1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
| /*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl/map.h>
#include <isl_seq.h>
#include <isl_space_private.h>
#include <isl_lp_private.h>
#include <isl/union_map.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl_options_private.h>
#include <isl_tarjan.h>
int isl_map_is_transitively_closed(__isl_keep isl_map *map)
{
isl_map *map2;
int closed;
map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
closed = isl_map_is_subset(map2, map);
isl_map_free(map2);
return closed;
}
int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
{
isl_union_map *umap2;
int closed;
umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
isl_union_map_copy(umap));
closed = isl_union_map_is_subset(umap2, umap);
isl_union_map_free(umap2);
return closed;
}
/* Given a map that represents a path with the length of the path
* encoded as the difference between the last output coordindate
* and the last input coordinate, set this length to either
* exactly "length" (if "exactly" is set) or at least "length"
* (if "exactly" is not set).
*/
static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
int exactly, int length)
{
isl_space *dim;
struct isl_basic_map *bmap;
unsigned d;
unsigned nparam;
int k;
isl_int *c;
if (!map)
return NULL;
dim = isl_map_get_space(map);
d = isl_space_dim(dim, isl_dim_in);
nparam = isl_space_dim(dim, isl_dim_param);
bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
if (exactly) {
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
goto error;
c = bmap->eq[k];
} else {
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
c = bmap->ineq[k];
}
isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
isl_int_set_si(c[0], -length);
isl_int_set_si(c[1 + nparam + d - 1], -1);
isl_int_set_si(c[1 + nparam + d + d - 1], 1);
bmap = isl_basic_map_finalize(bmap);
map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
return map;
error:
isl_basic_map_free(bmap);
isl_map_free(map);
return NULL;
}
/* Check whether the overapproximation of the power of "map" is exactly
* the power of "map". Let R be "map" and A_k the overapproximation.
* The approximation is exact if
*
* A_1 = R
* A_k = A_{k-1} \circ R k >= 2
*
* Since A_k is known to be an overapproximation, we only need to check
*
* A_1 \subset R
* A_k \subset A_{k-1} \circ R k >= 2
*
* In practice, "app" has an extra input and output coordinate
* to encode the length of the path. So, we first need to add
* this coordinate to "map" and set the length of the path to
* one.
*/
static int check_power_exactness(__isl_take isl_map *map,
__isl_take isl_map *app)
{
int exact;
isl_map *app_1;
isl_map *app_2;
map = isl_map_add_dims(map, isl_dim_in, 1);
map = isl_map_add_dims(map, isl_dim_out, 1);
map = set_path_length(map, 1, 1);
app_1 = set_path_length(isl_map_copy(app), 1, 1);
exact = isl_map_is_subset(app_1, map);
isl_map_free(app_1);
if (!exact || exact < 0) {
isl_map_free(app);
isl_map_free(map);
return exact;
}
app_1 = set_path_length(isl_map_copy(app), 0, 1);
app_2 = set_path_length(app, 0, 2);
app_1 = isl_map_apply_range(map, app_1);
exact = isl_map_is_subset(app_2, app_1);
isl_map_free(app_1);
isl_map_free(app_2);
return exact;
}
/* Check whether the overapproximation of the power of "map" is exactly
* the power of "map", possibly after projecting out the power (if "project"
* is set).
*
* If "project" is set and if "steps" can only result in acyclic paths,
* then we check
*
* A = R \cup (A \circ R)
*
* where A is the overapproximation with the power projected out, i.e.,
* an overapproximation of the transitive closure.
* More specifically, since A is known to be an overapproximation, we check
*
* A \subset R \cup (A \circ R)
*
* Otherwise, we check if the power is exact.
*
* Note that "app" has an extra input and output coordinate to encode
* the length of the part. If we are only interested in the transitive
* closure, then we can simply project out these coordinates first.
*/
static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
int project)
{
isl_map *test;
int exact;
unsigned d;
if (!project)
return check_power_exactness(map, app);
d = isl_map_dim(map, isl_dim_in);
app = set_path_length(app, 0, 1);
app = isl_map_project_out(app, isl_dim_in, d, 1);
app = isl_map_project_out(app, isl_dim_out, d, 1);
app = isl_map_reset_space(app, isl_map_get_space(map));
test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
test = isl_map_union(test, isl_map_copy(map));
exact = isl_map_is_subset(app, test);
isl_map_free(app);
isl_map_free(test);
isl_map_free(map);
return exact;
}
/*
* The transitive closure implementation is based on the paper
* "Computing the Transitive Closure of a Union of Affine Integer
* Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
* Albert Cohen.
*/
/* Given a set of n offsets v_i (the rows of "steps"), construct a relation
* of the given dimension specification (Z^{n+1} -> Z^{n+1})
* that maps an element x to any element that can be reached
* by taking a non-negative number of steps along any of
* the extended offsets v'_i = [v_i 1].
* That is, construct
*
* { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
*
* For any element in this relation, the number of steps taken
* is equal to the difference in the final coordinates.
*/
static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim,
__isl_keep isl_mat *steps)
{
int i, j, k;
struct isl_basic_map *path = NULL;
unsigned d;
unsigned n;
unsigned nparam;
if (!dim || !steps)
goto error;
d = isl_space_dim(dim, isl_dim_in);
n = steps->n_row;
nparam = isl_space_dim(dim, isl_dim_param);
path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n);
for (i = 0; i < n; ++i) {
k = isl_basic_map_alloc_div(path);
if (k < 0)
goto error;
isl_assert(steps->ctx, i == k, goto error);
isl_int_set_si(path->div[k][0], 0);
}
for (i = 0; i < d; ++i) {
k = isl_basic_map_alloc_equality(path);
if (k < 0)
goto error;
isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
isl_int_set_si(path->eq[k][1 + nparam + i], 1);
isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
if (i == d - 1)
for (j = 0; j < n; ++j)
isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
else
for (j = 0; j < n; ++j)
isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
steps->row[j][i]);
}
for (i = 0; i < n; ++i) {
k = isl_basic_map_alloc_inequality(path);
if (k < 0)
goto error;
isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
}
isl_space_free(dim);
path = isl_basic_map_simplify(path);
path = isl_basic_map_finalize(path);
return isl_map_from_basic_map(path);
error:
isl_space_free(dim);
isl_basic_map_free(path);
return NULL;
}
#define IMPURE 0
#define PURE_PARAM 1
#define PURE_VAR 2
#define MIXED 3
/* Check whether the parametric constant term of constraint c is never
* positive in "bset".
*/
static isl_bool parametric_constant_never_positive(
__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity)
{
unsigned d;
unsigned n_div;
unsigned nparam;
int i;
int k;
isl_bool empty;
n_div = isl_basic_set_dim(bset, isl_dim_div);
d = isl_basic_set_dim(bset, isl_dim_set);
nparam = isl_basic_set_dim(bset, isl_dim_param);
bset = isl_basic_set_copy(bset);
bset = isl_basic_set_cow(bset);
bset = isl_basic_set_extend_constraints(bset, 0, 1);
k = isl_basic_set_alloc_inequality(bset);
if (k < 0)
goto error;
isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
for (i = 0; i < n_div; ++i) {
if (div_purity[i] != PURE_PARAM)
continue;
isl_int_set(bset->ineq[k][1 + nparam + d + i],
c[1 + nparam + d + i]);
}
isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
empty = isl_basic_set_is_empty(bset);
isl_basic_set_free(bset);
return empty;
error:
isl_basic_set_free(bset);
return isl_bool_error;
}
/* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
* Return PURE_VAR if only the coefficients of the set variables are non-zero.
* Return MIXED if only the coefficients of the parameters and the set
* variables are non-zero and if moreover the parametric constant
* can never attain positive values.
* Return IMPURE otherwise.
*/
static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
int eq)
{
unsigned d;
unsigned n_div;
unsigned nparam;
isl_bool empty;
int i;
int p = 0, v = 0;
n_div = isl_basic_set_dim(bset, isl_dim_div);
d = isl_basic_set_dim(bset, isl_dim_set);
nparam = isl_basic_set_dim(bset, isl_dim_param);
for (i = 0; i < n_div; ++i) {
if (isl_int_is_zero(c[1 + nparam + d + i]))
continue;
switch (div_purity[i]) {
case PURE_PARAM: p = 1; break;
case PURE_VAR: v = 1; break;
default: return IMPURE;
}
}
if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
return PURE_VAR;
if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
return PURE_PARAM;
empty = parametric_constant_never_positive(bset, c, div_purity);
if (eq && empty >= 0 && !empty) {
isl_seq_neg(c, c, 1 + nparam + d + n_div);
empty = parametric_constant_never_positive(bset, c, div_purity);
}
return empty < 0 ? -1 : empty ? MIXED : IMPURE;
}
/* Return an array of integers indicating the type of each div in bset.
* If the div is (recursively) defined in terms of only the parameters,
* then the type is PURE_PARAM.
* If the div is (recursively) defined in terms of only the set variables,
* then the type is PURE_VAR.
* Otherwise, the type is IMPURE.
*/
static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
{
int i, j;
int *div_purity;
unsigned d;
unsigned n_div;
unsigned nparam;
if (!bset)
return NULL;
n_div = isl_basic_set_dim(bset, isl_dim_div);
d = isl_basic_set_dim(bset, isl_dim_set);
nparam = isl_basic_set_dim(bset, isl_dim_param);
div_purity = isl_alloc_array(bset->ctx, int, n_div);
if (n_div && !div_purity)
return NULL;
for (i = 0; i < bset->n_div; ++i) {
int p = 0, v = 0;
if (isl_int_is_zero(bset->div[i][0])) {
div_purity[i] = IMPURE;
continue;
}
if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
p = 1;
if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
v = 1;
for (j = 0; j < i; ++j) {
if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
continue;
switch (div_purity[j]) {
case PURE_PARAM: p = 1; break;
case PURE_VAR: v = 1; break;
default: p = v = 1; break;
}
}
div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
}
return div_purity;
}
/* Given a path with the as yet unconstrained length at position "pos",
* check if setting the length to zero results in only the identity
* mapping.
*/
static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
{
isl_basic_map *test = NULL;
isl_basic_map *id = NULL;
int k;
int is_id;
test = isl_basic_map_copy(path);
test = isl_basic_map_extend_constraints(test, 1, 0);
k = isl_basic_map_alloc_equality(test);
if (k < 0)
goto error;
isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
isl_int_set_si(test->eq[k][pos], 1);
test = isl_basic_map_gauss(test, NULL);
id = isl_basic_map_identity(isl_basic_map_get_space(path));
is_id = isl_basic_map_is_equal(test, id);
isl_basic_map_free(test);
isl_basic_map_free(id);
return is_id;
error:
isl_basic_map_free(test);
return -1;
}
/* If any of the constraints is found to be impure then this function
* sets *impurity to 1.
*
* If impurity is NULL then we are dealing with a non-parametric set
* and so the constraints are obviously PURE_VAR.
*/
static __isl_give isl_basic_map *add_delta_constraints(
__isl_take isl_basic_map *path,
__isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
unsigned d, int *div_purity, int eq, int *impurity)
{
int i, k;
int n = eq ? delta->n_eq : delta->n_ineq;
isl_int **delta_c = eq ? delta->eq : delta->ineq;
unsigned n_div;
n_div = isl_basic_set_dim(delta, isl_dim_div);
for (i = 0; i < n; ++i) {
isl_int *path_c;
int p = PURE_VAR;
if (impurity)
p = purity(delta, delta_c[i], div_purity, eq);
if (p < 0)
goto error;
if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
*impurity = 1;
if (p == IMPURE)
continue;
if (eq && p != MIXED) {
k = isl_basic_map_alloc_equality(path);
if (k < 0)
goto error;
path_c = path->eq[k];
} else {
k = isl_basic_map_alloc_inequality(path);
if (k < 0)
goto error;
path_c = path->ineq[k];
}
isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
if (p == PURE_VAR) {
isl_seq_cpy(path_c + off,
delta_c[i] + 1 + nparam, d);
isl_int_set(path_c[off + d], delta_c[i][0]);
} else if (p == PURE_PARAM) {
isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
} else {
isl_seq_cpy(path_c + off,
delta_c[i] + 1 + nparam, d);
isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
}
isl_seq_cpy(path_c + off - n_div,
delta_c[i] + 1 + nparam + d, n_div);
}
return path;
error:
isl_basic_map_free(path);
return NULL;
}
/* Given a set of offsets "delta", construct a relation of the
* given dimension specification (Z^{n+1} -> Z^{n+1}) that
* is an overapproximation of the relations that
* maps an element x to any element that can be reached
* by taking a non-negative number of steps along any of
* the elements in "delta".
* That is, construct an approximation of
*
* { [x] -> [y] : exists f \in \delta, k \in Z :
* y = x + k [f, 1] and k >= 0 }
*
* For any element in this relation, the number of steps taken
* is equal to the difference in the final coordinates.
*
* In particular, let delta be defined as
*
* \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
* C x + C'p + c >= 0 and
* D x + D'p + d >= 0 }
*
* where the constraints C x + C'p + c >= 0 are such that the parametric
* constant term of each constraint j, "C_j x + C'_j p + c_j",
* can never attain positive values, then the relation is constructed as
*
* { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
* A f + k a >= 0 and B p + b >= 0 and
* C f + C'p + c >= 0 and k >= 1 }
* union { [x] -> [x] }
*
* If the zero-length paths happen to correspond exactly to the identity
* mapping, then we return
*
* { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
* A f + k a >= 0 and B p + b >= 0 and
* C f + C'p + c >= 0 and k >= 0 }
*
* instead.
*
* Existentially quantified variables in \delta are handled by
* classifying them as independent of the parameters, purely
* parameter dependent and others. Constraints containing
* any of the other existentially quantified variables are removed.
* This is safe, but leads to an additional overapproximation.
*
* If there are any impure constraints, then we also eliminate
* the parameters from \delta, resulting in a set
*
* \delta' = { [x] : E x + e >= 0 }
*
* and add the constraints
*
* E f + k e >= 0
*
* to the constructed relation.
*/
static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim,
__isl_take isl_basic_set *delta)
{
isl_basic_map *path = NULL;
unsigned d;
unsigned n_div;
unsigned nparam;
unsigned off;
int i, k;
int is_id;
int *div_purity = NULL;
int impurity = 0;
if (!delta)
goto error;
n_div = isl_basic_set_dim(delta, isl_dim_div);
d = isl_basic_set_dim(delta, isl_dim_set);
nparam = isl_basic_set_dim(delta, isl_dim_param);
path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1,
d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
off = 1 + nparam + 2 * (d + 1) + n_div;
for (i = 0; i < n_div + d + 1; ++i) {
k = isl_basic_map_alloc_div(path);
if (k < 0)
goto error;
isl_int_set_si(path->div[k][0], 0);
}
for (i = 0; i < d + 1; ++i) {
k = isl_basic_map_alloc_equality(path);
if (k < 0)
goto error;
isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
isl_int_set_si(path->eq[k][1 + nparam + i], 1);
isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
isl_int_set_si(path->eq[k][off + i], 1);
}
div_purity = get_div_purity(delta);
if (n_div && !div_purity)
goto error;
path = add_delta_constraints(path, delta, off, nparam, d,
div_purity, 1, &impurity);
path = add_delta_constraints(path, delta, off, nparam, d,
div_purity, 0, &impurity);
if (impurity) {
isl_space *dim = isl_basic_set_get_space(delta);
delta = isl_basic_set_project_out(delta,
isl_dim_param, 0, nparam);
delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
delta = isl_basic_set_reset_space(delta, dim);
if (!delta)
goto error;
path = isl_basic_map_extend_constraints(path, delta->n_eq,
delta->n_ineq + 1);
path = add_delta_constraints(path, delta, off, nparam, d,
NULL, 1, NULL);
path = add_delta_constraints(path, delta, off, nparam, d,
NULL, 0, NULL);
path = isl_basic_map_gauss(path, NULL);
}
is_id = empty_path_is_identity(path, off + d);
if (is_id < 0)
goto error;
k = isl_basic_map_alloc_inequality(path);
if (k < 0)
goto error;
isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
if (!is_id)
isl_int_set_si(path->ineq[k][0], -1);
isl_int_set_si(path->ineq[k][off + d], 1);
free(div_purity);
isl_basic_set_free(delta);
path = isl_basic_map_finalize(path);
if (is_id) {
isl_space_free(dim);
return isl_map_from_basic_map(path);
}
return isl_basic_map_union(path, isl_basic_map_identity(dim));
error:
free(div_purity);
isl_space_free(dim);
isl_basic_set_free(delta);
isl_basic_map_free(path);
return NULL;
}
/* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
* construct a map that equates the parameter to the difference
* in the final coordinates and imposes that this difference is positive.
* That is, construct
*
* { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
*/
static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim,
unsigned param)
{
struct isl_basic_map *bmap;
unsigned d;
unsigned nparam;
int k;
d = isl_space_dim(dim, isl_dim_in);
nparam = isl_space_dim(dim, isl_dim_param);
bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
isl_int_set_si(bmap->eq[k][1 + param], -1);
isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
isl_int_set_si(bmap->ineq[k][1 + param], 1);
isl_int_set_si(bmap->ineq[k][0], -1);
bmap = isl_basic_map_finalize(bmap);
return isl_map_from_basic_map(bmap);
error:
isl_basic_map_free(bmap);
return NULL;
}
/* Check whether "path" is acyclic, where the last coordinates of domain
* and range of path encode the number of steps taken.
* That is, check whether
*
* { d | d = y - x and (x,y) in path }
*
* does not contain any element with positive last coordinate (positive length)
* and zero remaining coordinates (cycle).
*/
static int is_acyclic(__isl_take isl_map *path)
{
int i;
int acyclic;
unsigned dim;
struct isl_set *delta;
delta = isl_map_deltas(path);
dim = isl_set_dim(delta, isl_dim_set);
for (i = 0; i < dim; ++i) {
if (i == dim -1)
delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
else
delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
}
acyclic = isl_set_is_empty(delta);
isl_set_free(delta);
return acyclic;
}
/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
* and a dimension specification (Z^{n+1} -> Z^{n+1}),
* construct a map that is an overapproximation of the map
* that takes an element from the space D \times Z to another
* element from the same space, such that the first n coordinates of the
* difference between them is a sum of differences between images
* and pre-images in one of the R_i and such that the last coordinate
* is equal to the number of steps taken.
* That is, let
*
* \Delta_i = { y - x | (x, y) in R_i }
*
* then the constructed map is an overapproximation of
*
* { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
* d = (\sum_i k_i \delta_i, \sum_i k_i) }
*
* The elements of the singleton \Delta_i's are collected as the
* rows of the steps matrix. For all these \Delta_i's together,
* a single path is constructed.
* For each of the other \Delta_i's, we compute an overapproximation
* of the paths along elements of \Delta_i.
* Since each of these paths performs an addition, composition is
* symmetric and we can simply compose all resulting paths in any order.
*/
static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim,
__isl_keep isl_map *map, int *project)
{
struct isl_mat *steps = NULL;
struct isl_map *path = NULL;
unsigned d;
int i, j, n;
if (!map)
goto error;
d = isl_map_dim(map, isl_dim_in);
path = isl_map_identity(isl_space_copy(dim));
steps = isl_mat_alloc(map->ctx, map->n, d);
if (!steps)
goto error;
n = 0;
for (i = 0; i < map->n; ++i) {
struct isl_basic_set *delta;
delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
for (j = 0; j < d; ++j) {
isl_bool fixed;
fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
&steps->row[n][j]);
if (fixed < 0) {
isl_basic_set_free(delta);
goto error;
}
if (!fixed)
break;
}
if (j < d) {
path = isl_map_apply_range(path,
path_along_delta(isl_space_copy(dim), delta));
path = isl_map_coalesce(path);
} else {
isl_basic_set_free(delta);
++n;
}
}
if (n > 0) {
steps->n_row = n;
path = isl_map_apply_range(path,
path_along_steps(isl_space_copy(dim), steps));
}
if (project && *project) {
*project = is_acyclic(isl_map_copy(path));
if (*project < 0)
goto error;
}
isl_space_free(dim);
isl_mat_free(steps);
return path;
error:
isl_space_free(dim);
isl_mat_free(steps);
isl_map_free(path);
return NULL;
}
static isl_bool isl_set_overlaps(__isl_keep isl_set *set1,
__isl_keep isl_set *set2)
{
isl_set *i;
isl_bool no_overlap;
if (!set1 || !set2)
return isl_bool_error;
if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set,
set2->dim, isl_dim_set))
return isl_bool_false;
i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
no_overlap = isl_set_is_empty(i);
isl_set_free(i);
return isl_bool_not(no_overlap);
}
/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
* and a dimension specification (Z^{n+1} -> Z^{n+1}),
* construct a map that is an overapproximation of the map
* that takes an element from the dom R \times Z to an
* element from ran R \times Z, such that the first n coordinates of the
* difference between them is a sum of differences between images
* and pre-images in one of the R_i and such that the last coordinate
* is equal to the number of steps taken.
* That is, let
*
* \Delta_i = { y - x | (x, y) in R_i }
*
* then the constructed map is an overapproximation of
*
* { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
* d = (\sum_i k_i \delta_i, \sum_i k_i) and
* x in dom R and x + d in ran R and
* \sum_i k_i >= 1 }
*/
static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
__isl_keep isl_map *map, int *exact, int project)
{
struct isl_set *domain = NULL;
struct isl_set *range = NULL;
struct isl_map *app = NULL;
struct isl_map *path = NULL;
isl_bool overlaps;
domain = isl_map_domain(isl_map_copy(map));
domain = isl_set_coalesce(domain);
range = isl_map_range(isl_map_copy(map));
range = isl_set_coalesce(range);
overlaps = isl_set_overlaps(domain, range);
if (overlaps < 0 || !overlaps) {
isl_set_free(domain);
isl_set_free(range);
isl_space_free(dim);
if (overlaps < 0)
map = NULL;
map = isl_map_copy(map);
map = isl_map_add_dims(map, isl_dim_in, 1);
map = isl_map_add_dims(map, isl_dim_out, 1);
map = set_path_length(map, 1, 1);
return map;
}
app = isl_map_from_domain_and_range(domain, range);
app = isl_map_add_dims(app, isl_dim_in, 1);
app = isl_map_add_dims(app, isl_dim_out, 1);
path = construct_extended_path(isl_space_copy(dim), map,
exact && *exact ? &project : NULL);
app = isl_map_intersect(app, path);
if (exact && *exact &&
(*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
project)) < 0)
goto error;
isl_space_free(dim);
app = set_path_length(app, 0, 1);
return app;
error:
isl_space_free(dim);
isl_map_free(app);
return NULL;
}
/* Call construct_component and, if "project" is set, project out
* the final coordinates.
*/
static __isl_give isl_map *construct_projected_component(
__isl_take isl_space *dim,
__isl_keep isl_map *map, int *exact, int project)
{
isl_map *app;
unsigned d;
if (!dim)
return NULL;
d = isl_space_dim(dim, isl_dim_in);
app = construct_component(dim, map, exact, project);
if (project) {
app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
}
return app;
}
/* Compute an extended version, i.e., with path lengths, of
* an overapproximation of the transitive closure of "bmap"
* with path lengths greater than or equal to zero and with
* domain and range equal to "dom".
*/
static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
__isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
{
int project = 1;
isl_map *path;
isl_map *map;
isl_map *app;
dom = isl_set_add_dims(dom, isl_dim_set, 1);
app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
path = construct_extended_path(dim, map, &project);
app = isl_map_intersect(app, path);
if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
goto error;
return app;
error:
isl_map_free(app);
return NULL;
}
/* Check whether qc has any elements of length at least one
* with domain and/or range outside of dom and ran.
*/
static int has_spurious_elements(__isl_keep isl_map *qc,
__isl_keep isl_set *dom, __isl_keep isl_set *ran)
{
isl_set *s;
int subset;
unsigned d;
if (!qc || !dom || !ran)
return -1;
d = isl_map_dim(qc, isl_dim_in);
qc = isl_map_copy(qc);
qc = set_path_length(qc, 0, 1);
qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
s = isl_map_domain(isl_map_copy(qc));
subset = isl_set_is_subset(s, dom);
isl_set_free(s);
if (subset < 0)
goto error;
if (!subset) {
isl_map_free(qc);
return 1;
}
s = isl_map_range(qc);
subset = isl_set_is_subset(s, ran);
isl_set_free(s);
return subset < 0 ? -1 : !subset;
error:
isl_map_free(qc);
return -1;
}
#define LEFT 2
#define RIGHT 1
/* For each basic map in "map", except i, check whether it combines
* with the transitive closure that is reflexive on C combines
* to the left and to the right.
*
* In particular, if
*
* dom map_j \subseteq C
*
* then right[j] is set to 1. Otherwise, if
*
* ran map_i \cap dom map_j = \emptyset
*
* then right[j] is set to 0. Otherwise, composing to the right
* is impossible.
*
* Similar, for composing to the left, we have if
*
* ran map_j \subseteq C
*
* then left[j] is set to 1. Otherwise, if
*
* dom map_i \cap ran map_j = \emptyset
*
* then left[j] is set to 0. Otherwise, composing to the left
* is impossible.
*
* The return value is or'd with LEFT if composing to the left
* is possible and with RIGHT if composing to the right is possible.
*/
static int composability(__isl_keep isl_set *C, int i,
isl_set **dom, isl_set **ran, int *left, int *right,
__isl_keep isl_map *map)
{
int j;
int ok;
ok = LEFT | RIGHT;
for (j = 0; j < map->n && ok; ++j) {
isl_bool overlaps, subset;
if (j == i)
continue;
if (ok & RIGHT) {
if (!dom[j])
dom[j] = isl_set_from_basic_set(
isl_basic_map_domain(
isl_basic_map_copy(map->p[j])));
if (!dom[j])
return -1;
overlaps = isl_set_overlaps(ran[i], dom[j]);
if (overlaps < 0)
return -1;
if (!overlaps)
right[j] = 0;
else {
subset = isl_set_is_subset(dom[j], C);
if (subset < 0)
return -1;
if (subset)
right[j] = 1;
else
ok &= ~RIGHT;
}
}
if (ok & LEFT) {
if (!ran[j])
ran[j] = isl_set_from_basic_set(
isl_basic_map_range(
isl_basic_map_copy(map->p[j])));
if (!ran[j])
return -1;
overlaps = isl_set_overlaps(dom[i], ran[j]);
if (overlaps < 0)
return -1;
if (!overlaps)
left[j] = 0;
else {
subset = isl_set_is_subset(ran[j], C);
if (subset < 0)
return -1;
if (subset)
left[j] = 1;
else
ok &= ~LEFT;
}
}
}
return ok;
}
static __isl_give isl_map *anonymize(__isl_take isl_map *map)
{
map = isl_map_reset(map, isl_dim_in);
map = isl_map_reset(map, isl_dim_out);
return map;
}
/* Return a map that is a union of the basic maps in "map", except i,
* composed to left and right with qc based on the entries of "left"
* and "right".
*/
static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
__isl_take isl_map *qc, int *left, int *right)
{
int j;
isl_map *comp;
comp = isl_map_empty(isl_map_get_space(map));
for (j = 0; j < map->n; ++j) {
isl_map *map_j;
if (j == i)
continue;
map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
map_j = anonymize(map_j);
if (left && left[j])
map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
if (right && right[j])
map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
comp = isl_map_union(comp, map_j);
}
comp = isl_map_compute_divs(comp);
comp = isl_map_coalesce(comp);
isl_map_free(qc);
return comp;
}
/* Compute the transitive closure of "map" incrementally by
* computing
*
* map_i^+ \cup qc^+
*
* or
*
* map_i^+ \cup ((id \cup map_i^) \circ qc^+)
*
* or
*
* map_i^+ \cup (qc^+ \circ (id \cup map_i^))
*
* depending on whether left or right are NULL.
*/
static __isl_give isl_map *compute_incremental(
__isl_take isl_space *dim, __isl_keep isl_map *map,
int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
{
isl_map *map_i;
isl_map *tc;
isl_map *rtc = NULL;
if (!map)
goto error;
isl_assert(map->ctx, left || right, goto error);
map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
tc = construct_projected_component(isl_space_copy(dim), map_i,
exact, 1);
isl_map_free(map_i);
if (*exact)
qc = isl_map_transitive_closure(qc, exact);
if (!*exact) {
isl_space_free(dim);
isl_map_free(tc);
isl_map_free(qc);
return isl_map_universe(isl_map_get_space(map));
}
if (!left || !right)
rtc = isl_map_union(isl_map_copy(tc),
isl_map_identity(isl_map_get_space(tc)));
if (!right)
qc = isl_map_apply_range(rtc, qc);
if (!left)
qc = isl_map_apply_range(qc, rtc);
qc = isl_map_union(tc, qc);
isl_space_free(dim);
return qc;
error:
isl_space_free(dim);
isl_map_free(qc);
return NULL;
}
/* Given a map "map", try to find a basic map such that
* map^+ can be computed as
*
* map^+ = map_i^+ \cup
* \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
*
* with C the simple hull of the domain and range of the input map.
* map_i^ \cup Id_C is computed by allowing the path lengths to be zero
* and by intersecting domain and range with C.
* Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
* Also, we only use the incremental computation if all the transitive
* closures are exact and if the number of basic maps in the union,
* after computing the integer divisions, is smaller than the number
* of basic maps in the input map.
*/
static int incemental_on_entire_domain(__isl_keep isl_space *dim,
__isl_keep isl_map *map,
isl_set **dom, isl_set **ran, int *left, int *right,
__isl_give isl_map **res)
{
int i;
isl_set *C;
unsigned d;
*res = NULL;
C = isl_set_union(isl_map_domain(isl_map_copy(map)),
isl_map_range(isl_map_copy(map)));
C = isl_set_from_basic_set(isl_set_simple_hull(C));
if (!C)
return -1;
if (C->n != 1) {
isl_set_free(C);
return 0;
}
d = isl_map_dim(map, isl_dim_in);
for (i = 0; i < map->n; ++i) {
isl_map *qc;
int exact_i, spurious;
int j;
dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
isl_basic_map_copy(map->p[i])));
ran[i] = isl_set_from_basic_set(isl_basic_map_range(
isl_basic_map_copy(map->p[i])));
qc = q_closure(isl_space_copy(dim), isl_set_copy(C),
map->p[i], &exact_i);
if (!qc)
goto error;
if (!exact_i) {
isl_map_free(qc);
continue;
}
spurious = has_spurious_elements(qc, dom[i], ran[i]);
if (spurious) {
isl_map_free(qc);
if (spurious < 0)
goto error;
continue;
}
qc = isl_map_project_out(qc, isl_dim_in, d, 1);
qc = isl_map_project_out(qc, isl_dim_out, d, 1);
qc = isl_map_compute_divs(qc);
for (j = 0; j < map->n; ++j)
left[j] = right[j] = 1;
qc = compose(map, i, qc, left, right);
if (!qc)
goto error;
if (qc->n >= map->n) {
isl_map_free(qc);
continue;
}
*res = compute_incremental(isl_space_copy(dim), map, i, qc,
left, right, &exact_i);
if (!*res)
goto error;
if (exact_i)
break;
isl_map_free(*res);
*res = NULL;
}
isl_set_free(C);
return *res != NULL;
error:
isl_set_free(C);
return -1;
}
/* Try and compute the transitive closure of "map" as
*
* map^+ = map_i^+ \cup
* \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
*
* with C either the simple hull of the domain and range of the entire
* map or the simple hull of domain and range of map_i.
*/
static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim,
__isl_keep isl_map *map, int *exact, int project)
{
int i;
isl_set **dom = NULL;
isl_set **ran = NULL;
int *left = NULL;
int *right = NULL;
isl_set *C;
unsigned d;
isl_map *res = NULL;
if (!project)
return construct_projected_component(dim, map, exact, project);
if (!map)
goto error;
if (map->n <= 1)
return construct_projected_component(dim, map, exact, project);
d = isl_map_dim(map, isl_dim_in);
dom = isl_calloc_array(map->ctx, isl_set *, map->n);
ran = isl_calloc_array(map->ctx, isl_set *, map->n);
left = isl_calloc_array(map->ctx, int, map->n);
right = isl_calloc_array(map->ctx, int, map->n);
if (!ran || !dom || !left || !right)
goto error;
if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
goto error;
for (i = 0; !res && i < map->n; ++i) {
isl_map *qc;
int exact_i, spurious, comp;
if (!dom[i])
dom[i] = isl_set_from_basic_set(
isl_basic_map_domain(
isl_basic_map_copy(map->p[i])));
if (!dom[i])
goto error;
if (!ran[i])
ran[i] = isl_set_from_basic_set(
isl_basic_map_range(
isl_basic_map_copy(map->p[i])));
if (!ran[i])
goto error;
C = isl_set_union(isl_set_copy(dom[i]),
isl_set_copy(ran[i]));
C = isl_set_from_basic_set(isl_set_simple_hull(C));
if (!C)
goto error;
if (C->n != 1) {
isl_set_free(C);
continue;
}
comp = composability(C, i, dom, ran, left, right, map);
if (!comp || comp < 0) {
isl_set_free(C);
if (comp < 0)
goto error;
continue;
}
qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i);
if (!qc)
goto error;
if (!exact_i) {
isl_map_free(qc);
continue;
}
spurious = has_spurious_elements(qc, dom[i], ran[i]);
if (spurious) {
isl_map_free(qc);
if (spurious < 0)
goto error;
continue;
}
qc = isl_map_project_out(qc, isl_dim_in, d, 1);
qc = isl_map_project_out(qc, isl_dim_out, d, 1);
qc = isl_map_compute_divs(qc);
qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
(comp & RIGHT) ? right : NULL);
if (!qc)
goto error;
if (qc->n >= map->n) {
isl_map_free(qc);
continue;
}
res = compute_incremental(isl_space_copy(dim), map, i, qc,
(comp & LEFT) ? left : NULL,
(comp & RIGHT) ? right : NULL, &exact_i);
if (!res)
goto error;
if (exact_i)
break;
isl_map_free(res);
res = NULL;
}
for (i = 0; i < map->n; ++i) {
isl_set_free(dom[i]);
isl_set_free(ran[i]);
}
free(dom);
free(ran);
free(left);
free(right);
if (res) {
isl_space_free(dim);
return res;
}
return construct_projected_component(dim, map, exact, project);
error:
if (dom)
for (i = 0; i < map->n; ++i)
isl_set_free(dom[i]);
free(dom);
if (ran)
for (i = 0; i < map->n; ++i)
isl_set_free(ran[i]);
free(ran);
free(left);
free(right);
isl_space_free(dim);
return NULL;
}
/* Given an array of sets "set", add "dom" at position "pos"
* and search for elements at earlier positions that overlap with "dom".
* If any can be found, then merge all of them, together with "dom", into
* a single set and assign the union to the first in the array,
* which becomes the new group leader for all groups involved in the merge.
* During the search, we only consider group leaders, i.e., those with
* group[i] = i, as the other sets have already been combined
* with one of the group leaders.
*/
static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
{
int i;
group[pos] = pos;
set[pos] = isl_set_copy(dom);
for (i = pos - 1; i >= 0; --i) {
isl_bool o;
if (group[i] != i)
continue;
o = isl_set_overlaps(set[i], dom);
if (o < 0)
goto error;
if (!o)
continue;
set[i] = isl_set_union(set[i], set[group[pos]]);
set[group[pos]] = NULL;
if (!set[i])
goto error;
group[group[pos]] = i;
group[pos] = i;
}
isl_set_free(dom);
return 0;
error:
isl_set_free(dom);
return -1;
}
/* Replace each entry in the n by n grid of maps by the cross product
* with the relation { [i] -> [i + 1] }.
*/
static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
{
int i, j, k;
isl_space *dim;
isl_basic_map *bstep;
isl_map *step;
unsigned nparam;
if (!map)
return -1;
dim = isl_map_get_space(map);
nparam = isl_space_dim(dim, isl_dim_param);
dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
dim = isl_space_add_dims(dim, isl_dim_in, 1);
dim = isl_space_add_dims(dim, isl_dim_out, 1);
bstep = isl_basic_map_alloc_space(dim, 0, 1, 0);
k = isl_basic_map_alloc_equality(bstep);
if (k < 0) {
isl_basic_map_free(bstep);
return -1;
}
isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
isl_int_set_si(bstep->eq[k][0], 1);
isl_int_set_si(bstep->eq[k][1 + nparam], 1);
isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
bstep = isl_basic_map_finalize(bstep);
step = isl_map_from_basic_map(bstep);
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
grid[i][j] = isl_map_product(grid[i][j],
isl_map_copy(step));
isl_map_free(step);
return 0;
}
/* The core of the Floyd-Warshall algorithm.
* Updates the given n x x matrix of relations in place.
*
* The algorithm iterates over all vertices. In each step, the whole
* matrix is updated to include all paths that go to the current vertex,
* possibly stay there a while (including passing through earlier vertices)
* and then come back. At the start of each iteration, the diagonal
* element corresponding to the current vertex is replaced by its
* transitive closure to account for all indirect paths that stay
* in the current vertex.
*/
static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
{
int r, p, q;
for (r = 0; r < n; ++r) {
int r_exact;
grid[r][r] = isl_map_transitive_closure(grid[r][r],
(exact && *exact) ? &r_exact : NULL);
if (exact && *exact && !r_exact)
*exact = 0;
for (p = 0; p < n; ++p)
for (q = 0; q < n; ++q) {
isl_map *loop;
if (p == r && q == r)
continue;
loop = isl_map_apply_range(
isl_map_copy(grid[p][r]),
isl_map_copy(grid[r][q]));
grid[p][q] = isl_map_union(grid[p][q], loop);
loop = isl_map_apply_range(
isl_map_copy(grid[p][r]),
isl_map_apply_range(
isl_map_copy(grid[r][r]),
isl_map_copy(grid[r][q])));
grid[p][q] = isl_map_union(grid[p][q], loop);
grid[p][q] = isl_map_coalesce(grid[p][q]);
}
}
}
/* Given a partition of the domains and ranges of the basic maps in "map",
* apply the Floyd-Warshall algorithm with the elements in the partition
* as vertices.
*
* In particular, there are "n" elements in the partition and "group" is
* an array of length 2 * map->n with entries in [0,n-1].
*
* We first construct a matrix of relations based on the partition information,
* apply Floyd-Warshall on this matrix of relations and then take the
* union of all entries in the matrix as the final result.
*
* If we are actually computing the power instead of the transitive closure,
* i.e., when "project" is not set, then the result should have the
* path lengths encoded as the difference between an extra pair of
* coordinates. We therefore apply the nested transitive closures
* to relations that include these lengths. In particular, we replace
* the input relation by the cross product with the unit length relation
* { [i] -> [i + 1] }.
*/
static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim,
__isl_keep isl_map *map, int *exact, int project, int *group, int n)
{
int i, j, k;
isl_map ***grid = NULL;
isl_map *app;
if (!map)
goto error;
if (n == 1) {
free(group);
return incremental_closure(dim, map, exact, project);
}
grid = isl_calloc_array(map->ctx, isl_map **, n);
if (!grid)
goto error;
for (i = 0; i < n; ++i) {
grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
if (!grid[i])
goto error;
for (j = 0; j < n; ++j)
grid[i][j] = isl_map_empty(isl_map_get_space(map));
}
for (k = 0; k < map->n; ++k) {
i = group[2 * k];
j = group[2 * k + 1];
grid[i][j] = isl_map_union(grid[i][j],
isl_map_from_basic_map(
isl_basic_map_copy(map->p[k])));
}
if (!project && add_length(map, grid, n) < 0)
goto error;
floyd_warshall_iterate(grid, n, exact);
app = isl_map_empty(isl_map_get_space(grid[0][0]));
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j)
app = isl_map_union(app, grid[i][j]);
free(grid[i]);
}
free(grid);
free(group);
isl_space_free(dim);
return app;
error:
if (grid)
for (i = 0; i < n; ++i) {
if (!grid[i])
continue;
for (j = 0; j < n; ++j)
isl_map_free(grid[i][j]);
free(grid[i]);
}
free(grid);
free(group);
isl_space_free(dim);
return NULL;
}
/* Partition the domains and ranges of the n basic relations in list
* into disjoint cells.
*
* To find the partition, we simply consider all of the domains
* and ranges in turn and combine those that overlap.
* "set" contains the partition elements and "group" indicates
* to which partition element a given domain or range belongs.
* The domain of basic map i corresponds to element 2 * i in these arrays,
* while the domain corresponds to element 2 * i + 1.
* During the construction group[k] is either equal to k,
* in which case set[k] contains the union of all the domains and
* ranges in the corresponding group, or is equal to some l < k,
* with l another domain or range in the same group.
*/
static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
isl_set ***set, int *n_group)
{
int i;
int *group = NULL;
int g;
*set = isl_calloc_array(ctx, isl_set *, 2 * n);
group = isl_alloc_array(ctx, int, 2 * n);
if (!*set || !group)
goto error;
for (i = 0; i < n; ++i) {
isl_set *dom;
dom = isl_set_from_basic_set(isl_basic_map_domain(
isl_basic_map_copy(list[i])));
if (merge(*set, group, dom, 2 * i) < 0)
goto error;
dom = isl_set_from_basic_set(isl_basic_map_range(
isl_basic_map_copy(list[i])));
if (merge(*set, group, dom, 2 * i + 1) < 0)
goto error;
}
g = 0;
for (i = 0; i < 2 * n; ++i)
if (group[i] == i) {
if (g != i) {
(*set)[g] = (*set)[i];
(*set)[i] = NULL;
}
group[i] = g++;
} else
group[i] = group[group[i]];
*n_group = g;
return group;
error:
if (*set) {
for (i = 0; i < 2 * n; ++i)
isl_set_free((*set)[i]);
free(*set);
*set = NULL;
}
free(group);
return NULL;
}
/* Check if the domains and ranges of the basic maps in "map" can
* be partitioned, and if so, apply Floyd-Warshall on the elements
* of the partition. Note that we also apply this algorithm
* if we want to compute the power, i.e., when "project" is not set.
* However, the results are unlikely to be exact since the recursive
* calls inside the Floyd-Warshall algorithm typically result in
* non-linear path lengths quite quickly.
*/
static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim,
__isl_keep isl_map *map, int *exact, int project)
{
int i;
isl_set **set = NULL;
int *group = NULL;
int n;
if (!map)
goto error;
if (map->n <= 1)
return incremental_closure(dim, map, exact, project);
group = setup_groups(map->ctx, map->p, map->n, &set, &n);
if (!group)
goto error;
for (i = 0; i < 2 * map->n; ++i)
isl_set_free(set[i]);
free(set);
return floyd_warshall_with_groups(dim, map, exact, project, group, n);
error:
isl_space_free(dim);
return NULL;
}
/* Structure for representing the nodes of the graph of which
* strongly connected components are being computed.
*
* list contains the actual nodes
* check_closed is set if we may have used the fact that
* a pair of basic maps can be interchanged
*/
struct isl_tc_follows_data {
isl_basic_map **list;
int check_closed;
};
/* Check whether in the computation of the transitive closure
* "list[i]" (R_1) should follow (or be part of the same component as)
* "list[j]" (R_2).
*
* That is check whether
*
* R_1 \circ R_2
*
* is a subset of
*
* R_2 \circ R_1
*
* If so, then there is no reason for R_1 to immediately follow R_2
* in any path.
*
* *check_closed is set if the subset relation holds while
* R_1 \circ R_2 is not empty.
*/
static isl_bool basic_map_follows(int i, int j, void *user)
{
struct isl_tc_follows_data *data = user;
struct isl_map *map12 = NULL;
struct isl_map *map21 = NULL;
isl_bool subset;
if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
data->list[j]->dim, isl_dim_out))
return isl_bool_false;
map21 = isl_map_from_basic_map(
isl_basic_map_apply_range(
isl_basic_map_copy(data->list[j]),
isl_basic_map_copy(data->list[i])));
subset = isl_map_is_empty(map21);
if (subset < 0)
goto error;
if (subset) {
isl_map_free(map21);
return isl_bool_false;
}
if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in,
data->list[i]->dim, isl_dim_out) ||
!isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in,
data->list[j]->dim, isl_dim_out)) {
isl_map_free(map21);
return isl_bool_true;
}
map12 = isl_map_from_basic_map(
isl_basic_map_apply_range(
isl_basic_map_copy(data->list[i]),
isl_basic_map_copy(data->list[j])));
subset = isl_map_is_subset(map21, map12);
isl_map_free(map12);
isl_map_free(map21);
if (subset)
data->check_closed = 1;
return subset < 0 ? isl_bool_error : !subset;
error:
isl_map_free(map21);
return isl_bool_error;
}
/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
* and a dimension specification (Z^{n+1} -> Z^{n+1}),
* construct a map that is an overapproximation of the map
* that takes an element from the dom R \times Z to an
* element from ran R \times Z, such that the first n coordinates of the
* difference between them is a sum of differences between images
* and pre-images in one of the R_i and such that the last coordinate
* is equal to the number of steps taken.
* If "project" is set, then these final coordinates are not included,
* i.e., a relation of type Z^n -> Z^n is returned.
* That is, let
*
* \Delta_i = { y - x | (x, y) in R_i }
*
* then the constructed map is an overapproximation of
*
* { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
* d = (\sum_i k_i \delta_i, \sum_i k_i) and
* x in dom R and x + d in ran R }
*
* or
*
* { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
* d = (\sum_i k_i \delta_i) and
* x in dom R and x + d in ran R }
*
* if "project" is set.
*
* We first split the map into strongly connected components, perform
* the above on each component and then join the results in the correct
* order, at each join also taking in the union of both arguments
* to allow for paths that do not go through one of the two arguments.
*/
static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim,
__isl_keep isl_map *map, int *exact, int project)
{
int i, n, c;
struct isl_map *path = NULL;
struct isl_tc_follows_data data;
struct isl_tarjan_graph *g = NULL;
int *orig_exact;
int local_exact;
if (!map)
goto error;
if (map->n <= 1)
return floyd_warshall(dim, map, exact, project);
data.list = map->p;
data.check_closed = 0;
g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
if (!g)
goto error;
orig_exact = exact;
if (data.check_closed && !exact)
exact = &local_exact;
c = 0;
i = 0;
n = map->n;
if (project)
path = isl_map_empty(isl_map_get_space(map));
else
path = isl_map_empty(isl_space_copy(dim));
path = anonymize(path);
while (n) {
struct isl_map *comp;
isl_map *path_comp, *path_comb;
comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
while (g->order[i] != -1) {
comp = isl_map_add_basic_map(comp,
isl_basic_map_copy(map->p[g->order[i]]));
--n;
++i;
}
path_comp = floyd_warshall(isl_space_copy(dim),
comp, exact, project);
path_comp = anonymize(path_comp);
path_comb = isl_map_apply_range(isl_map_copy(path),
isl_map_copy(path_comp));
path = isl_map_union(path, path_comp);
path = isl_map_union(path, path_comb);
isl_map_free(comp);
++i;
++c;
}
if (c > 1 && data.check_closed && !*exact) {
int closed;
closed = isl_map_is_transitively_closed(path);
if (closed < 0)
goto error;
if (!closed) {
isl_tarjan_graph_free(g);
isl_map_free(path);
return floyd_warshall(dim, map, orig_exact, project);
}
}
isl_tarjan_graph_free(g);
isl_space_free(dim);
return path;
error:
isl_tarjan_graph_free(g);
isl_space_free(dim);
isl_map_free(path);
return NULL;
}
/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
* construct a map that is an overapproximation of the map
* that takes an element from the space D to another
* element from the same space, such that the difference between
* them is a strictly positive sum of differences between images
* and pre-images in one of the R_i.
* The number of differences in the sum is equated to parameter "param".
* That is, let
*
* \Delta_i = { y - x | (x, y) in R_i }
*
* then the constructed map is an overapproximation of
*
* { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
* d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
* or
*
* { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
* d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
*
* if "project" is set.
*
* If "project" is not set, then
* we construct an extended mapping with an extra coordinate
* that indicates the number of steps taken. In particular,
* the difference in the last coordinate is equal to the number
* of steps taken to move from a domain element to the corresponding
* image element(s).
*/
static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
int *exact, int project)
{
struct isl_map *app = NULL;
isl_space *dim = NULL;
if (!map)
return NULL;
dim = isl_map_get_space(map);
dim = isl_space_add_dims(dim, isl_dim_in, 1);
dim = isl_space_add_dims(dim, isl_dim_out, 1);
app = construct_power_components(isl_space_copy(dim), map,
exact, project);
isl_space_free(dim);
return app;
}
/* Compute the positive powers of "map", or an overapproximation.
* If the result is exact, then *exact is set to 1.
*
* If project is set, then we are actually interested in the transitive
* closure, so we can use a more relaxed exactness check.
* The lengths of the paths are also projected out instead of being
* encoded as the difference between an extra pair of final coordinates.
*/
static __isl_give isl_map *map_power(__isl_take isl_map *map,
int *exact, int project)
{
struct isl_map *app = NULL;
if (exact)
*exact = 1;
if (!map)
return NULL;
isl_assert(map->ctx,
isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
goto error);
app = construct_power(map, exact, project);
isl_map_free(map);
return app;
error:
isl_map_free(map);
isl_map_free(app);
return NULL;
}
/* Compute the positive powers of "map", or an overapproximation.
* The result maps the exponent to a nested copy of the corresponding power.
* If the result is exact, then *exact is set to 1.
* map_power constructs an extended relation with the path lengths
* encoded as the difference between the final coordinates.
* In the final step, this difference is equated to an extra parameter
* and made positive. The extra coordinates are subsequently projected out
* and the parameter is turned into the domain of the result.
*/
__isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
{
isl_space *target_dim;
isl_space *dim;
isl_map *diff;
unsigned d;
unsigned param;
if (!map)
return NULL;
d = isl_map_dim(map, isl_dim_in);
param = isl_map_dim(map, isl_dim_param);
map = isl_map_compute_divs(map);
map = isl_map_coalesce(map);
if (isl_map_plain_is_empty(map)) {
map = isl_map_from_range(isl_map_wrap(map));
map = isl_map_add_dims(map, isl_dim_in, 1);
map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
return map;
}
target_dim = isl_map_get_space(map);
target_dim = isl_space_from_range(isl_space_wrap(target_dim));
target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1);
target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k");
map = map_power(map, exact, 0);
map = isl_map_add_dims(map, isl_dim_param, 1);
dim = isl_map_get_space(map);
diff = equate_parameter_to_length(dim, param);
map = isl_map_intersect(map, diff);
map = isl_map_project_out(map, isl_dim_in, d, 1);
map = isl_map_project_out(map, isl_dim_out, d, 1);
map = isl_map_from_range(isl_map_wrap(map));
map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
map = isl_map_reset_space(map, target_dim);
return map;
}
/* Compute a relation that maps each element in the range of the input
* relation to the lengths of all paths composed of edges in the input
* relation that end up in the given range element.
* The result may be an overapproximation, in which case *exact is set to 0.
* The resulting relation is very similar to the power relation.
* The difference are that the domain has been projected out, the
* range has become the domain and the exponent is the range instead
* of a parameter.
*/
__isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
int *exact)
{
isl_space *dim;
isl_map *diff;
unsigned d;
unsigned param;
if (!map)
return NULL;
d = isl_map_dim(map, isl_dim_in);
param = isl_map_dim(map, isl_dim_param);
map = isl_map_compute_divs(map);
map = isl_map_coalesce(map);
if (isl_map_plain_is_empty(map)) {
if (exact)
*exact = 1;
map = isl_map_project_out(map, isl_dim_out, 0, d);
map = isl_map_add_dims(map, isl_dim_out, 1);
return map;
}
map = map_power(map, exact, 0);
map = isl_map_add_dims(map, isl_dim_param, 1);
dim = isl_map_get_space(map);
diff = equate_parameter_to_length(dim, param);
map = isl_map_intersect(map, diff);
map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
map = isl_map_project_out(map, isl_dim_out, d, 1);
map = isl_map_reverse(map);
map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
return map;
}
/* Given a map, compute the smallest superset of this map that is of the form
*
* { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
*
* (where p ranges over the (non-parametric) dimensions),
* compute the transitive closure of this map, i.e.,
*
* { i -> j : exists k > 0:
* k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
*
* and intersect domain and range of this transitive closure with
* the given domain and range.
*
* If with_id is set, then try to include as much of the identity mapping
* as possible, by computing
*
* { i -> j : exists k >= 0:
* k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
*
* instead (i.e., allow k = 0).
*
* In practice, we compute the difference set
*
* delta = { j - i | i -> j in map },
*
* look for stride constraint on the individual dimensions and compute
* (constant) lower and upper bounds for each individual dimension,
* adding a constraint for each bound not equal to infinity.
*/
static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
__isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
{
int i;
int k;
unsigned d;
unsigned nparam;
unsigned total;
isl_space *dim;
isl_set *delta;
isl_map *app = NULL;
isl_basic_set *aff = NULL;
isl_basic_map *bmap = NULL;
isl_vec *obj = NULL;
isl_int opt;
isl_int_init(opt);
delta = isl_map_deltas(isl_map_copy(map));
aff = isl_set_affine_hull(isl_set_copy(delta));
if (!aff)
goto error;
dim = isl_map_get_space(map);
d = isl_space_dim(dim, isl_dim_in);
nparam = isl_space_dim(dim, isl_dim_param);
total = isl_space_dim(dim, isl_dim_all);
bmap = isl_basic_map_alloc_space(dim,
aff->n_div + 1, aff->n_div, 2 * d + 1);
for (i = 0; i < aff->n_div + 1; ++i) {
k = isl_basic_map_alloc_div(bmap);
if (k < 0)
goto error;
isl_int_set_si(bmap->div[k][0], 0);
}
for (i = 0; i < aff->n_eq; ++i) {
if (!isl_basic_set_eq_is_stride(aff, i))
continue;
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->eq[k], 1 + nparam);
isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
aff->eq[i] + 1 + nparam, d);
isl_seq_neg(bmap->eq[k] + 1 + nparam,
aff->eq[i] + 1 + nparam, d);
isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
aff->eq[i] + 1 + nparam + d, aff->n_div);
isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
}
obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
if (!obj)
goto error;
isl_seq_clr(obj->el, 1 + nparam + d);
for (i = 0; i < d; ++ i) {
enum isl_lp_result res;
isl_int_set_si(obj->el[1 + nparam + i], 1);
res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
NULL, NULL);
if (res == isl_lp_error)
goto error;
if (res == isl_lp_ok) {
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->ineq[k],
1 + nparam + 2 * d + bmap->n_div);
isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
}
res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
NULL, NULL);
if (res == isl_lp_error)
goto error;
if (res == isl_lp_ok) {
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->ineq[k],
1 + nparam + 2 * d + bmap->n_div);
isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
}
isl_int_set_si(obj->el[1 + nparam + i], 0);
}
k = isl_basic_map_alloc_inequality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->ineq[k],
1 + nparam + 2 * d + bmap->n_div);
if (!with_id)
isl_int_set_si(bmap->ineq[k][0], -1);
isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
app = isl_map_from_domain_and_range(dom, ran);
isl_vec_free(obj);
isl_basic_set_free(aff);
isl_map_free(map);
bmap = isl_basic_map_finalize(bmap);
isl_set_free(delta);
isl_int_clear(opt);
map = isl_map_from_basic_map(bmap);
map = isl_map_intersect(map, app);
return map;
error:
isl_vec_free(obj);
isl_basic_map_free(bmap);
isl_basic_set_free(aff);
isl_set_free(dom);
isl_set_free(ran);
isl_map_free(map);
isl_set_free(delta);
isl_int_clear(opt);
return NULL;
}
/* Given a map, compute the smallest superset of this map that is of the form
*
* { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
*
* (where p ranges over the (non-parametric) dimensions),
* compute the transitive closure of this map, i.e.,
*
* { i -> j : exists k > 0:
* k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
*
* and intersect domain and range of this transitive closure with
* domain and range of the original map.
*/
static __isl_give isl_map *box_closure(__isl_take isl_map *map)
{
isl_set *domain;
isl_set *range;
domain = isl_map_domain(isl_map_copy(map));
domain = isl_set_coalesce(domain);
range = isl_map_range(isl_map_copy(map));
range = isl_set_coalesce(range);
return box_closure_on_domain(map, domain, range, 0);
}
/* Given a map, compute the smallest superset of this map that is of the form
*
* { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
*
* (where p ranges over the (non-parametric) dimensions),
* compute the transitive and partially reflexive closure of this map, i.e.,
*
* { i -> j : exists k >= 0:
* k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
*
* and intersect domain and range of this transitive closure with
* the given domain.
*/
static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
__isl_take isl_set *dom)
{
return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
}
/* Check whether app is the transitive closure of map.
* In particular, check that app is acyclic and, if so,
* check that
*
* app \subset (map \cup (map \circ app))
*/
static int check_exactness_omega(__isl_keep isl_map *map,
__isl_keep isl_map *app)
{
isl_set *delta;
int i;
int is_empty, is_exact;
unsigned d;
isl_map *test;
delta = isl_map_deltas(isl_map_copy(app));
d = isl_set_dim(delta, isl_dim_set);
for (i = 0; i < d; ++i)
delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
is_empty = isl_set_is_empty(delta);
isl_set_free(delta);
if (is_empty < 0)
return -1;
if (!is_empty)
return 0;
test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
test = isl_map_union(test, isl_map_copy(map));
is_exact = isl_map_is_subset(app, test);
isl_map_free(test);
return is_exact;
}
/* Check if basic map M_i can be combined with all the other
* basic maps such that
*
* (\cup_j M_j)^+
*
* can be computed as
*
* M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
*
* In particular, check if we can compute a compact representation
* of
*
* M_i^* \circ M_j \circ M_i^*
*
* for each j != i.
* Let M_i^? be an extension of M_i^+ that allows paths
* of length zero, i.e., the result of box_closure(., 1).
* The criterion, as proposed by Kelly et al., is that
* id = M_i^? - M_i^+ can be represented as a basic map
* and that
*
* id \circ M_j \circ id = M_j
*
* for each j != i.
*
* If this function returns 1, then tc and qc are set to
* M_i^+ and M_i^?, respectively.
*/
static int can_be_split_off(__isl_keep isl_map *map, int i,
__isl_give isl_map **tc, __isl_give isl_map **qc)
{
isl_map *map_i, *id = NULL;
int j = -1;
isl_set *C;
*tc = NULL;
*qc = NULL;
C = isl_set_union(isl_map_domain(isl_map_copy(map)),
isl_map_range(isl_map_copy(map)));
C = isl_set_from_basic_set(isl_set_simple_hull(C));
if (!C)
goto error;
map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
*tc = box_closure(isl_map_copy(map_i));
*qc = box_closure_with_identity(map_i, C);
id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
if (!id || !*qc)
goto error;
if (id->n != 1 || (*qc)->n != 1)
goto done;
for (j = 0; j < map->n; ++j) {
isl_map *map_j, *test;
int is_ok;
if (i == j)
continue;
map_j = isl_map_from_basic_map(
isl_basic_map_copy(map->p[j]));
test = isl_map_apply_range(isl_map_copy(id),
isl_map_copy(map_j));
test = isl_map_apply_range(test, isl_map_copy(id));
is_ok = isl_map_is_equal(test, map_j);
isl_map_free(map_j);
isl_map_free(test);
if (is_ok < 0)
goto error;
if (!is_ok)
break;
}
done:
isl_map_free(id);
if (j == map->n)
return 1;
isl_map_free(*qc);
isl_map_free(*tc);
*qc = NULL;
*tc = NULL;
return 0;
error:
isl_map_free(id);
isl_map_free(*qc);
isl_map_free(*tc);
*qc = NULL;
*tc = NULL;
return -1;
}
static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
int *exact)
{
isl_map *app;
app = box_closure(isl_map_copy(map));
if (exact)
*exact = check_exactness_omega(map, app);
isl_map_free(map);
return app;
}
/* Compute an overapproximation of the transitive closure of "map"
* using a variation of the algorithm from
* "Transitive Closure of Infinite Graphs and its Applications"
* by Kelly et al.
*
* We first check whether we can can split of any basic map M_i and
* compute
*
* (\cup_j M_j)^+
*
* as
*
* M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
*
* using a recursive call on the remaining map.
*
* If not, we simply call box_closure on the whole map.
*/
static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
int *exact)
{
int i, j;
int exact_i;
isl_map *app;
if (!map)
return NULL;
if (map->n == 1)
return box_closure_with_check(map, exact);
for (i = 0; i < map->n; ++i) {
int ok;
isl_map *qc, *tc;
ok = can_be_split_off(map, i, &tc, &qc);
if (ok < 0)
goto error;
if (!ok)
continue;
app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
for (j = 0; j < map->n; ++j) {
if (j == i)
continue;
app = isl_map_add_basic_map(app,
isl_basic_map_copy(map->p[j]));
}
app = isl_map_apply_range(isl_map_copy(qc), app);
app = isl_map_apply_range(app, qc);
app = isl_map_union(tc, transitive_closure_omega(app, NULL));
exact_i = check_exactness_omega(map, app);
if (exact_i == 1) {
if (exact)
*exact = exact_i;
isl_map_free(map);
return app;
}
isl_map_free(app);
if (exact_i < 0)
goto error;
}
return box_closure_with_check(map, exact);
error:
isl_map_free(map);
return NULL;
}
/* Compute the transitive closure of "map", or an overapproximation.
* If the result is exact, then *exact is set to 1.
* Simply use map_power to compute the powers of map, but tell
* it to project out the lengths of the paths instead of equating
* the length to a parameter.
*/
__isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
int *exact)
{
isl_space *target_dim;
int closed;
if (!map)
goto error;
if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
return transitive_closure_omega(map, exact);
map = isl_map_compute_divs(map);
map = isl_map_coalesce(map);
closed = isl_map_is_transitively_closed(map);
if (closed < 0)
goto error;
if (closed) {
if (exact)
*exact = 1;
return map;
}
target_dim = isl_map_get_space(map);
map = map_power(map, exact, 1);
map = isl_map_reset_space(map, target_dim);
return map;
error:
isl_map_free(map);
return NULL;
}
static isl_stat inc_count(__isl_take isl_map *map, void *user)
{
int *n = user;
*n += map->n;
isl_map_free(map);
return isl_stat_ok;
}
static isl_stat collect_basic_map(__isl_take isl_map *map, void *user)
{
int i;
isl_basic_map ***next = user;
for (i = 0; i < map->n; ++i) {
**next = isl_basic_map_copy(map->p[i]);
if (!**next)
goto error;
(*next)++;
}
isl_map_free(map);
return isl_stat_ok;
error:
isl_map_free(map);
return isl_stat_error;
}
/* Perform Floyd-Warshall on the given list of basic relations.
* The basic relations may live in different dimensions,
* but basic relations that get assigned to the diagonal of the
* grid have domains and ranges of the same dimension and so
* the standard algorithm can be used because the nested transitive
* closures are only applied to diagonal elements and because all
* compositions are peformed on relations with compatible domains and ranges.
*/
static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
__isl_keep isl_basic_map **list, int n, int *exact)
{
int i, j, k;
int n_group;
int *group = NULL;
isl_set **set = NULL;
isl_map ***grid = NULL;
isl_union_map *app;
group = setup_groups(ctx, list, n, &set, &n_group);
if (!group)
goto error;
grid = isl_calloc_array(ctx, isl_map **, n_group);
if (!grid)
goto error;
for (i = 0; i < n_group; ++i) {
grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
if (!grid[i])
goto error;
for (j = 0; j < n_group; ++j) {
isl_space *dim1, *dim2, *dim;
dim1 = isl_space_reverse(isl_set_get_space(set[i]));
dim2 = isl_set_get_space(set[j]);
dim = isl_space_join(dim1, dim2);
grid[i][j] = isl_map_empty(dim);
}
}
for (k = 0; k < n; ++k) {
i = group[2 * k];
j = group[2 * k + 1];
grid[i][j] = isl_map_union(grid[i][j],
isl_map_from_basic_map(
isl_basic_map_copy(list[k])));
}
floyd_warshall_iterate(grid, n_group, exact);
app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
for (i = 0; i < n_group; ++i) {
for (j = 0; j < n_group; ++j)
app = isl_union_map_add_map(app, grid[i][j]);
free(grid[i]);
}
free(grid);
for (i = 0; i < 2 * n; ++i)
isl_set_free(set[i]);
free(set);
free(group);
return app;
error:
if (grid)
for (i = 0; i < n_group; ++i) {
if (!grid[i])
continue;
for (j = 0; j < n_group; ++j)
isl_map_free(grid[i][j]);
free(grid[i]);
}
free(grid);
if (set) {
for (i = 0; i < 2 * n; ++i)
isl_set_free(set[i]);
free(set);
}
free(group);
return NULL;
}
/* Perform Floyd-Warshall on the given union relation.
* The implementation is very similar to that for non-unions.
* The main difference is that it is applied unconditionally.
* We first extract a list of basic maps from the union map
* and then perform the algorithm on this list.
*/
static __isl_give isl_union_map *union_floyd_warshall(
__isl_take isl_union_map *umap, int *exact)
{
int i, n;
isl_ctx *ctx;
isl_basic_map **list = NULL;
isl_basic_map **next;
isl_union_map *res;
n = 0;
if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
goto error;
ctx = isl_union_map_get_ctx(umap);
list = isl_calloc_array(ctx, isl_basic_map *, n);
if (!list)
goto error;
next = list;
if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
goto error;
res = union_floyd_warshall_on_list(ctx, list, n, exact);
if (list) {
for (i = 0; i < n; ++i)
isl_basic_map_free(list[i]);
free(list);
}
isl_union_map_free(umap);
return res;
error:
if (list) {
for (i = 0; i < n; ++i)
isl_basic_map_free(list[i]);
free(list);
}
isl_union_map_free(umap);
return NULL;
}
/* Decompose the give union relation into strongly connected components.
* The implementation is essentially the same as that of
* construct_power_components with the major difference that all
* operations are performed on union maps.
*/
static __isl_give isl_union_map *union_components(
__isl_take isl_union_map *umap, int *exact)
{
int i;
int n;
isl_ctx *ctx;
isl_basic_map **list = NULL;
isl_basic_map **next;
isl_union_map *path = NULL;
struct isl_tc_follows_data data;
struct isl_tarjan_graph *g = NULL;
int c, l;
int recheck = 0;
n = 0;
if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
goto error;
if (n == 0)
return umap;
if (n <= 1)
return union_floyd_warshall(umap, exact);
ctx = isl_union_map_get_ctx(umap);
list = isl_calloc_array(ctx, isl_basic_map *, n);
if (!list)
goto error;
next = list;
if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
goto error;
data.list = list;
data.check_closed = 0;
g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
if (!g)
goto error;
c = 0;
i = 0;
l = n;
path = isl_union_map_empty(isl_union_map_get_space(umap));
while (l) {
isl_union_map *comp;
isl_union_map *path_comp, *path_comb;
comp = isl_union_map_empty(isl_union_map_get_space(umap));
while (g->order[i] != -1) {
comp = isl_union_map_add_map(comp,
isl_map_from_basic_map(
isl_basic_map_copy(list[g->order[i]])));
--l;
++i;
}
path_comp = union_floyd_warshall(comp, exact);
path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
isl_union_map_copy(path_comp));
path = isl_union_map_union(path, path_comp);
path = isl_union_map_union(path, path_comb);
++i;
++c;
}
if (c > 1 && data.check_closed && !*exact) {
int closed;
closed = isl_union_map_is_transitively_closed(path);
if (closed < 0)
goto error;
recheck = !closed;
}
isl_tarjan_graph_free(g);
for (i = 0; i < n; ++i)
isl_basic_map_free(list[i]);
free(list);
if (recheck) {
isl_union_map_free(path);
return union_floyd_warshall(umap, exact);
}
isl_union_map_free(umap);
return path;
error:
isl_tarjan_graph_free(g);
if (list) {
for (i = 0; i < n; ++i)
isl_basic_map_free(list[i]);
free(list);
}
isl_union_map_free(umap);
isl_union_map_free(path);
return NULL;
}
/* Compute the transitive closure of "umap", or an overapproximation.
* If the result is exact, then *exact is set to 1.
*/
__isl_give isl_union_map *isl_union_map_transitive_closure(
__isl_take isl_union_map *umap, int *exact)
{
int closed;
if (!umap)
return NULL;
if (exact)
*exact = 1;
umap = isl_union_map_compute_divs(umap);
umap = isl_union_map_coalesce(umap);
closed = isl_union_map_is_transitively_closed(umap);
if (closed < 0)
goto error;
if (closed)
return umap;
umap = union_components(umap, exact);
return umap;
error:
isl_union_map_free(umap);
return NULL;
}
struct isl_union_power {
isl_union_map *pow;
int *exact;
};
static isl_stat power(__isl_take isl_map *map, void *user)
{
struct isl_union_power *up = user;
map = isl_map_power(map, up->exact);
up->pow = isl_union_map_from_map(map);
return isl_stat_error;
}
/* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
*/
static __isl_give isl_union_map *increment(__isl_take isl_space *dim)
{
int k;
isl_basic_map *bmap;
dim = isl_space_add_dims(dim, isl_dim_in, 1);
dim = isl_space_add_dims(dim, isl_dim_out, 1);
bmap = isl_basic_map_alloc_space(dim, 0, 1, 0);
k = isl_basic_map_alloc_equality(bmap);
if (k < 0)
goto error;
isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
isl_int_set_si(bmap->eq[k][0], 1);
isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
return isl_union_map_from_map(isl_map_from_basic_map(bmap));
error:
isl_basic_map_free(bmap);
return NULL;
}
/* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
*/
static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
{
isl_basic_map *bmap;
dim = isl_space_add_dims(dim, isl_dim_in, 1);
dim = isl_space_add_dims(dim, isl_dim_out, 1);
bmap = isl_basic_map_universe(dim);
bmap = isl_basic_map_deltas_map(bmap);
return isl_union_map_from_map(isl_map_from_basic_map(bmap));
}
/* Compute the positive powers of "map", or an overapproximation.
* The result maps the exponent to a nested copy of the corresponding power.
* If the result is exact, then *exact is set to 1.
*/
__isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
int *exact)
{
int n;
isl_union_map *inc;
isl_union_map *dm;
if (!umap)
return NULL;
n = isl_union_map_n_map(umap);
if (n == 0)
return umap;
if (n == 1) {
struct isl_union_power up = { NULL, exact };
isl_union_map_foreach_map(umap, &power, &up);
isl_union_map_free(umap);
return up.pow;
}
inc = increment(isl_union_map_get_space(umap));
umap = isl_union_map_product(inc, umap);
umap = isl_union_map_transitive_closure(umap, exact);
umap = isl_union_map_zip(umap);
dm = deltas_map(isl_union_map_get_space(umap));
umap = isl_union_map_apply_domain(umap, dm);
return umap;
}
#undef TYPE
#define TYPE isl_map
#include "isl_power_templ.c"
#undef TYPE
#define TYPE isl_union_map
#include "isl_power_templ.c"
|