data".
* Return the result or NULL on failure.
*
* When this function is called, data->n points to the current piece.
* If this is an effective piece, then first increment data->n such
* that data->n contains the number of pieces.
* The "set_list" fields are subsequently replaced by the corresponding
* "set" fields, after which the pieces are sorted according to
* the number of disjuncts in these "set" fields.
*
* Construct intermediate AST expressions for the initial pieces and
* finish off with the final pieces.
*/
static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
{
int i;
isl_ast_expr *res = NULL;
isl_ast_expr **next = &res;
if (data->p[data->n].state != isl_state_none)
data->n++;
if (data->n == 0)
isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
"cannot handle void expression", return NULL);
for (i = 0; i < data->n; ++i) {
data->p[i].set = isl_set_list_union(data->p[i].set_list);
if (data->p[i].state != isl_state_single)
data->p[i].set = isl_set_coalesce(data->p[i].set);
data->p[i].set_list = NULL;
}
if (isl_sort(data->p, data->n, sizeof(data->p[0]),
&sort_pieces_cmp, NULL) < 0)
return isl_ast_expr_free(res);
for (i = 0; i + 1 < data->n; ++i) {
next = add_intermediate_piece(data, i, next);
if (!next)
return isl_ast_expr_free(res);
}
if (add_last_piece(data, data->n - 1, next) < 0)
return isl_ast_expr_free(res);
return res;
}
/* Is the domain of the current entry of "data", which is assumed
* to contain a single subpiece, a subset of "set"?
*/
static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set)
{
isl_bool subset;
isl_set *set_n;
set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
subset = isl_set_is_subset(set_n, set);
isl_set_free(set_n);
return subset;
}
/* Is "aff" a rational expression, i.e., does it have a denominator
* different from one?
*/
static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
{
isl_bool rational;
isl_val *den;
den = isl_aff_get_denominator_val(aff);
rational = isl_bool_not(isl_val_is_one(den));
isl_val_free(den);
return rational;
}
/* Does "list" consist of a single rational affine expression?
*/
static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
{
isl_bool rational;
isl_aff *aff;
if (isl_aff_list_n_aff(list) != 1)
return isl_bool_false;
aff = isl_aff_list_get_aff(list, 0);
rational = aff_is_rational(aff);
isl_aff_free(aff);
return rational;
}
/* Can the list of subpieces in the last piece of "data" be extended with
* "set" and "aff" based on "test"?
* In particular, is it the case for each entry (set_i, aff_i) that
*
* test(aff, aff_i) holds on set_i, and
* test(aff_i, aff) holds on set?
*
* "test" returns the set of elements where the tests holds, meaning
* that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
*
* This function is used to detect min/max expressions.
* If the ast_build_detect_min_max option is turned off, then
* do not even try and perform any detection and return false instead.
*
* Rational affine expressions are not considered for min/max expressions
* since the combined expression will be defined on the union of the domains,
* while a rational expression may only yield integer values
* on its own definition domain.
*/
static isl_bool extends(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set, __isl_keep isl_aff *aff,
__isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2))
{
int i, n;
isl_bool is_rational;
isl_ctx *ctx;
isl_set *dom;
is_rational = aff_is_rational(aff);
if (is_rational >= 0 && !is_rational)
is_rational = is_single_rational_aff(data->p[data->n].aff_list);
if (is_rational < 0 || is_rational)
return isl_bool_not(is_rational);
ctx = isl_ast_build_get_ctx(data->build);
if (!isl_options_get_ast_build_detect_min_max(ctx))
return isl_bool_false;
dom = isl_ast_build_get_domain(data->build);
set = isl_set_intersect(dom, isl_set_copy(set));
n = isl_set_list_n_set(data->p[data->n].set_list);
for (i = 0; i < n ; ++i) {
isl_aff *aff_i;
isl_set *valid;
isl_set *dom, *required;
isl_bool is_valid;
aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
required = isl_set_list_get_set(data->p[data->n].set_list, i);
dom = isl_ast_build_get_domain(data->build);
required = isl_set_intersect(dom, required);
is_valid = isl_set_is_subset(required, valid);
isl_set_free(required);
isl_set_free(valid);
if (is_valid < 0 || !is_valid) {
isl_set_free(set);
return is_valid;
}
aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
is_valid = isl_set_is_subset(set, valid);
isl_set_free(valid);
if (is_valid < 0 || !is_valid) {
isl_set_free(set);
return is_valid;
}
}
isl_set_free(set);
return isl_bool_true;
}
/* Can the list of pieces in "data" be extended with "set" and "aff"
* to form/preserve a minimum expression?
* In particular, is it the case for each entry (set_i, aff_i) that
*
* aff >= aff_i on set_i, and
* aff_i >= aff on set?
*/
static isl_bool extends_min(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set, __isl_keep isl_aff *aff)
{
return extends(data, set, aff, &isl_aff_ge_basic_set);
}
/* Can the list of pieces in "data" be extended with "set" and "aff"
* to form/preserve a maximum expression?
* In particular, is it the case for each entry (set_i, aff_i) that
*
* aff <= aff_i on set_i, and
* aff_i <= aff on set?
*/
static isl_bool extends_max(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set, __isl_keep isl_aff *aff)
{
return extends(data, set, aff, &isl_aff_le_basic_set);
}
/* This function is called during the construction of an isl_ast_expr
* that evaluates an isl_pw_aff.
* If the last piece of "data" contains a single subpiece and
* if its affine function is equal to "aff" on a part of the domain
* that includes either "set" or the domain of that single subpiece,
* then extend the domain of that single subpiece with "set".
* If it was the original domain of the single subpiece where
* the two affine functions are equal, then also replace
* the affine function of the single subpiece by "aff".
* If the last piece of "data" contains either a single subpiece
* or a minimum, then check if this minimum expression can be extended
* with (set, aff).
* If so, extend the sequence and return.
* Perform the same operation for maximum expressions.
* If no such extension can be performed, then move to the next piece
* in "data" (if the current piece contains any data), and then store
* the current subpiece in the current piece of "data" for later handling.
*/
static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
__isl_take isl_aff *aff, void *user)
{
struct isl_from_pw_aff_data *data = user;
isl_bool test;
enum isl_from_pw_aff_state state;
state = data->p[data->n].state;
if (state == isl_state_single) {
isl_aff *aff0;
isl_set *eq;
isl_bool subset1, subset2 = isl_bool_false;
aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
subset1 = isl_set_is_subset(set, eq);
if (subset1 >= 0 && !subset1)
subset2 = single_is_subset(data, eq);
isl_set_free(eq);
if (subset1 < 0 || subset2 < 0)
goto error;
if (subset1)
return extend_domain(data, set, aff, 0);
if (subset2)
return extend_domain(data, set, aff, 1);
}
if (state == isl_state_single || state == isl_state_min) {
test = extends_min(data, set, aff);
if (test < 0)
goto error;
if (test)
return extend_min(data, set, aff);
}
if (state == isl_state_single || state == isl_state_max) {
test = extends_max(data, set, aff);
if (test < 0)
goto error;
if (test)
return extend_max(data, set, aff);
}
if (state != isl_state_none)
data->n++;
set_single(data, set, aff);
return isl_stat_ok;
error:
isl_set_free(set);
isl_aff_free(aff);
return isl_stat_error;
}
/* Construct an isl_ast_expr that evaluates "pa".
* The result is simplified in terms of build->domain.
*
* The domain of "pa" lives in the internal schedule space.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
struct isl_from_pw_aff_data data = { NULL };
isl_ast_expr *res = NULL;
pa = isl_ast_build_compute_gist_pw_aff(build, pa);
pa = isl_pw_aff_coalesce(pa);
if (!pa)
return NULL;
if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
goto error;
set_none(&data);
if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
res = build_pieces(&data);
isl_pw_aff_free(pa);
isl_from_pw_aff_data_clear(&data);
return res;
error:
isl_pw_aff_free(pa);
isl_from_pw_aff_data_clear(&data);
return NULL;
}
/* Construct an isl_ast_expr that evaluates "pa".
* The result is simplified in terms of build->domain.
*
* The domain of "pa" lives in the external schedule space.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
isl_ast_expr *expr;
if (isl_ast_build_need_schedule_map(build)) {
isl_multi_aff *ma;
ma = isl_ast_build_get_schedule_map_multi_aff(build);
pa = isl_pw_aff_pullback_multi_aff(pa, ma);
}
expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
return expr;
}
/* Set the ids of the input dimensions of "mpa" to the iterator ids
* of "build".
*
* The domain of "mpa" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_multi_pw_aff *set_iterator_names(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
int i, n;
n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
for (i = 0; i < n; ++i) {
isl_id *id;
id = isl_ast_build_get_iterator_id(build, i);
mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
}
return mpa;
}
/* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
* the remaining arguments derived from "mpa".
* That is, construct a call or access expression that calls/accesses "arg0"
* with arguments/indices specified by "mpa".
*/
static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
__isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
{
int i, n;
isl_ctx *ctx;
isl_ast_expr *expr;
ctx = isl_ast_build_get_ctx(build);
n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
expr = isl_ast_expr_alloc_op(ctx, type, 1 + n);
expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
for (i = 0; i < n; ++i) {
isl_pw_aff *pa;
isl_ast_expr *arg;
pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
}
isl_multi_pw_aff_free(mpa);
return expr;
}
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
__isl_take isl_multi_pw_aff *mpa);
/* Construct an isl_ast_expr that accesses the member specified by "mpa".
* The range of "mpa" is assumed to be wrapped relation.
* The domain of this wrapped relation specifies the structure being
* accessed, while the range of this wrapped relation spacifies the
* member of the structure being accessed.
*
* The domain of "mpa" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
isl_id *id;
isl_multi_pw_aff *domain;
isl_ast_expr *domain_expr, *expr;
enum isl_ast_op_type type = isl_ast_op_access;
domain = isl_multi_pw_aff_copy(mpa);
domain = isl_multi_pw_aff_range_factor_domain(domain);
domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
type, domain);
mpa = isl_multi_pw_aff_range_factor_range(mpa);
if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
"missing field name", goto error);
id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
expr = isl_ast_expr_from_id(id);
expr = isl_ast_expr_alloc_binary(isl_ast_op_member, domain_expr, expr);
return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
isl_multi_pw_aff_free(mpa);
return NULL;
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "mpa".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* If the range of "mpa" is a mapped relation, then we assume it
* represents an access to a member of a structure.
*
* The domain of "mpa" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
__isl_take isl_multi_pw_aff *mpa)
{
isl_ctx *ctx;
isl_id *id;
isl_ast_expr *expr;
if (!mpa)
goto error;
if (type == isl_ast_op_access &&
isl_multi_pw_aff_range_is_wrapping(mpa))
return isl_ast_build_from_multi_pw_aff_member(build, mpa);
mpa = set_iterator_names(build, mpa);
if (!build || !mpa)
goto error;
ctx = isl_ast_build_get_ctx(build);
if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
else
id = isl_id_alloc(ctx, "", NULL);
expr = isl_ast_expr_from_id(id);
return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
isl_multi_pw_aff_free(mpa);
return NULL;
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "pma".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
__isl_take isl_pw_multi_aff *pma)
{
isl_multi_pw_aff *mpa;
mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "mpa".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* The domain of "mpa" is assumed to live in the external schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
__isl_take isl_multi_pw_aff *mpa)
{
int is_domain;
isl_ast_expr *expr;
isl_space *space_build, *space_mpa;
space_build = isl_ast_build_get_space(build, 0);
space_mpa = isl_multi_pw_aff_get_space(mpa);
is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
space_mpa, isl_dim_in);
isl_space_free(space_build);
isl_space_free(space_mpa);
if (is_domain < 0)
goto error;
if (!is_domain)
isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
"spaces don't match", goto error);
if (isl_ast_build_need_schedule_map(build)) {
isl_multi_aff *ma;
ma = isl_ast_build_get_schedule_map_multi_aff(build);
mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
}
expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
return expr;
error:
isl_multi_pw_aff_free(mpa);
return NULL;
}
/* Construct an isl_ast_expr that calls the domain element specified by "mpa".
* The name of the function is obtained from the output tuple name.
* The arguments are given by the piecewise affine expressions.
*
* The domain of "mpa" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_call, mpa);
}
/* Construct an isl_ast_expr that accesses the array element specified by "mpa".
* The name of the array is obtained from the output tuple name.
* The index expressions are given by the piecewise affine expressions.
*
* The domain of "mpa" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_access, mpa);
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "pma".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the external schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
__isl_keep isl_ast_build *build, enum isl_ast_op_type type,
__isl_take isl_pw_multi_aff *pma)
{
isl_multi_pw_aff *mpa;
mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
return isl_ast_build_from_multi_pw_aff(build, type, mpa);
}
/* Construct an isl_ast_expr that calls the domain element specified by "pma".
* The name of the function is obtained from the output tuple name.
* The arguments are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_call, pma);
}
/* Construct an isl_ast_expr that accesses the array element specified by "pma".
* The name of the array is obtained from the output tuple name.
* The index expressions are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_access, pma);
}
/* Construct an isl_ast_expr that calls the domain element
* specified by "executed".
*
* "executed" is assumed to be single-valued, with a domain that lives
* in the internal schedule space.
*/
__isl_give isl_ast_node *isl_ast_build_call_from_executed(
__isl_keep isl_ast_build *build, __isl_take isl_map *executed)
{
isl_pw_multi_aff *iteration;
isl_ast_expr *expr;
iteration = isl_pw_multi_aff_from_map(executed);
iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
iteration = isl_pw_multi_aff_intersect_domain(iteration,
isl_ast_build_get_domain(build));
expr = isl_ast_build_from_pw_multi_aff_internal(build, isl_ast_op_call,
iteration);
return isl_ast_node_alloc_user(expr);
}
|