reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
/*
 * Copyright 2006-2007 Universiteit Leiden
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 * Copyright 2010      INRIA Saclay
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
 * B-3001 Leuven, Belgium
 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
 */

#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl/set.h>
#include <isl_seq.h>
#include <isl_morph.h>
#include <isl_factorization.h>
#include <isl_vertices_private.h>
#include <isl_polynomial_private.h>
#include <isl_options_private.h>
#include <isl_vec_private.h>
#include <isl_bernstein.h>

struct bernstein_data {
	enum isl_fold type;
	isl_qpolynomial *poly;
	int check_tight;

	isl_cell *cell;

	isl_qpolynomial_fold *fold;
	isl_qpolynomial_fold *fold_tight;
	isl_pw_qpolynomial_fold *pwf;
	isl_pw_qpolynomial_fold *pwf_tight;
};

static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
{
	unsigned nvar;
	unsigned nparam;
	int i;

	nvar = isl_basic_set_dim(vertex, isl_dim_set);
	nparam = isl_basic_set_dim(vertex, isl_dim_param);
	for (i = 0; i < nvar; ++i) {
		int r = nvar - 1 - i;
		if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
		    !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
			return 0;
	}

	return 1;
}

static __isl_give isl_qpolynomial *vertex_coordinate(
	__isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
{
	unsigned nvar;
	unsigned nparam;
	int r;
	isl_int denom;
	isl_qpolynomial *v;

	nvar = isl_basic_set_dim(vertex, isl_dim_set);
	nparam = isl_basic_set_dim(vertex, isl_dim_param);
	r = nvar - 1 - i;

	isl_int_init(denom);
	isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
	isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);

	if (isl_int_is_pos(denom))
		isl_seq_neg(vertex->eq[r], vertex->eq[r],
				1 + isl_basic_set_total_dim(vertex));
	else
		isl_int_neg(denom, denom);

	v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
	isl_int_clear(denom);

	return v;
error:
	isl_space_free(dim);
	isl_int_clear(denom);
	return NULL;
}

/* Check whether the bound associated to the selection "k" is tight,
 * which is the case if we select exactly one vertex and if that vertex
 * is integral for all values of the parameters.
 */
static int is_tight(int *k, int n, int d, isl_cell *cell)
{
	int i;

	for (i = 0; i < n; ++i) {
		int v;
		if (k[i] != d) {
			if (k[i])
				return 0;
			continue;
		}
		v = cell->ids[n - 1 - i];
		return vertex_is_integral(cell->vertices->v[v].vertex);
	}

	return 0;
}

static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
	int *k, int n, int d, struct bernstein_data *data)
{
	isl_qpolynomial_fold *fold;

	fold = isl_qpolynomial_fold_alloc(data->type, b);

	if (data->check_tight && is_tight(k, n, d, data->cell))
		data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
							data->fold_tight, fold);
	else
		data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
							data->fold, fold);
}

/* Extract the coefficients of the Bernstein base polynomials and store
 * them in data->fold and data->fold_tight.
 *
 * In particular, the coefficient of each monomial
 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
 *
 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
 * multinom[i] contains the partial multinomial coefficient.
 */
static void extract_coefficients(isl_qpolynomial *poly,
	__isl_keep isl_set *dom, struct bernstein_data *data)
{
	int i;
	int d;
	int n;
	isl_ctx *ctx;
	isl_qpolynomial **c = NULL;
	int *k = NULL;
	int *left = NULL;
	isl_vec *multinom = NULL;

	if (!poly)
		return;

	ctx = isl_qpolynomial_get_ctx(poly);
	n = isl_qpolynomial_dim(poly, isl_dim_in);
	d = isl_qpolynomial_degree(poly);
	isl_assert(ctx, n >= 2, return);

	c = isl_calloc_array(ctx, isl_qpolynomial *, n);
	k = isl_alloc_array(ctx, int, n);
	left = isl_alloc_array(ctx, int, n);
	multinom = isl_vec_alloc(ctx, n);
	if (!c || !k || !left || !multinom)
		goto error;

	isl_int_set_si(multinom->el[0], 1);
	for (k[0] = d; k[0] >= 0; --k[0]) {
		int i = 1;
		isl_qpolynomial_free(c[0]);
		c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
		left[0] = d - k[0];
		k[1] = -1;
		isl_int_set(multinom->el[1], multinom->el[0]);
		while (i > 0) {
			if (i == n - 1) {
				int j;
				isl_space *dim;
				isl_qpolynomial *b;
				isl_qpolynomial *f;
				for (j = 2; j <= left[i - 1]; ++j)
					isl_int_divexact_ui(multinom->el[i],
						multinom->el[i], j);
				b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
					n - 1 - i, left[i - 1]);
				b = isl_qpolynomial_project_domain_on_params(b);
				dim = isl_qpolynomial_get_domain_space(b);
				f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
					multinom->el[i]);
				b = isl_qpolynomial_mul(b, f);
				k[n - 1] = left[n - 2];
				add_fold(b, dom, k, n, d, data);
				--i;
				continue;
			}
			if (k[i] >= left[i - 1]) {
				--i;
				continue;
			}
			++k[i];
			if (k[i])
				isl_int_divexact_ui(multinom->el[i],
					multinom->el[i], k[i]);
			isl_qpolynomial_free(c[i]);
			c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
					n - 1 - i, k[i]);
			left[i] = left[i - 1] - k[i];
			k[i + 1] = -1;
			isl_int_set(multinom->el[i + 1], multinom->el[i]);
			++i;
		}
		isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
	}

	for (i = 0; i < n; ++i)
		isl_qpolynomial_free(c[i]);

	isl_vec_free(multinom);
	free(left);
	free(k);
	free(c);
	return;
error:
	isl_vec_free(multinom);
	free(left);
	free(k);
	if (c)
		for (i = 0; i < n; ++i)
			isl_qpolynomial_free(c[i]);
	free(c);
	return;
}

/* Perform bernstein expansion on the parametric vertices that are active
 * on "cell".
 *
 * data->poly has been homogenized in the calling function.
 *
 * We plug in the barycentric coordinates for the set variables
 *
 *		\vec x = \sum_i \alpha_i v_i(\vec p)
 *
 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
 * Next, we extract the coefficients of the Bernstein base polynomials.
 */
static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
	void *user)
{
	int i, j;
	struct bernstein_data *data = (struct bernstein_data *)user;
	isl_space *dim_param;
	isl_space *dim_dst;
	isl_qpolynomial *poly = data->poly;
	unsigned nvar;
	int n_vertices;
	isl_qpolynomial **subs;
	isl_pw_qpolynomial_fold *pwf;
	isl_set *dom;
	isl_ctx *ctx;

	if (!poly)
		goto error;

	nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
	n_vertices = cell->n_vertices;

	ctx = isl_qpolynomial_get_ctx(poly);
	if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
		return isl_cell_foreach_simplex(cell,
					    &bernstein_coefficients_cell, user);

	subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
	if (!subs)
		goto error;

	dim_param = isl_basic_set_get_space(cell->dom);
	dim_dst = isl_qpolynomial_get_domain_space(poly);
	dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);

	for (i = 0; i < 1 + nvar; ++i)
		subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));

	for (i = 0; i < n_vertices; ++i) {
		isl_qpolynomial *c;
		c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
					1 + nvar + i);
		for (j = 0; j < nvar; ++j) {
			int k = cell->ids[i];
			isl_qpolynomial *v;
			v = vertex_coordinate(cell->vertices->v[k].vertex, j,
						isl_space_copy(dim_param));
			v = isl_qpolynomial_add_dims(v, isl_dim_in,
							1 + nvar + n_vertices);
			v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
			subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
		}
		subs[0] = isl_qpolynomial_add(subs[0], c);
	}
	isl_space_free(dim_dst);

	poly = isl_qpolynomial_copy(poly);

	poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
	poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
	poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);

	data->cell = cell;
	dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
	data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
	data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
	extract_coefficients(poly, dom, data);

	pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
					    data->fold);
	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
	pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
	data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);

	isl_qpolynomial_free(poly);
	isl_cell_free(cell);
	for (i = 0; i < 1 + nvar; ++i)
		isl_qpolynomial_free(subs[i]);
	free(subs);
	return isl_stat_ok;
error:
	isl_cell_free(cell);
	return isl_stat_error;
}

/* Base case of applying bernstein expansion.
 *
 * We compute the chamber decomposition of the parametric polytope "bset"
 * and then perform bernstein expansion on the parametric vertices
 * that are active on each chamber.
 */
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
	__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
{
	unsigned nvar;
	isl_space *dim;
	isl_pw_qpolynomial_fold *pwf;
	isl_vertices *vertices;
	int covers;

	nvar = isl_basic_set_dim(bset, isl_dim_set);
	if (nvar == 0) {
		isl_set *dom;
		isl_qpolynomial_fold *fold;

		fold = isl_qpolynomial_fold_alloc(data->type, poly);
		dom = isl_set_from_basic_set(bset);
		if (tight)
			*tight = 1;
		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
	}

	if (isl_qpolynomial_is_zero(poly)) {
		isl_set *dom;
		isl_qpolynomial_fold *fold;
		fold = isl_qpolynomial_fold_alloc(data->type, poly);
		dom = isl_set_from_basic_set(bset);
		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
		if (tight)
			*tight = 1;
		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
	}

	dim = isl_basic_set_get_space(bset);
	dim = isl_space_params(dim);
	dim = isl_space_from_domain(dim);
	dim = isl_space_add_dims(dim, isl_dim_set, 1);
	data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
	data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
	data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
	vertices = isl_basic_set_compute_vertices(bset);
	if (isl_vertices_foreach_disjoint_cell(vertices,
					&bernstein_coefficients_cell, data) < 0)
		data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
	isl_vertices_free(vertices);
	isl_qpolynomial_free(data->poly);

	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);

	covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
	if (covers < 0)
		goto error;

	if (tight)
		*tight = covers;

	if (covers) {
		isl_pw_qpolynomial_fold_free(data->pwf);
		return data->pwf_tight;
	}

	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);

	return data->pwf;
error:
	isl_pw_qpolynomial_fold_free(data->pwf_tight);
	isl_pw_qpolynomial_fold_free(data->pwf);
	return NULL;
}

/* Apply bernstein expansion recursively by working in on len[i]
 * set variables at a time, with i ranging from n_group - 1 to 0.
 */
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
	__isl_take isl_pw_qpolynomial *pwqp,
	int n_group, int *len, struct bernstein_data *data, int *tight)
{
	int i;
	unsigned nparam;
	unsigned nvar;
	isl_pw_qpolynomial_fold *pwf;

	if (!pwqp)
		return NULL;

	nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
	nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);

	pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
					isl_dim_in, 0, nvar - len[n_group - 1]);
	pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);

	for (i = n_group - 2; i >= 0; --i) {
		nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
		pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
				isl_dim_param, nparam - len[i], len[i]);
		if (tight && !*tight)
			tight = NULL;
		pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
	}

	return pwf;
}

static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
	__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
{
	isl_factorizer *f;
	isl_set *set;
	isl_pw_qpolynomial *pwqp;
	isl_pw_qpolynomial_fold *pwf;

	f = isl_basic_set_factorizer(bset);
	if (!f)
		goto error;
	if (f->n_group == 0) {
		isl_factorizer_free(f);
		return  bernstein_coefficients_base(bset, poly, data, tight);
	}

	set = isl_set_from_basic_set(bset);
	pwqp = isl_pw_qpolynomial_alloc(set, poly);
	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));

	pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
						tight);

	isl_factorizer_free(f);

	return pwf;
error:
	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);
	return NULL;
}

static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
	__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
{
	int i;
	int *len;
	unsigned nvar;
	isl_pw_qpolynomial_fold *pwf;
	isl_set *set;
	isl_pw_qpolynomial *pwqp;

	if (!bset || !poly)
		goto error;

	nvar = isl_basic_set_dim(bset, isl_dim_set);
	
	len = isl_alloc_array(bset->ctx, int, nvar);
	if (nvar && !len)
		goto error;

	for (i = 0; i < nvar; ++i)
		len[i] = 1;

	set = isl_set_from_basic_set(bset);
	pwqp = isl_pw_qpolynomial_alloc(set, poly);

	pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);

	free(len);

	return pwf;
error:
	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);
	return NULL;
}

/* Compute a bound on the polynomial defined over the parametric polytope
 * using bernstein expansion and store the result
 * in bound->pwf and bound->pwf_tight.
 *
 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
 * the polytope can be factorized and apply bernstein expansion recursively
 * on the factors.
 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
 * bernstein expansion recursively on each dimension.
 * Otherwise, we apply bernstein expansion on the entire polytope.
 */
isl_stat isl_qpolynomial_bound_on_domain_bernstein(
	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
	struct isl_bound *bound)
{
	struct bernstein_data data;
	isl_pw_qpolynomial_fold *pwf;
	unsigned nvar;
	int tight = 0;
	int *tp = bound->check_tight ? &tight : NULL;

	if (!bset || !poly)
		goto error;

	data.type = bound->type;
	data.check_tight = bound->check_tight;

	nvar = isl_basic_set_dim(bset, isl_dim_set);

	if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
		pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
	else if (nvar > 1 &&
	    (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
		pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
	else
		pwf = bernstein_coefficients_base(bset, poly, &data, tp);

	if (tight)
		bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
	else
		bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);

	return isl_stat_ok;
error:
	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);
	return isl_stat_error;
}