reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
/*
 * Copyright 2016      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege.
 */

#include <isl/ctx.h>
#include <isl/id.h>
#include <isl/val.h>
#include <isl/space.h>
#include <isl/aff.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/schedule.h>
#include <isl/schedule_node.h>

#include "ppcg.h"

/* Internal data structure for use during the detection of statements
 * that can be grouped.
 *
 * "sc" contains the original schedule constraints (not a copy).
 * "dep" contains the intersection of the validity and the proximity
 * constraints in "sc".  It may be NULL if it has not been computed yet.
 * "group_id" is the identifier for the next group that is extracted.
 *
 * "domain" is the set of statement instances that belong to any of the groups.
 * "contraction" maps the elements of "domain" to the corresponding group
 * instances.
 * "schedule" schedules the statements in each group relatively to each other.
 * These last three fields are NULL if no groups have been found so far.
 */
struct ppcg_grouping {
	isl_schedule_constraints *sc;

	isl_union_map *dep;
	int group_id;

	isl_union_set *domain;
	isl_union_pw_multi_aff *contraction;
	isl_schedule *schedule;
};

/* Clear all memory allocated by "grouping".
 */
static void ppcg_grouping_clear(struct ppcg_grouping *grouping)
{
	isl_union_map_free(grouping->dep);
	isl_union_set_free(grouping->domain);
	isl_union_pw_multi_aff_free(grouping->contraction);
	isl_schedule_free(grouping->schedule);
}

/* Compute the intersection of the proximity and validity dependences
 * in grouping->sc and store the result in grouping->dep, unless
 * this intersection has been computed before.
 */
static isl_stat ppcg_grouping_compute_dep(struct ppcg_grouping *grouping)
{
	isl_union_map *validity, *proximity;

	if (grouping->dep)
		return isl_stat_ok;

	validity = isl_schedule_constraints_get_validity(grouping->sc);
	proximity = isl_schedule_constraints_get_proximity(grouping->sc);
	grouping->dep = isl_union_map_intersect(validity, proximity);

	if (!grouping->dep)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Information extracted from one or more consecutive leaves
 * in the input schedule.
 *
 * "list" contains the sets of statement instances in the leaves,
 * one element in the list for each original leaf.
 * "domain" contains the union of the sets in "list".
 * "prefix" contains the prefix schedule of these elements.
 */
struct ppcg_grouping_leaf {
	isl_union_set *domain;
	isl_union_set_list *list;
	isl_multi_union_pw_aff *prefix;
};

/* Free all memory allocated for "leaves".
 */
static void ppcg_grouping_leaf_free(int n, struct ppcg_grouping_leaf leaves[])
{
	int i;

	if (!leaves)
		return;

	for (i = 0; i < n; ++i) {
		isl_union_set_free(leaves[i].domain);
		isl_union_set_list_free(leaves[i].list);
		isl_multi_union_pw_aff_free(leaves[i].prefix);
	}

	free(leaves);
}

/* Short-hand for retrieving the prefix schedule at "node"
 * in the form of an isl_multi_union_pw_aff.
 */
static __isl_give isl_multi_union_pw_aff *get_prefix(
	__isl_keep isl_schedule_node *node)
{
	return isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
}

/* Return an array of "n" elements with information extracted from
 * the "n" children of "node" starting at "first", all of which
 * are known to be filtered leaves.
 */
struct ppcg_grouping_leaf *extract_leaves(__isl_keep isl_schedule_node *node,
	int first, int n)
{
	int i;
	isl_ctx *ctx;
	struct ppcg_grouping_leaf *leaves;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	leaves = isl_calloc_array(ctx, struct ppcg_grouping_leaf, n);
	if (!leaves)
		return NULL;

	for (i = 0; i < n; ++i) {
		isl_schedule_node *child;
		isl_union_set *domain;

		child = isl_schedule_node_get_child(node, first + i);
		child = isl_schedule_node_child(child, 0);
		domain = isl_schedule_node_get_domain(child);
		leaves[i].domain = isl_union_set_copy(domain);
		leaves[i].list = isl_union_set_list_from_union_set(domain);
		leaves[i].prefix = get_prefix(child);
		isl_schedule_node_free(child);
	}

	return leaves;
}

/* Internal data structure used by merge_leaves.
 *
 * "src" and "dst" point to the two consecutive leaves that are
 * under investigation for being merged.
 * "merge" is initially set to 0 and is set to 1 as soon as
 * it turns out that it is useful to merge the two leaves.
 */
struct ppcg_merge_leaves_data {
	int merge;
	struct ppcg_grouping_leaf *src;
	struct ppcg_grouping_leaf *dst;
};

/* Given a relation "map" between instances of two statements A and B,
 * does it relate every instance of A (according to the domain of "src")
 * to every instance of B (according to the domain of "dst")?
 */
static isl_bool covers_src_and_dst(__isl_keep isl_map *map,
	struct ppcg_grouping_leaf *src, struct ppcg_grouping_leaf *dst)
{
	isl_space *space;
	isl_set *set1, *set2;
	isl_bool is_subset;

	space = isl_space_domain(isl_map_get_space(map));
	set1 = isl_union_set_extract_set(src->domain, space);
	set2 = isl_map_domain(isl_map_copy(map));
	is_subset = isl_set_is_subset(set1, set2);
	isl_set_free(set1);
	isl_set_free(set2);
	if (is_subset < 0 || !is_subset)
		return is_subset;

	space = isl_space_range(isl_map_get_space(map));
	set1 = isl_union_set_extract_set(dst->domain, space);
	set2 = isl_map_range(isl_map_copy(map));
	is_subset = isl_set_is_subset(set1, set2);
	isl_set_free(set1);
	isl_set_free(set2);

	return is_subset;
}

/* Given a relation "map" between instances of two statements A and B,
 * are pairs of related instances executed together in the input schedule?
 * That is, is each pair of instances assigned the same value
 * by the corresponding prefix schedules?
 *
 * In particular, select the subset of "map" that has pairs of elements
 * with the same value for the prefix schedules and then check
 * if "map" is still a subset of the result.
 */
static isl_bool matches_prefix(__isl_keep isl_map *map,
	struct ppcg_grouping_leaf *src, struct ppcg_grouping_leaf *dst)
{
	isl_union_map *umap, *equal;
	isl_multi_union_pw_aff *src_prefix, *dst_prefix, *prefix;
	isl_bool is_subset;

	src_prefix = isl_multi_union_pw_aff_copy(src->prefix);
	dst_prefix = isl_multi_union_pw_aff_copy(dst->prefix);
	prefix = isl_multi_union_pw_aff_union_add(src_prefix, dst_prefix);

	umap = isl_union_map_from_map(isl_map_copy(map));
	equal = isl_union_map_copy(umap);
	equal = isl_union_map_eq_at_multi_union_pw_aff(equal, prefix);

	is_subset = isl_union_map_is_subset(umap, equal);

	isl_union_map_free(umap);
	isl_union_map_free(equal);

	return is_subset;
}

/* Given a set of validity and proximity schedule constraints "map"
 * between statements in consecutive leaves in a valid schedule,
 * should the two leaves be merged into one?
 *
 * In particular, the two are merged if the constraints form
 * a bijection between every instance of the first statement and
 * every instance of the second statement.  Moreover, each
 * pair of such dependent instances needs to be executed consecutively
 * in the input schedule.  That is, they need to be assigned
 * the same value by their prefix schedules.
 *
 * What this means is that for each instance of the first statement
 * there is exactly one instance of the second statement that
 * is executed immediately after the instance of the first statement and
 * that, moreover, both depends on this statement instance and
 * should be brought as close as possible to this statement instance.
 * In other words, it is both possible to execute the two instances
 * together (according to the input schedule) and desirable to do so
 * (according to the validity and proximity schedule constraints).
 */
static isl_stat check_merge(__isl_take isl_map *map, void *user)
{
	struct ppcg_merge_leaves_data *data = user;
	isl_bool ok;

	ok = covers_src_and_dst(map, data->src, data->dst);
	if (ok >= 0 && ok)
		ok = isl_map_is_bijective(map);
	if (ok >= 0 && ok)
		ok = matches_prefix(map, data->src, data->dst);

	isl_map_free(map);

	if (ok < 0)
		return isl_stat_error;
	if (!ok)
		return isl_stat_ok;

	data->merge = 1;
	return isl_stat_error;
}

/* Merge the leaves at position "pos" and "pos + 1" in "leaves".
 */
static isl_stat merge_pair(int n, struct ppcg_grouping_leaf leaves[], int pos)
{
	int i;

	leaves[pos].domain = isl_union_set_union(leaves[pos].domain,
						leaves[pos + 1].domain);
	leaves[pos].list = isl_union_set_list_concat(leaves[pos].list,
						leaves[pos + 1].list);
	leaves[pos].prefix = isl_multi_union_pw_aff_union_add(
				leaves[pos].prefix, leaves[pos + 1].prefix);
	for (i = pos + 1; i + 1 < n; ++i)
		leaves[i] = leaves[i + 1];
	leaves[n - 1].domain = NULL;
	leaves[n - 1].list = NULL;
	leaves[n - 1].prefix = NULL;

	if (!leaves[pos].domain || !leaves[pos].list || !leaves[pos].prefix)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Merge pairs of consecutive leaves in "leaves" taking into account
 * the intersection of validity and proximity schedule constraints "dep".
 *
 * If a leaf has been merged with the next leaf, then the combination
 * is checked again for merging with the next leaf.
 * That is, if the leaves are A, B and C, then B may not have been
 * merged with C, but after merging A and B, it could still be useful
 * to merge the combination AB with C.
 *
 * Two leaves A and B are merged if there are instances of at least
 * one pair of statements, one statement in A and one B, such that
 * the validity and proximity schedule constraints between them
 * make them suitable for merging according to check_merge.
 *
 * Return the final number of leaves in the sequence, or -1 on error.
 */
static int merge_leaves(int n, struct ppcg_grouping_leaf leaves[],
	__isl_keep isl_union_map *dep)
{
	int i;
	struct ppcg_merge_leaves_data data;

	for (i = n - 1; i >= 0; --i) {
		isl_union_map *dep_i;
		isl_stat ok;

		if (i + 1 >= n)
			continue;

		dep_i = isl_union_map_copy(dep);
		dep_i = isl_union_map_intersect_domain(dep_i,
				isl_union_set_copy(leaves[i].domain));
		dep_i = isl_union_map_intersect_range(dep_i,
				isl_union_set_copy(leaves[i + 1].domain));
		data.merge = 0;
		data.src = &leaves[i];
		data.dst = &leaves[i + 1];
		ok = isl_union_map_foreach_map(dep_i, &check_merge, &data);
		isl_union_map_free(dep_i);
		if (ok < 0 && !data.merge)
			return -1;
		if (!data.merge)
			continue;
		if (merge_pair(n, leaves, i) < 0)
			return -1;
		--n;
		++i;
	}

	return n;
}

/* Construct a schedule with "domain" as domain, that executes
 * the elements of "list" in order (as a sequence).
 */
static __isl_give isl_schedule *schedule_from_domain_and_list(
	__isl_keep isl_union_set *domain, __isl_keep isl_union_set_list *list)
{
	isl_schedule *schedule;
	isl_schedule_node *node;

	schedule = isl_schedule_from_domain(isl_union_set_copy(domain));
	node = isl_schedule_get_root(schedule);
	isl_schedule_free(schedule);
	node = isl_schedule_node_child(node, 0);
	list = isl_union_set_list_copy(list);
	node = isl_schedule_node_insert_sequence(node, list);
	schedule = isl_schedule_node_get_schedule(node);
	isl_schedule_node_free(node);

	return schedule;
}

/* Construct a unique identifier for a group in "grouping".
 *
 * The name is of the form G_n, with n the first value starting at
 * grouping->group_id that does not result in an identifier
 * that is already in use in the domain of the original schedule
 * constraints.
 */
static isl_id *construct_group_id(struct ppcg_grouping *grouping,
	__isl_take isl_space *space)
{
	isl_ctx *ctx;
	isl_id *id;
	isl_bool empty;
	isl_union_set *domain;

	if (!space)
		return NULL;

	ctx = isl_space_get_ctx(space);
	domain = isl_schedule_constraints_get_domain(grouping->sc);

	do {
		char buffer[20];
		isl_id *id;
		isl_set *set;

		snprintf(buffer, sizeof(buffer), "G_%d", grouping->group_id);
		grouping->group_id++;
		id = isl_id_alloc(ctx, buffer, NULL);
		space = isl_space_set_tuple_id(space, isl_dim_set, id);
		set = isl_union_set_extract_set(domain, isl_space_copy(space));
		empty = isl_set_plain_is_empty(set);
		isl_set_free(set);
	} while (empty >= 0 && !empty);

	if (empty < 0)
		space = isl_space_free(space);

	id = isl_space_get_tuple_id(space, isl_dim_set);

	isl_space_free(space);
	isl_union_set_free(domain);

	return id;
}

/* Construct a contraction from "prefix" and "domain" for a new group
 * in "grouping".
 *
 * The values of the prefix schedule "prefix" are used as instances
 * of the new group.  The identifier of the group is constructed
 * in such a way that it does not conflict with those of earlier
 * groups nor with statements in the domain of the original
 * schedule constraints.
 * The isl_multi_union_pw_aff "prefix" then simply needs to be
 * converted to an isl_union_pw_multi_aff.  However, this is not
 * possible if "prefix" is zero-dimensional, so in this case,
 * a contraction is constructed from "domain" instead.
 */
static isl_union_pw_multi_aff *group_contraction_from_prefix_and_domain(
	struct ppcg_grouping *grouping,
	__isl_keep isl_multi_union_pw_aff *prefix,
	__isl_keep isl_union_set *domain)
{
	isl_id *id;
	isl_space *space;
	int dim;

	space = isl_multi_union_pw_aff_get_space(prefix);
	if (!space)
		return NULL;
	dim = isl_space_dim(space, isl_dim_set);
	id = construct_group_id(grouping, space);
	if (dim == 0) {
		isl_multi_val *mv;

		space = isl_multi_union_pw_aff_get_space(prefix);
		space = isl_space_set_tuple_id(space, isl_dim_set, id);
		mv = isl_multi_val_zero(space);
		domain = isl_union_set_copy(domain);
		return isl_union_pw_multi_aff_multi_val_on_domain(domain, mv);
	}
	prefix = isl_multi_union_pw_aff_copy(prefix);
	prefix = isl_multi_union_pw_aff_set_tuple_id(prefix, isl_dim_out, id);
	return isl_union_pw_multi_aff_from_multi_union_pw_aff(prefix);
}

/* Extend "grouping" with groups corresponding to merged
 * leaves in the list of potentially merged leaves "leaves".
 *
 * The "list" field of each element in "leaves" contains a list
 * of the instances sets of the original leaves that have been
 * merged into this element.  If at least two of the original leaves
 * have been merged into a given element, then add the corresponding
 * group to "grouping".
 * In particular, the domain is extended with the statement instances
 * of the merged leaves, the contraction is extended with a mapping
 * of these statement instances to instances of a new group and
 * the schedule is extended with a schedule that executes
 * the statement instances according to the order of the leaves
 * in which they appear.
 * Since the instances of the groups should already be scheduled apart
 * in the schedule into which this schedule will be plugged in,
 * the schedules of the individual groups are combined independently
 * of each other (as a set).
 */
static isl_stat add_groups(struct ppcg_grouping *grouping,
	int n, struct ppcg_grouping_leaf leaves[])
{
	int i;

	for (i = 0; i < n; ++i) {
		int n_leaf;
		isl_schedule *schedule;
		isl_union_set *domain;
		isl_union_pw_multi_aff *upma;

		n_leaf = isl_union_set_list_n_union_set(leaves[i].list);
		if (n_leaf < 0)
			return isl_stat_error;
		if (n_leaf <= 1)
			continue;
		schedule = schedule_from_domain_and_list(leaves[i].domain,
							leaves[i].list);
		upma = group_contraction_from_prefix_and_domain(grouping,
					leaves[i].prefix, leaves[i].domain);

		domain = isl_union_set_copy(leaves[i].domain);
		if (grouping->domain) {
			domain = isl_union_set_union(domain, grouping->domain);
			upma = isl_union_pw_multi_aff_union_add(upma,
						grouping->contraction);
			schedule = isl_schedule_set(schedule,
						grouping->schedule);
		}
		grouping->domain = domain;
		grouping->contraction = upma;
		grouping->schedule = schedule;

		if (!grouping->domain || !grouping->contraction ||
		    !grouping->schedule)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Look for any pairs of consecutive leaves among the "n" children of "node"
 * starting at "first" that should be merged together.
 * Store the results in "grouping".
 *
 * First make sure the intersection of validity and proximity
 * schedule constraints is available and extract the required
 * information from the "n" leaves.
 * Then try and merge consecutive leaves based on the validity
 * and proximity constraints.
 * If any pairs were successfully merged, then add groups
 * corresponding to the merged leaves to "grouping".
 */
static isl_stat group_subsequence(__isl_keep isl_schedule_node *node,
	int first, int n, struct ppcg_grouping *grouping)
{
	int n_merge;
	struct ppcg_grouping_leaf *leaves;

	if (ppcg_grouping_compute_dep(grouping) < 0)
		return isl_stat_error;

	leaves = extract_leaves(node, first, n);
	if (!leaves)
		return isl_stat_error;

	n_merge = merge_leaves(n, leaves, grouping->dep);
	if (n_merge >= 0 && n_merge < n &&
	    add_groups(grouping, n_merge, leaves) < 0)
		return isl_stat_error;

	ppcg_grouping_leaf_free(n, leaves);

	return isl_stat_ok;
}

/* If "node" is a sequence, then check if it has any consecutive
 * leaves that should be merged together and store the results
 * in "grouping".
 *
 * In particular, call group_subsequence on each consecutive
 * sequence of (filtered) leaves among the children of "node".
 */
static isl_bool detect_groups(__isl_keep isl_schedule_node *node, void *user)
{
	int i, n, first;
	struct ppcg_grouping *grouping = user;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
		return isl_bool_true;

	n = isl_schedule_node_n_children(node);
	if (n < 0)
		return isl_bool_error;

	first = -1;
	for (i = 0; i < n; ++i) {
		isl_schedule_node *child;
		enum isl_schedule_node_type type;

		child = isl_schedule_node_get_child(node, i);
		child = isl_schedule_node_child(child, 0);
		type = isl_schedule_node_get_type(child);
		isl_schedule_node_free(child);

		if (first >= 0 && type != isl_schedule_node_leaf) {
			if (group_subsequence(node, first, i - first,
						grouping) < 0)
				return isl_bool_error;
			first = -1;
		}
		if (first < 0 && type == isl_schedule_node_leaf)
			first = i;
	}
	if (first >= 0) {
		if (group_subsequence(node, first, n - first, grouping) < 0)
			return isl_bool_error;
	}

	return isl_bool_true;
}

/* Complete "grouping" to cover all statement instances in the domain
 * of grouping->sc.
 *
 * In particular, grouping->domain is set to the full set of statement
 * instances; group->contraction is extended with an identity
 * contraction on the additional instances and group->schedule
 * is extended with an independent schedule on those additional instances.
 * In the extension of group->contraction, the additional instances
 * are split into those belong to different statements and those
 * that belong to some of the same statements.  The first group
 * is replaced by its universe in order to simplify the contraction extension.
 */
static void complete_grouping(struct ppcg_grouping *grouping)
{
	isl_union_set *domain, *left, *overlap;
	isl_union_pw_multi_aff *upma;
	isl_schedule *schedule;

	domain = isl_schedule_constraints_get_domain(grouping->sc);
	left = isl_union_set_subtract(isl_union_set_copy(domain),
				    isl_union_set_copy(grouping->domain));
	schedule = isl_schedule_from_domain(isl_union_set_copy(left));
	schedule = isl_schedule_set(schedule, grouping->schedule);
	grouping->schedule = schedule;

	overlap = isl_union_set_universe(grouping->domain);
	grouping->domain = domain;
	overlap = isl_union_set_intersect(isl_union_set_copy(left), overlap);
	left = isl_union_set_subtract(left, isl_union_set_copy(overlap));
	left = isl_union_set_universe(left);
	left = isl_union_set_union(left, overlap);
	upma = isl_union_set_identity_union_pw_multi_aff(left);
	upma = isl_union_pw_multi_aff_union_add(upma, grouping->contraction);
	grouping->contraction = upma;
}

/* Compute a schedule on the domain of "sc" that respects the schedule
 * constraints in "sc".
 *
 * "schedule" is a known correct schedule that is used to combine
 * groups of statements if options->group_chains is set.
 * In particular, statements that are executed consecutively in a sequence
 * in this schedule and where all instances of the second depend on
 * the instance of the first that is executed in the same iteration
 * of outer band nodes are grouped together into a single statement.
 * The schedule constraints are then mapped to these groups of statements
 * and the resulting schedule is expanded again to refer to the original
 * statements.
 */
__isl_give isl_schedule *ppcg_compute_schedule(
	__isl_take isl_schedule_constraints *sc,
	__isl_keep isl_schedule *schedule, struct ppcg_options *options)
{
	struct ppcg_grouping grouping = { sc };
	isl_union_pw_multi_aff *contraction;
	isl_union_map *umap;
	isl_schedule *res, *expansion;

	if (!options->group_chains)
		return isl_schedule_constraints_compute_schedule(sc);

	grouping.group_id = 0;
	if (isl_schedule_foreach_schedule_node_top_down(schedule,
			&detect_groups, &grouping) < 0)
		goto error;
	if (!grouping.contraction) {
		ppcg_grouping_clear(&grouping);
		return isl_schedule_constraints_compute_schedule(sc);
	}
	complete_grouping(&grouping);
	contraction = isl_union_pw_multi_aff_copy(grouping.contraction);
	umap = isl_union_map_from_union_pw_multi_aff(contraction);

	sc = isl_schedule_constraints_apply(sc, umap);

	res = isl_schedule_constraints_compute_schedule(sc);

	contraction = isl_union_pw_multi_aff_copy(grouping.contraction);
	expansion = isl_schedule_copy(grouping.schedule);
	res = isl_schedule_expand(res, contraction, expansion);

	ppcg_grouping_clear(&grouping);
	return res;
error:
	ppcg_grouping_clear(&grouping);
	isl_schedule_constraints_free(sc);
	return NULL;
}