reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
/*
 * Copyright 2011      INRIA Saclay
 * Copyright 2012-2014 Ecole Normale Superieure
 * Copyright 2015-2016 Sven Verdoolaege
 * Copyright 2016      INRIA Paris
 * Copyright 2017      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 * 91893 Orsay, France
 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
 * CS 42112, 75589 Paris Cedex 12, France
 */

#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_space_private.h>
#include <isl_aff_private.h>
#include <isl/hash.h>
#include <isl/id.h>
#include <isl/constraint.h>
#include <isl/schedule.h>
#include <isl_schedule_constraints.h>
#include <isl/schedule_node.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl/set.h>
#include <isl_union_set_private.h>
#include <isl_seq.h>
#include <isl_tab.h>
#include <isl_dim_map.h>
#include <isl/map_to_basic_set.h>
#include <isl_sort.h>
#include <isl_options_private.h>
#include <isl_tarjan.h>
#include <isl_morph.h>
#include <isl/ilp.h>
#include <isl_val_private.h>

/*
 * The scheduling algorithm implemented in this file was inspired by
 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
 * Parallelization and Locality Optimization in the Polyhedral Model".
 *
 * For a detailed description of the variant implemented in isl,
 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
 */


/* Internal information about a node that is used during the construction
 * of a schedule.
 * space represents the original space in which the domain lives;
 *	that is, the space is not affected by compression
 * sched is a matrix representation of the schedule being constructed
 *	for this node; if compressed is set, then this schedule is
 *	defined over the compressed domain space
 * sched_map is an isl_map representation of the same (partial) schedule
 *	sched_map may be NULL; if compressed is set, then this map
 *	is defined over the uncompressed domain space
 * rank is the number of linearly independent rows in the linear part
 *	of sched
 * the rows of "vmap" represent a change of basis for the node
 *	variables; the first rank rows span the linear part of
 *	the schedule rows; the remaining rows are linearly independent
 * the rows of "indep" represent linear combinations of the schedule
 * coefficients that are non-zero when the schedule coefficients are
 * linearly independent of previously computed schedule rows.
 * start is the first variable in the LP problem in the sequences that
 *	represents the schedule coefficients of this node
 * nvar is the dimension of the (compressed) domain
 * nparam is the number of parameters or 0 if we are not constructing
 *	a parametric schedule
 *
 * If compressed is set, then hull represents the constraints
 * that were used to derive the compression, while compress and
 * decompress map the original space to the compressed space and
 * vice versa.
 *
 * scc is the index of SCC (or WCC) this node belongs to
 *
 * "cluster" is only used inside extract_clusters and identifies
 * the cluster of SCCs that the node belongs to.
 *
 * coincident contains a boolean for each of the rows of the schedule,
 * indicating whether the corresponding scheduling dimension satisfies
 * the coincidence constraints in the sense that the corresponding
 * dependence distances are zero.
 *
 * If the schedule_treat_coalescing option is set, then
 * "sizes" contains the sizes of the (compressed) instance set
 * in each direction.  If there is no fixed size in a given direction,
 * then the corresponding size value is set to infinity.
 * If the schedule_treat_coalescing option or the schedule_max_coefficient
 * option is set, then "max" contains the maximal values for
 * schedule coefficients of the (compressed) variables.  If no bound
 * needs to be imposed on a particular variable, then the corresponding
 * value is negative.
 * If not NULL, then "bounds" contains a non-parametric set
 * in the compressed space that is bounded by the size in each direction.
 */
struct isl_sched_node {
	isl_space *space;
	int	compressed;
	isl_set	*hull;
	isl_multi_aff *compress;
	isl_multi_aff *decompress;
	isl_mat *sched;
	isl_map *sched_map;
	int	 rank;
	isl_mat *indep;
	isl_mat *vmap;
	int	 start;
	int	 nvar;
	int	 nparam;

	int	 scc;
	int	 cluster;

	int	*coincident;

	isl_multi_val *sizes;
	isl_basic_set *bounds;
	isl_vec *max;
};

static int node_has_tuples(const void *entry, const void *val)
{
	struct isl_sched_node *node = (struct isl_sched_node *)entry;
	isl_space *space = (isl_space *) val;

	return isl_space_has_equal_tuples(node->space, space);
}

static int node_scc_exactly(struct isl_sched_node *node, int scc)
{
	return node->scc == scc;
}

static int node_scc_at_most(struct isl_sched_node *node, int scc)
{
	return node->scc <= scc;
}

static int node_scc_at_least(struct isl_sched_node *node, int scc)
{
	return node->scc >= scc;
}

/* An edge in the dependence graph.  An edge may be used to
 * ensure validity of the generated schedule, to minimize the dependence
 * distance or both
 *
 * map is the dependence relation, with i -> j in the map if j depends on i
 * tagged_condition and tagged_validity contain the union of all tagged
 *	condition or conditional validity dependence relations that
 *	specialize the dependence relation "map"; that is,
 *	if (i -> a) -> (j -> b) is an element of "tagged_condition"
 *	or "tagged_validity", then i -> j is an element of "map".
 *	If these fields are NULL, then they represent the empty relation.
 * src is the source node
 * dst is the sink node
 *
 * types is a bit vector containing the types of this edge.
 * validity is set if the edge is used to ensure correctness
 * coincidence is used to enforce zero dependence distances
 * proximity is set if the edge is used to minimize dependence distances
 * condition is set if the edge represents a condition
 *	for a conditional validity schedule constraint
 * local can only be set for condition edges and indicates that
 *	the dependence distance over the edge should be zero
 * conditional_validity is set if the edge is used to conditionally
 *	ensure correctness
 *
 * For validity edges, start and end mark the sequence of inequality
 * constraints in the LP problem that encode the validity constraint
 * corresponding to this edge.
 *
 * During clustering, an edge may be marked "no_merge" if it should
 * not be used to merge clusters.
 * The weight is also only used during clustering and it is
 * an indication of how many schedule dimensions on either side
 * of the schedule constraints can be aligned.
 * If the weight is negative, then this means that this edge was postponed
 * by has_bounded_distances or any_no_merge.  The original weight can
 * be retrieved by adding 1 + graph->max_weight, with "graph"
 * the graph containing this edge.
 */
struct isl_sched_edge {
	isl_map *map;
	isl_union_map *tagged_condition;
	isl_union_map *tagged_validity;

	struct isl_sched_node *src;
	struct isl_sched_node *dst;

	unsigned types;

	int start;
	int end;

	int no_merge;
	int weight;
};

/* Is "edge" marked as being of type "type"?
 */
static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
{
	return ISL_FL_ISSET(edge->types, 1 << type);
}

/* Mark "edge" as being of type "type".
 */
static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
{
	ISL_FL_SET(edge->types, 1 << type);
}

/* No longer mark "edge" as being of type "type"?
 */
static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
{
	ISL_FL_CLR(edge->types, 1 << type);
}

/* Is "edge" marked as a validity edge?
 */
static int is_validity(struct isl_sched_edge *edge)
{
	return is_type(edge, isl_edge_validity);
}

/* Mark "edge" as a validity edge.
 */
static void set_validity(struct isl_sched_edge *edge)
{
	set_type(edge, isl_edge_validity);
}

/* Is "edge" marked as a proximity edge?
 */
static int is_proximity(struct isl_sched_edge *edge)
{
	return is_type(edge, isl_edge_proximity);
}

/* Is "edge" marked as a local edge?
 */
static int is_local(struct isl_sched_edge *edge)
{
	return is_type(edge, isl_edge_local);
}

/* Mark "edge" as a local edge.
 */
static void set_local(struct isl_sched_edge *edge)
{
	set_type(edge, isl_edge_local);
}

/* No longer mark "edge" as a local edge.
 */
static void clear_local(struct isl_sched_edge *edge)
{
	clear_type(edge, isl_edge_local);
}

/* Is "edge" marked as a coincidence edge?
 */
static int is_coincidence(struct isl_sched_edge *edge)
{
	return is_type(edge, isl_edge_coincidence);
}

/* Is "edge" marked as a condition edge?
 */
static int is_condition(struct isl_sched_edge *edge)
{
	return is_type(edge, isl_edge_condition);
}

/* Is "edge" marked as a conditional validity edge?
 */
static int is_conditional_validity(struct isl_sched_edge *edge)
{
	return is_type(edge, isl_edge_conditional_validity);
}

/* Is "edge" of a type that can appear multiple times between
 * the same pair of nodes?
 *
 * Condition edges and conditional validity edges may have tagged
 * dependence relations, in which case an edge is added for each
 * pair of tags.
 */
static int is_multi_edge_type(struct isl_sched_edge *edge)
{
	return is_condition(edge) || is_conditional_validity(edge);
}

/* Internal information about the dependence graph used during
 * the construction of the schedule.
 *
 * intra_hmap is a cache, mapping dependence relations to their dual,
 *	for dependences from a node to itself, possibly without
 *	coefficients for the parameters
 * intra_hmap_param is a cache, mapping dependence relations to their dual,
 *	for dependences from a node to itself, including coefficients
 *	for the parameters
 * inter_hmap is a cache, mapping dependence relations to their dual,
 *	for dependences between distinct nodes
 * if compression is involved then the key for these maps
 * is the original, uncompressed dependence relation, while
 * the value is the dual of the compressed dependence relation.
 *
 * n is the number of nodes
 * node is the list of nodes
 * maxvar is the maximal number of variables over all nodes
 * max_row is the allocated number of rows in the schedule
 * n_row is the current (maximal) number of linearly independent
 *	rows in the node schedules
 * n_total_row is the current number of rows in the node schedules
 * band_start is the starting row in the node schedules of the current band
 * root is set to the original dependence graph from which this graph
 *	is derived through splitting.  If this graph is not the result of
 *	splitting, then the root field points to the graph itself.
 *
 * sorted contains a list of node indices sorted according to the
 *	SCC to which a node belongs
 *
 * n_edge is the number of edges
 * edge is the list of edges
 * max_edge contains the maximal number of edges of each type;
 *	in particular, it contains the number of edges in the inital graph.
 * edge_table contains pointers into the edge array, hashed on the source
 *	and sink spaces; there is one such table for each type;
 *	a given edge may be referenced from more than one table
 *	if the corresponding relation appears in more than one of the
 *	sets of dependences; however, for each type there is only
 *	a single edge between a given pair of source and sink space
 *	in the entire graph
 *
 * node_table contains pointers into the node array, hashed on the space tuples
 *
 * region contains a list of variable sequences that should be non-trivial
 *
 * lp contains the (I)LP problem used to obtain new schedule rows
 *
 * src_scc and dst_scc are the source and sink SCCs of an edge with
 *	conflicting constraints
 *
 * scc represents the number of components
 * weak is set if the components are weakly connected
 *
 * max_weight is used during clustering and represents the maximal
 * weight of the relevant proximity edges.
 */
struct isl_sched_graph {
	isl_map_to_basic_set *intra_hmap;
	isl_map_to_basic_set *intra_hmap_param;
	isl_map_to_basic_set *inter_hmap;

	struct isl_sched_node *node;
	int n;
	int maxvar;
	int max_row;
	int n_row;

	int *sorted;

	int n_total_row;
	int band_start;

	struct isl_sched_graph *root;

	struct isl_sched_edge *edge;
	int n_edge;
	int max_edge[isl_edge_last + 1];
	struct isl_hash_table *edge_table[isl_edge_last + 1];

	struct isl_hash_table *node_table;
	struct isl_trivial_region *region;

	isl_basic_set *lp;

	int src_scc;
	int dst_scc;

	int scc;
	int weak;

	int max_weight;
};

/* Initialize node_table based on the list of nodes.
 */
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	int i;

	graph->node_table = isl_hash_table_alloc(ctx, graph->n);
	if (!graph->node_table)
		return -1;

	for (i = 0; i < graph->n; ++i) {
		struct isl_hash_table_entry *entry;
		uint32_t hash;

		hash = isl_space_get_tuple_hash(graph->node[i].space);
		entry = isl_hash_table_find(ctx, graph->node_table, hash,
					    &node_has_tuples,
					    graph->node[i].space, 1);
		if (!entry)
			return -1;
		entry->data = &graph->node[i];
	}

	return 0;
}

/* Return a pointer to the node that lives within the given space,
 * an invalid node if there is no such node, or NULL in case of error.
 */
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
	struct isl_sched_graph *graph, __isl_keep isl_space *space)
{
	struct isl_hash_table_entry *entry;
	uint32_t hash;

	if (!space)
		return NULL;

	hash = isl_space_get_tuple_hash(space);
	entry = isl_hash_table_find(ctx, graph->node_table, hash,
				    &node_has_tuples, space, 0);

	return entry ? entry->data : graph->node + graph->n;
}

/* Is "node" a node in "graph"?
 */
static int is_node(struct isl_sched_graph *graph,
	struct isl_sched_node *node)
{
	return node && node >= &graph->node[0] && node < &graph->node[graph->n];
}

static int edge_has_src_and_dst(const void *entry, const void *val)
{
	const struct isl_sched_edge *edge = entry;
	const struct isl_sched_edge *temp = val;

	return edge->src == temp->src && edge->dst == temp->dst;
}

/* Add the given edge to graph->edge_table[type].
 */
static isl_stat graph_edge_table_add(isl_ctx *ctx,
	struct isl_sched_graph *graph, enum isl_edge_type type,
	struct isl_sched_edge *edge)
{
	struct isl_hash_table_entry *entry;
	uint32_t hash;

	hash = isl_hash_init();
	hash = isl_hash_builtin(hash, edge->src);
	hash = isl_hash_builtin(hash, edge->dst);
	entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
				    &edge_has_src_and_dst, edge, 1);
	if (!entry)
		return isl_stat_error;
	entry->data = edge;

	return isl_stat_ok;
}

/* Add "edge" to all relevant edge tables.
 * That is, for every type of the edge, add it to the corresponding table.
 */
static isl_stat graph_edge_tables_add(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_sched_edge *edge)
{
	enum isl_edge_type t;

	for (t = isl_edge_first; t <= isl_edge_last; ++t) {
		if (!is_type(edge, t))
			continue;
		if (graph_edge_table_add(ctx, graph, t, edge) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Allocate the edge_tables based on the maximal number of edges of
 * each type.
 */
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	int i;

	for (i = 0; i <= isl_edge_last; ++i) {
		graph->edge_table[i] = isl_hash_table_alloc(ctx,
							    graph->max_edge[i]);
		if (!graph->edge_table[i])
			return -1;
	}

	return 0;
}

/* If graph->edge_table[type] contains an edge from the given source
 * to the given destination, then return the hash table entry of this edge.
 * Otherwise, return NULL.
 */
static struct isl_hash_table_entry *graph_find_edge_entry(
	struct isl_sched_graph *graph,
	enum isl_edge_type type,
	struct isl_sched_node *src, struct isl_sched_node *dst)
{
	isl_ctx *ctx = isl_space_get_ctx(src->space);
	uint32_t hash;
	struct isl_sched_edge temp = { .src = src, .dst = dst };

	hash = isl_hash_init();
	hash = isl_hash_builtin(hash, temp.src);
	hash = isl_hash_builtin(hash, temp.dst);
	return isl_hash_table_find(ctx, graph->edge_table[type], hash,
				    &edge_has_src_and_dst, &temp, 0);
}


/* If graph->edge_table[type] contains an edge from the given source
 * to the given destination, then return this edge.
 * Otherwise, return NULL.
 */
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
	enum isl_edge_type type,
	struct isl_sched_node *src, struct isl_sched_node *dst)
{
	struct isl_hash_table_entry *entry;

	entry = graph_find_edge_entry(graph, type, src, dst);
	if (!entry)
		return NULL;

	return entry->data;
}

/* Check whether the dependence graph has an edge of the given type
 * between the given two nodes.
 */
static isl_bool graph_has_edge(struct isl_sched_graph *graph,
	enum isl_edge_type type,
	struct isl_sched_node *src, struct isl_sched_node *dst)
{
	struct isl_sched_edge *edge;
	isl_bool empty;

	edge = graph_find_edge(graph, type, src, dst);
	if (!edge)
		return isl_bool_false;

	empty = isl_map_plain_is_empty(edge->map);
	if (empty < 0)
		return isl_bool_error;

	return !empty;
}

/* Look for any edge with the same src, dst and map fields as "model".
 *
 * Return the matching edge if one can be found.
 * Return "model" if no matching edge is found.
 * Return NULL on error.
 */
static struct isl_sched_edge *graph_find_matching_edge(
	struct isl_sched_graph *graph, struct isl_sched_edge *model)
{
	enum isl_edge_type i;
	struct isl_sched_edge *edge;

	for (i = isl_edge_first; i <= isl_edge_last; ++i) {
		int is_equal;

		edge = graph_find_edge(graph, i, model->src, model->dst);
		if (!edge)
			continue;
		is_equal = isl_map_plain_is_equal(model->map, edge->map);
		if (is_equal < 0)
			return NULL;
		if (is_equal)
			return edge;
	}

	return model;
}

/* Remove the given edge from all the edge_tables that refer to it.
 */
static void graph_remove_edge(struct isl_sched_graph *graph,
	struct isl_sched_edge *edge)
{
	isl_ctx *ctx = isl_map_get_ctx(edge->map);
	enum isl_edge_type i;

	for (i = isl_edge_first; i <= isl_edge_last; ++i) {
		struct isl_hash_table_entry *entry;

		entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
		if (!entry)
			continue;
		if (entry->data != edge)
			continue;
		isl_hash_table_remove(ctx, graph->edge_table[i], entry);
	}
}

/* Check whether the dependence graph has any edge
 * between the given two nodes.
 */
static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
	struct isl_sched_node *src, struct isl_sched_node *dst)
{
	enum isl_edge_type i;
	isl_bool r;

	for (i = isl_edge_first; i <= isl_edge_last; ++i) {
		r = graph_has_edge(graph, i, src, dst);
		if (r < 0 || r)
			return r;
	}

	return r;
}

/* Check whether the dependence graph has a validity edge
 * between the given two nodes.
 *
 * Conditional validity edges are essentially validity edges that
 * can be ignored if the corresponding condition edges are iteration private.
 * Here, we are only checking for the presence of validity
 * edges, so we need to consider the conditional validity edges too.
 * In particular, this function is used during the detection
 * of strongly connected components and we cannot ignore
 * conditional validity edges during this detection.
 */
static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
	struct isl_sched_node *src, struct isl_sched_node *dst)
{
	isl_bool r;

	r = graph_has_edge(graph, isl_edge_validity, src, dst);
	if (r < 0 || r)
		return r;

	return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
}

/* Perform all the required memory allocations for a schedule graph "graph"
 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
 * fields.
 */
static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
	int n_node, int n_edge)
{
	int i;

	graph->n = n_node;
	graph->n_edge = n_edge;
	graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
	graph->sorted = isl_calloc_array(ctx, int, graph->n);
	graph->region = isl_alloc_array(ctx,
					struct isl_trivial_region, graph->n);
	graph->edge = isl_calloc_array(ctx,
					struct isl_sched_edge, graph->n_edge);

	graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
	graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
	graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);

	if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
	    !graph->sorted)
		return isl_stat_error;

	for(i = 0; i < graph->n; ++i)
		graph->sorted[i] = i;

	return isl_stat_ok;
}

/* Free the memory associated to node "node" in "graph".
 * The "coincident" field is shared by nodes in a graph and its subgraph.
 * It therefore only needs to be freed for the original dependence graph,
 * i.e., one that is not the result of splitting.
 */
static void clear_node(struct isl_sched_graph *graph,
	struct isl_sched_node *node)
{
	isl_space_free(node->space);
	isl_set_free(node->hull);
	isl_multi_aff_free(node->compress);
	isl_multi_aff_free(node->decompress);
	isl_mat_free(node->sched);
	isl_map_free(node->sched_map);
	isl_mat_free(node->indep);
	isl_mat_free(node->vmap);
	if (graph->root == graph)
		free(node->coincident);
	isl_multi_val_free(node->sizes);
	isl_basic_set_free(node->bounds);
	isl_vec_free(node->max);
}

static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	int i;

	isl_map_to_basic_set_free(graph->intra_hmap);
	isl_map_to_basic_set_free(graph->intra_hmap_param);
	isl_map_to_basic_set_free(graph->inter_hmap);

	if (graph->node)
		for (i = 0; i < graph->n; ++i)
			clear_node(graph, &graph->node[i]);
	free(graph->node);
	free(graph->sorted);
	if (graph->edge)
		for (i = 0; i < graph->n_edge; ++i) {
			isl_map_free(graph->edge[i].map);
			isl_union_map_free(graph->edge[i].tagged_condition);
			isl_union_map_free(graph->edge[i].tagged_validity);
		}
	free(graph->edge);
	free(graph->region);
	for (i = 0; i <= isl_edge_last; ++i)
		isl_hash_table_free(ctx, graph->edge_table[i]);
	isl_hash_table_free(ctx, graph->node_table);
	isl_basic_set_free(graph->lp);
}

/* For each "set" on which this function is called, increment
 * graph->n by one and update graph->maxvar.
 */
static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
{
	struct isl_sched_graph *graph = user;
	int nvar = isl_set_dim(set, isl_dim_set);

	graph->n++;
	if (nvar > graph->maxvar)
		graph->maxvar = nvar;

	isl_set_free(set);

	return isl_stat_ok;
}

/* Compute the number of rows that should be allocated for the schedule.
 * In particular, we need one row for each variable or one row
 * for each basic map in the dependences.
 * Note that it is practically impossible to exhaust both
 * the number of dependences and the number of variables.
 */
static isl_stat compute_max_row(struct isl_sched_graph *graph,
	__isl_keep isl_schedule_constraints *sc)
{
	int n_edge;
	isl_stat r;
	isl_union_set *domain;

	graph->n = 0;
	graph->maxvar = 0;
	domain = isl_schedule_constraints_get_domain(sc);
	r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
	isl_union_set_free(domain);
	if (r < 0)
		return isl_stat_error;
	n_edge = isl_schedule_constraints_n_basic_map(sc);
	if (n_edge < 0)
		return isl_stat_error;
	graph->max_row = n_edge + graph->maxvar;

	return isl_stat_ok;
}

/* Does "bset" have any defining equalities for its set variables?
 */
static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
{
	int i, n;

	if (!bset)
		return isl_bool_error;

	n = isl_basic_set_dim(bset, isl_dim_set);
	for (i = 0; i < n; ++i) {
		isl_bool has;

		has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
							NULL);
		if (has < 0 || has)
			return has;
	}

	return isl_bool_false;
}

/* Set the entries of node->max to the value of the schedule_max_coefficient
 * option, if set.
 */
static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
{
	int max;

	max = isl_options_get_schedule_max_coefficient(ctx);
	if (max == -1)
		return isl_stat_ok;

	node->max = isl_vec_alloc(ctx, node->nvar);
	node->max = isl_vec_set_si(node->max, max);
	if (!node->max)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Set the entries of node->max to the minimum of the schedule_max_coefficient
 * option (if set) and half of the minimum of the sizes in the other
 * dimensions.  Round up when computing the half such that
 * if the minimum of the sizes is one, half of the size is taken to be one
 * rather than zero.
 * If the global minimum is unbounded (i.e., if both
 * the schedule_max_coefficient is not set and the sizes in the other
 * dimensions are unbounded), then store a negative value.
 * If the schedule coefficient is close to the size of the instance set
 * in another dimension, then the schedule may represent a loop
 * coalescing transformation (especially if the coefficient
 * in that other dimension is one).  Forcing the coefficient to be
 * smaller than or equal to half the minimal size should avoid this
 * situation.
 */
static isl_stat compute_max_coefficient(isl_ctx *ctx,
	struct isl_sched_node *node)
{
	int max;
	int i, j;
	isl_vec *v;

	max = isl_options_get_schedule_max_coefficient(ctx);
	v = isl_vec_alloc(ctx, node->nvar);
	if (!v)
		return isl_stat_error;

	for (i = 0; i < node->nvar; ++i) {
		isl_int_set_si(v->el[i], max);
		isl_int_mul_si(v->el[i], v->el[i], 2);
	}

	for (i = 0; i < node->nvar; ++i) {
		isl_val *size;

		size = isl_multi_val_get_val(node->sizes, i);
		if (!size)
			goto error;
		if (!isl_val_is_int(size)) {
			isl_val_free(size);
			continue;
		}
		for (j = 0; j < node->nvar; ++j) {
			if (j == i)
				continue;
			if (isl_int_is_neg(v->el[j]) ||
			    isl_int_gt(v->el[j], size->n))
				isl_int_set(v->el[j], size->n);
		}
		isl_val_free(size);
	}

	for (i = 0; i < node->nvar; ++i)
		isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);

	node->max = v;
	return isl_stat_ok;
error:
	isl_vec_free(v);
	return isl_stat_error;
}

/* Compute and return the size of "set" in dimension "dim".
 * The size is taken to be the difference in values for that variable
 * for fixed values of the other variables.
 * This assumes that "set" is convex.
 * In particular, the variable is first isolated from the other variables
 * in the range of a map
 *
 *	[i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
 *
 * and then duplicated
 *
 *	[i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
 *
 * The shared variables are then projected out and the maximal value
 * of i_dim' - i_dim is computed.
 */
static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
{
	isl_map *map;
	isl_local_space *ls;
	isl_aff *obj;
	isl_val *v;

	map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
	map = isl_map_project_out(map, isl_dim_in, dim, 1);
	map = isl_map_range_product(map, isl_map_copy(map));
	map = isl_set_unwrap(isl_map_range(map));
	set = isl_map_deltas(map);
	ls = isl_local_space_from_space(isl_set_get_space(set));
	obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
	v = isl_set_max_val(set, obj);
	isl_aff_free(obj);
	isl_set_free(set);

	return v;
}

/* Compute the size of the instance set "set" of "node", after compression,
 * as well as bounds on the corresponding coefficients, if needed.
 *
 * The sizes are needed when the schedule_treat_coalescing option is set.
 * The bounds are needed when the schedule_treat_coalescing option or
 * the schedule_max_coefficient option is set.
 *
 * If the schedule_treat_coalescing option is not set, then at most
 * the bounds need to be set and this is done in set_max_coefficient.
 * Otherwise, compress the domain if needed, compute the size
 * in each direction and store the results in node->size.
 * If the domain is not convex, then the sizes are computed
 * on a convex superset in order to avoid picking up sizes
 * that are valid for the individual disjuncts, but not for
 * the domain as a whole.
 * Finally, set the bounds on the coefficients based on the sizes
 * and the schedule_max_coefficient option in compute_max_coefficient.
 */
static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
	__isl_take isl_set *set)
{
	int j, n;
	isl_multi_val *mv;

	if (!isl_options_get_schedule_treat_coalescing(ctx)) {
		isl_set_free(set);
		return set_max_coefficient(ctx, node);
	}

	if (node->compressed)
		set = isl_set_preimage_multi_aff(set,
					isl_multi_aff_copy(node->decompress));
	set = isl_set_from_basic_set(isl_set_simple_hull(set));
	mv = isl_multi_val_zero(isl_set_get_space(set));
	n = isl_set_dim(set, isl_dim_set);
	for (j = 0; j < n; ++j) {
		isl_val *v;

		v = compute_size(isl_set_copy(set), j);
		mv = isl_multi_val_set_val(mv, j, v);
	}
	node->sizes = mv;
	isl_set_free(set);
	if (!node->sizes)
		return isl_stat_error;
	return compute_max_coefficient(ctx, node);
}

/* Add a new node to the graph representing the given instance set.
 * "nvar" is the (possibly compressed) number of variables and
 * may be smaller than then number of set variables in "set"
 * if "compressed" is set.
 * If "compressed" is set, then "hull" represents the constraints
 * that were used to derive the compression, while "compress" and
 * "decompress" map the original space to the compressed space and
 * vice versa.
 * If "compressed" is not set, then "hull", "compress" and "decompress"
 * should be NULL.
 *
 * Compute the size of the instance set and bounds on the coefficients,
 * if needed.
 */
static isl_stat add_node(struct isl_sched_graph *graph,
	__isl_take isl_set *set, int nvar, int compressed,
	__isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
	__isl_take isl_multi_aff *decompress)
{
	int nparam;
	isl_ctx *ctx;
	isl_mat *sched;
	isl_space *space;
	int *coincident;
	struct isl_sched_node *node;

	if (!set)
		return isl_stat_error;

	ctx = isl_set_get_ctx(set);
	nparam = isl_set_dim(set, isl_dim_param);
	if (!ctx->opt->schedule_parametric)
		nparam = 0;
	sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
	node = &graph->node[graph->n];
	graph->n++;
	space = isl_set_get_space(set);
	node->space = space;
	node->nvar = nvar;
	node->nparam = nparam;
	node->sched = sched;
	node->sched_map = NULL;
	coincident = isl_calloc_array(ctx, int, graph->max_row);
	node->coincident = coincident;
	node->compressed = compressed;
	node->hull = hull;
	node->compress = compress;
	node->decompress = decompress;
	if (compute_sizes_and_max(ctx, node, set) < 0)
		return isl_stat_error;

	if (!space || !sched || (graph->max_row && !coincident))
		return isl_stat_error;
	if (compressed && (!hull || !compress || !decompress))
		return isl_stat_error;

	return isl_stat_ok;
}

/* Construct an identifier for node "node", which will represent "set".
 * The name of the identifier is either "compressed" or
 * "compressed_<name>", with <name> the name of the space of "set".
 * The user pointer of the identifier points to "node".
 */
static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
	struct isl_sched_node *node)
{
	isl_bool has_name;
	isl_ctx *ctx;
	isl_id *id;
	isl_printer *p;
	const char *name;
	char *id_name;

	has_name = isl_set_has_tuple_name(set);
	if (has_name < 0)
		return NULL;

	ctx = isl_set_get_ctx(set);
	if (!has_name)
		return isl_id_alloc(ctx, "compressed", node);

	p = isl_printer_to_str(ctx);
	name = isl_set_get_tuple_name(set);
	p = isl_printer_print_str(p, "compressed_");
	p = isl_printer_print_str(p, name);
	id_name = isl_printer_get_str(p);
	isl_printer_free(p);

	id = isl_id_alloc(ctx, id_name, node);
	free(id_name);

	return id;
}

/* Add a new node to the graph representing the given set.
 *
 * If any of the set variables is defined by an equality, then
 * we perform variable compression such that we can perform
 * the scheduling on the compressed domain.
 * In this case, an identifier is used that references the new node
 * such that each compressed space is unique and
 * such that the node can be recovered from the compressed space.
 */
static isl_stat extract_node(__isl_take isl_set *set, void *user)
{
	int nvar;
	isl_bool has_equality;
	isl_id *id;
	isl_basic_set *hull;
	isl_set *hull_set;
	isl_morph *morph;
	isl_multi_aff *compress, *decompress;
	struct isl_sched_graph *graph = user;

	hull = isl_set_affine_hull(isl_set_copy(set));
	hull = isl_basic_set_remove_divs(hull);
	nvar = isl_set_dim(set, isl_dim_set);
	has_equality = has_any_defining_equality(hull);

	if (has_equality < 0)
		goto error;
	if (!has_equality) {
		isl_basic_set_free(hull);
		return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
	}

	id = construct_compressed_id(set, &graph->node[graph->n]);
	morph = isl_basic_set_variable_compression_with_id(hull,
							    isl_dim_set, id);
	isl_id_free(id);
	nvar = isl_morph_ran_dim(morph, isl_dim_set);
	compress = isl_morph_get_var_multi_aff(morph);
	morph = isl_morph_inverse(morph);
	decompress = isl_morph_get_var_multi_aff(morph);
	isl_morph_free(morph);

	hull_set = isl_set_from_basic_set(hull);
	return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
error:
	isl_basic_set_free(hull);
	isl_set_free(set);
	return isl_stat_error;
}

struct isl_extract_edge_data {
	enum isl_edge_type type;
	struct isl_sched_graph *graph;
};

/* Merge edge2 into edge1, freeing the contents of edge2.
 * Return 0 on success and -1 on failure.
 *
 * edge1 and edge2 are assumed to have the same value for the map field.
 */
static int merge_edge(struct isl_sched_edge *edge1,
	struct isl_sched_edge *edge2)
{
	edge1->types |= edge2->types;
	isl_map_free(edge2->map);

	if (is_condition(edge2)) {
		if (!edge1->tagged_condition)
			edge1->tagged_condition = edge2->tagged_condition;
		else
			edge1->tagged_condition =
				isl_union_map_union(edge1->tagged_condition,
						    edge2->tagged_condition);
	}

	if (is_conditional_validity(edge2)) {
		if (!edge1->tagged_validity)
			edge1->tagged_validity = edge2->tagged_validity;
		else
			edge1->tagged_validity =
				isl_union_map_union(edge1->tagged_validity,
						    edge2->tagged_validity);
	}

	if (is_condition(edge2) && !edge1->tagged_condition)
		return -1;
	if (is_conditional_validity(edge2) && !edge1->tagged_validity)
		return -1;

	return 0;
}

/* Insert dummy tags in domain and range of "map".
 *
 * In particular, if "map" is of the form
 *
 *	A -> B
 *
 * then return
 *
 *	[A -> dummy_tag] -> [B -> dummy_tag]
 *
 * where the dummy_tags are identical and equal to any dummy tags
 * introduced by any other call to this function.
 */
static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
{
	static char dummy;
	isl_ctx *ctx;
	isl_id *id;
	isl_space *space;
	isl_set *domain, *range;

	ctx = isl_map_get_ctx(map);

	id = isl_id_alloc(ctx, NULL, &dummy);
	space = isl_space_params(isl_map_get_space(map));
	space = isl_space_set_from_params(space);
	space = isl_space_set_tuple_id(space, isl_dim_set, id);
	space = isl_space_map_from_set(space);

	domain = isl_map_wrap(map);
	range = isl_map_wrap(isl_map_universe(space));
	map = isl_map_from_domain_and_range(domain, range);
	map = isl_map_zip(map);

	return map;
}

/* Given that at least one of "src" or "dst" is compressed, return
 * a map between the spaces of these nodes restricted to the affine
 * hull that was used in the compression.
 */
static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
	struct isl_sched_node *dst)
{
	isl_set *dom, *ran;

	if (src->compressed)
		dom = isl_set_copy(src->hull);
	else
		dom = isl_set_universe(isl_space_copy(src->space));
	if (dst->compressed)
		ran = isl_set_copy(dst->hull);
	else
		ran = isl_set_universe(isl_space_copy(dst->space));

	return isl_map_from_domain_and_range(dom, ran);
}

/* Intersect the domains of the nested relations in domain and range
 * of "tagged" with "map".
 */
static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
	__isl_keep isl_map *map)
{
	isl_set *set;

	tagged = isl_map_zip(tagged);
	set = isl_map_wrap(isl_map_copy(map));
	tagged = isl_map_intersect_domain(tagged, set);
	tagged = isl_map_zip(tagged);
	return tagged;
}

/* Return a pointer to the node that lives in the domain space of "map",
 * an invalid node if there is no such node, or NULL in case of error.
 */
static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
	struct isl_sched_graph *graph, __isl_keep isl_map *map)
{
	struct isl_sched_node *node;
	isl_space *space;

	space = isl_space_domain(isl_map_get_space(map));
	node = graph_find_node(ctx, graph, space);
	isl_space_free(space);

	return node;
}

/* Return a pointer to the node that lives in the range space of "map",
 * an invalid node if there is no such node, or NULL in case of error.
 */
static struct isl_sched_node *find_range_node(isl_ctx *ctx,
	struct isl_sched_graph *graph, __isl_keep isl_map *map)
{
	struct isl_sched_node *node;
	isl_space *space;

	space = isl_space_range(isl_map_get_space(map));
	node = graph_find_node(ctx, graph, space);
	isl_space_free(space);

	return node;
}

/* Refrain from adding a new edge based on "map".
 * Instead, just free the map.
 * "tagged" is either a copy of "map" with additional tags or NULL.
 */
static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
{
	isl_map_free(map);
	isl_map_free(tagged);

	return isl_stat_ok;
}

/* Add a new edge to the graph based on the given map
 * and add it to data->graph->edge_table[data->type].
 * If a dependence relation of a given type happens to be identical
 * to one of the dependence relations of a type that was added before,
 * then we don't create a new edge, but instead mark the original edge
 * as also representing a dependence of the current type.
 *
 * Edges of type isl_edge_condition or isl_edge_conditional_validity
 * may be specified as "tagged" dependence relations.  That is, "map"
 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
 * the dependence on iterations and a and b are tags.
 * edge->map is set to the relation containing the elements i -> j,
 * while edge->tagged_condition and edge->tagged_validity contain
 * the union of all the "map" relations
 * for which extract_edge is called that result in the same edge->map.
 *
 * If the source or the destination node is compressed, then
 * intersect both "map" and "tagged" with the constraints that
 * were used to construct the compression.
 * This ensures that there are no schedule constraints defined
 * outside of these domains, while the scheduler no longer has
 * any control over those outside parts.
 */
static isl_stat extract_edge(__isl_take isl_map *map, void *user)
{
	isl_bool empty;
	isl_ctx *ctx = isl_map_get_ctx(map);
	struct isl_extract_edge_data *data = user;
	struct isl_sched_graph *graph = data->graph;
	struct isl_sched_node *src, *dst;
	struct isl_sched_edge *edge;
	isl_map *tagged = NULL;

	if (data->type == isl_edge_condition ||
	    data->type == isl_edge_conditional_validity) {
		if (isl_map_can_zip(map)) {
			tagged = isl_map_copy(map);
			map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
		} else {
			tagged = insert_dummy_tags(isl_map_copy(map));
		}
	}

	src = find_domain_node(ctx, graph, map);
	dst = find_range_node(ctx, graph, map);

	if (!src || !dst)
		goto error;
	if (!is_node(graph, src) || !is_node(graph, dst))
		return skip_edge(map, tagged);

	if (src->compressed || dst->compressed) {
		isl_map *hull;
		hull = extract_hull(src, dst);
		if (tagged)
			tagged = map_intersect_domains(tagged, hull);
		map = isl_map_intersect(map, hull);
	}

	empty = isl_map_plain_is_empty(map);
	if (empty < 0)
		goto error;
	if (empty)
		return skip_edge(map, tagged);

	graph->edge[graph->n_edge].src = src;
	graph->edge[graph->n_edge].dst = dst;
	graph->edge[graph->n_edge].map = map;
	graph->edge[graph->n_edge].types = 0;
	graph->edge[graph->n_edge].tagged_condition = NULL;
	graph->edge[graph->n_edge].tagged_validity = NULL;
	set_type(&graph->edge[graph->n_edge], data->type);
	if (data->type == isl_edge_condition)
		graph->edge[graph->n_edge].tagged_condition =
					isl_union_map_from_map(tagged);
	if (data->type == isl_edge_conditional_validity)
		graph->edge[graph->n_edge].tagged_validity =
					isl_union_map_from_map(tagged);

	edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
	if (!edge) {
		graph->n_edge++;
		return isl_stat_error;
	}
	if (edge == &graph->edge[graph->n_edge])
		return graph_edge_table_add(ctx, graph, data->type,
				    &graph->edge[graph->n_edge++]);

	if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
		return isl_stat_error;

	return graph_edge_table_add(ctx, graph, data->type, edge);
error:
	isl_map_free(map);
	isl_map_free(tagged);
	return isl_stat_error;
}

/* Initialize the schedule graph "graph" from the schedule constraints "sc".
 *
 * The context is included in the domain before the nodes of
 * the graphs are extracted in order to be able to exploit
 * any possible additional equalities.
 * Note that this intersection is only performed locally here.
 */
static isl_stat graph_init(struct isl_sched_graph *graph,
	__isl_keep isl_schedule_constraints *sc)
{
	isl_ctx *ctx;
	isl_union_set *domain;
	isl_union_map *c;
	struct isl_extract_edge_data data;
	enum isl_edge_type i;
	isl_stat r;

	if (!sc)
		return isl_stat_error;

	ctx = isl_schedule_constraints_get_ctx(sc);

	domain = isl_schedule_constraints_get_domain(sc);
	graph->n = isl_union_set_n_set(domain);
	isl_union_set_free(domain);

	if (graph_alloc(ctx, graph, graph->n,
	    isl_schedule_constraints_n_map(sc)) < 0)
		return isl_stat_error;

	if (compute_max_row(graph, sc) < 0)
		return isl_stat_error;
	graph->root = graph;
	graph->n = 0;
	domain = isl_schedule_constraints_get_domain(sc);
	domain = isl_union_set_intersect_params(domain,
				    isl_schedule_constraints_get_context(sc));
	r = isl_union_set_foreach_set(domain, &extract_node, graph);
	isl_union_set_free(domain);
	if (r < 0)
		return isl_stat_error;
	if (graph_init_table(ctx, graph) < 0)
		return isl_stat_error;
	for (i = isl_edge_first; i <= isl_edge_last; ++i) {
		c = isl_schedule_constraints_get(sc, i);
		graph->max_edge[i] = isl_union_map_n_map(c);
		isl_union_map_free(c);
		if (!c)
			return isl_stat_error;
	}
	if (graph_init_edge_tables(ctx, graph) < 0)
		return isl_stat_error;
	graph->n_edge = 0;
	data.graph = graph;
	for (i = isl_edge_first; i <= isl_edge_last; ++i) {
		isl_stat r;

		data.type = i;
		c = isl_schedule_constraints_get(sc, i);
		r = isl_union_map_foreach_map(c, &extract_edge, &data);
		isl_union_map_free(c);
		if (r < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Check whether there is any dependence from node[j] to node[i]
 * or from node[i] to node[j].
 */
static isl_bool node_follows_weak(int i, int j, void *user)
{
	isl_bool f;
	struct isl_sched_graph *graph = user;

	f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
	if (f < 0 || f)
		return f;
	return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
}

/* Check whether there is a (conditional) validity dependence from node[j]
 * to node[i], forcing node[i] to follow node[j].
 */
static isl_bool node_follows_strong(int i, int j, void *user)
{
	struct isl_sched_graph *graph = user;

	return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}

/* Use Tarjan's algorithm for computing the strongly connected components
 * in the dependence graph only considering those edges defined by "follows".
 */
static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
	isl_bool (*follows)(int i, int j, void *user))
{
	int i, n;
	struct isl_tarjan_graph *g = NULL;

	g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
	if (!g)
		return isl_stat_error;

	graph->scc = 0;
	i = 0;
	n = graph->n;
	while (n) {
		while (g->order[i] != -1) {
			graph->node[g->order[i]].scc = graph->scc;
			--n;
			++i;
		}
		++i;
		graph->scc++;
	}

	isl_tarjan_graph_free(g);

	return isl_stat_ok;
}

/* Apply Tarjan's algorithm to detect the strongly connected components
 * in the dependence graph.
 * Only consider the (conditional) validity dependences and clear "weak".
 */
static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	graph->weak = 0;
	return detect_ccs(ctx, graph, &node_follows_strong);
}

/* Apply Tarjan's algorithm to detect the (weakly) connected components
 * in the dependence graph.
 * Consider all dependences and set "weak".
 */
static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	graph->weak = 1;
	return detect_ccs(ctx, graph, &node_follows_weak);
}

static int cmp_scc(const void *a, const void *b, void *data)
{
	struct isl_sched_graph *graph = data;
	const int *i1 = a;
	const int *i2 = b;

	return graph->node[*i1].scc - graph->node[*i2].scc;
}

/* Sort the elements of graph->sorted according to the corresponding SCCs.
 */
static int sort_sccs(struct isl_sched_graph *graph)
{
	return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
}

/* Return a non-parametric set in the compressed space of "node" that is
 * bounded by the size in each direction
 *
 *	{ [x] : -S_i <= x_i <= S_i }
 *
 * If S_i is infinity in direction i, then there are no constraints
 * in that direction.
 *
 * Cache the result in node->bounds.
 */
static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
{
	isl_space *space;
	isl_basic_set *bounds;
	int i;
	unsigned nparam;

	if (node->bounds)
		return isl_basic_set_copy(node->bounds);

	if (node->compressed)
		space = isl_multi_aff_get_domain_space(node->decompress);
	else
		space = isl_space_copy(node->space);
	nparam = isl_space_dim(space, isl_dim_param);
	space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
	bounds = isl_basic_set_universe(space);

	for (i = 0; i < node->nvar; ++i) {
		isl_val *size;

		size = isl_multi_val_get_val(node->sizes, i);
		if (!size)
			return isl_basic_set_free(bounds);
		if (!isl_val_is_int(size)) {
			isl_val_free(size);
			continue;
		}
		bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
							isl_val_copy(size));
		bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
							isl_val_neg(size));
	}

	node->bounds = isl_basic_set_copy(bounds);
	return bounds;
}

/* Drop some constraints from "delta" that could be exploited
 * to construct loop coalescing schedules.
 * In particular, drop those constraint that bound the difference
 * to the size of the domain.
 * First project out the parameters to improve the effectiveness.
 */
static __isl_give isl_set *drop_coalescing_constraints(
	__isl_take isl_set *delta, struct isl_sched_node *node)
{
	unsigned nparam;
	isl_basic_set *bounds;

	bounds = get_size_bounds(node);

	nparam = isl_set_dim(delta, isl_dim_param);
	delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
	delta = isl_set_remove_divs(delta);
	delta = isl_set_plain_gist_basic_set(delta, bounds);
	return delta;
}

/* Given a dependence relation R from "node" to itself,
 * construct the set of coefficients of valid constraints for elements
 * in that dependence relation.
 * In particular, the result contains tuples of coefficients
 * c_0, c_n, c_x such that
 *
 *	c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
 *
 * or, equivalently,
 *
 *	c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
 *
 * We choose here to compute the dual of delta R.
 * Alternatively, we could have computed the dual of R, resulting
 * in a set of tuples c_0, c_n, c_x, c_y, and then
 * plugged in (c_0, c_n, c_x, -c_x).
 *
 * If "need_param" is set, then the resulting coefficients effectively
 * include coefficients for the parameters c_n.  Otherwise, they may
 * have been projected out already.
 * Since the constraints may be different for these two cases,
 * they are stored in separate caches.
 * In particular, if no parameter coefficients are required and
 * the schedule_treat_coalescing option is set, then the parameters
 * are projected out and some constraints that could be exploited
 * to construct coalescing schedules are removed before the dual
 * is computed.
 *
 * If "node" has been compressed, then the dependence relation
 * is also compressed before the set of coefficients is computed.
 */
static __isl_give isl_basic_set *intra_coefficients(
	struct isl_sched_graph *graph, struct isl_sched_node *node,
	__isl_take isl_map *map, int need_param)
{
	isl_ctx *ctx;
	isl_set *delta;
	isl_map *key;
	isl_basic_set *coef;
	isl_maybe_isl_basic_set m;
	isl_map_to_basic_set **hmap = &graph->intra_hmap;
	int treat;

	if (!map)
		return NULL;

	ctx = isl_map_get_ctx(map);
	treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
	if (!treat)
		hmap = &graph->intra_hmap_param;
	m = isl_map_to_basic_set_try_get(*hmap, map);
	if (m.valid < 0 || m.valid) {
		isl_map_free(map);
		return m.value;
	}

	key = isl_map_copy(map);
	if (node->compressed) {
		map = isl_map_preimage_domain_multi_aff(map,
				    isl_multi_aff_copy(node->decompress));
		map = isl_map_preimage_range_multi_aff(map,
				    isl_multi_aff_copy(node->decompress));
	}
	delta = isl_map_deltas(map);
	if (treat)
		delta = drop_coalescing_constraints(delta, node);
	delta = isl_set_remove_divs(delta);
	coef = isl_set_coefficients(delta);
	*hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));

	return coef;
}

/* Given a dependence relation R, construct the set of coefficients
 * of valid constraints for elements in that dependence relation.
 * In particular, the result contains tuples of coefficients
 * c_0, c_n, c_x, c_y such that
 *
 *	c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
 *
 * If the source or destination nodes of "edge" have been compressed,
 * then the dependence relation is also compressed before
 * the set of coefficients is computed.
 */
static __isl_give isl_basic_set *inter_coefficients(
	struct isl_sched_graph *graph, struct isl_sched_edge *edge,
	__isl_take isl_map *map)
{
	isl_set *set;
	isl_map *key;
	isl_basic_set *coef;
	isl_maybe_isl_basic_set m;

	m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
	if (m.valid < 0 || m.valid) {
		isl_map_free(map);
		return m.value;
	}

	key = isl_map_copy(map);
	if (edge->src->compressed)
		map = isl_map_preimage_domain_multi_aff(map,
				    isl_multi_aff_copy(edge->src->decompress));
	if (edge->dst->compressed)
		map = isl_map_preimage_range_multi_aff(map,
				    isl_multi_aff_copy(edge->dst->decompress));
	set = isl_map_wrap(isl_map_remove_divs(map));
	coef = isl_set_coefficients(set);
	graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
					isl_basic_set_copy(coef));

	return coef;
}

/* Return the position of the coefficients of the variables in
 * the coefficients constraints "coef".
 *
 * The space of "coef" is of the form
 *
 *	{ coefficients[[cst, params] -> S] }
 *
 * Return the position of S.
 */
static int coef_var_offset(__isl_keep isl_basic_set *coef)
{
	int offset;
	isl_space *space;

	space = isl_space_unwrap(isl_basic_set_get_space(coef));
	offset = isl_space_dim(space, isl_dim_in);
	isl_space_free(space);

	return offset;
}

/* Return the offset of the coefficient of the constant term of "node"
 * within the (I)LP.
 *
 * Within each node, the coefficients have the following order:
 *	- positive and negative parts of c_i_x
 *	- c_i_n (if parametric)
 *	- c_i_0
 */
static int node_cst_coef_offset(struct isl_sched_node *node)
{
	return node->start + 2 * node->nvar + node->nparam;
}

/* Return the offset of the coefficients of the parameters of "node"
 * within the (I)LP.
 *
 * Within each node, the coefficients have the following order:
 *	- positive and negative parts of c_i_x
 *	- c_i_n (if parametric)
 *	- c_i_0
 */
static int node_par_coef_offset(struct isl_sched_node *node)
{
	return node->start + 2 * node->nvar;
}

/* Return the offset of the coefficients of the variables of "node"
 * within the (I)LP.
 *
 * Within each node, the coefficients have the following order:
 *	- positive and negative parts of c_i_x
 *	- c_i_n (if parametric)
 *	- c_i_0
 */
static int node_var_coef_offset(struct isl_sched_node *node)
{
	return node->start;
}

/* Return the position of the pair of variables encoding
 * coefficient "i" of "node".
 *
 * The order of these variable pairs is the opposite of
 * that of the coefficients, with 2 variables per coefficient.
 */
static int node_var_coef_pos(struct isl_sched_node *node, int i)
{
	return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
}

/* Construct an isl_dim_map for mapping constraints on coefficients
 * for "node" to the corresponding positions in graph->lp.
 * "offset" is the offset of the coefficients for the variables
 * in the input constraints.
 * "s" is the sign of the mapping.
 *
 * The input constraints are given in terms of the coefficients
 * (c_0, c_x) or (c_0, c_n, c_x).
 * The mapping produced by this function essentially plugs in
 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
 * Furthermore, the order of these pairs is the opposite of that
 * of the corresponding coefficients.
 *
 * The caller can extend the mapping to also map the other coefficients
 * (and therefore not plug in 0).
 */
static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_sched_node *node,
	int offset, int s)
{
	int pos;
	unsigned total;
	isl_dim_map *dim_map;

	if (!node || !graph->lp)
		return NULL;

	total = isl_basic_set_total_dim(graph->lp);
	pos = node_var_coef_pos(node, 0);
	dim_map = isl_dim_map_alloc(ctx, total);
	isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
	isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);

	return dim_map;
}

/* Construct an isl_dim_map for mapping constraints on coefficients
 * for "src" (node i) and "dst" (node j) to the corresponding positions
 * in graph->lp.
 * "offset" is the offset of the coefficients for the variables of "src"
 * in the input constraints.
 * "s" is the sign of the mapping.
 *
 * The input constraints are given in terms of the coefficients
 * (c_0, c_n, c_x, c_y).
 * The mapping produced by this function essentially plugs in
 * (c_j_0 - c_i_0, c_j_n - c_i_n,
 *  -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
 *  c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
 * Furthermore, the order of these pairs is the opposite of that
 * of the corresponding coefficients.
 *
 * The caller can further extend the mapping.
 */
static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_sched_node *src,
	struct isl_sched_node *dst, int offset, int s)
{
	int pos;
	unsigned total;
	isl_dim_map *dim_map;

	if (!src || !dst || !graph->lp)
		return NULL;

	total = isl_basic_set_total_dim(graph->lp);
	dim_map = isl_dim_map_alloc(ctx, total);

	pos = node_cst_coef_offset(dst);
	isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
	pos = node_par_coef_offset(dst);
	isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
	pos = node_var_coef_pos(dst, 0);
	isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
			  dst->nvar, -s);
	isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
			  dst->nvar, s);

	pos = node_cst_coef_offset(src);
	isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
	pos = node_par_coef_offset(src);
	isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
	pos = node_var_coef_pos(src, 0);
	isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
	isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);

	return dim_map;
}

/* Add the constraints from "src" to "dst" using "dim_map",
 * after making sure there is enough room in "dst" for the extra constraints.
 */
static __isl_give isl_basic_set *add_constraints_dim_map(
	__isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
	__isl_take isl_dim_map *dim_map)
{
	int n_eq, n_ineq;

	n_eq = isl_basic_set_n_equality(src);
	n_ineq = isl_basic_set_n_inequality(src);
	dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
	dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
	return dst;
}

/* Add constraints to graph->lp that force validity for the given
 * dependence from a node i to itself.
 * That is, add constraints that enforce
 *
 *	(c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
 *	= c_i_x (y - x) >= 0
 *
 * for each (x,y) in R.
 * We obtain general constraints on coefficients (c_0, c_x)
 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
 * Note that the result of intra_coefficients may also contain
 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
 */
static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
	struct isl_sched_edge *edge)
{
	int offset;
	isl_map *map = isl_map_copy(edge->map);
	isl_ctx *ctx = isl_map_get_ctx(map);
	isl_dim_map *dim_map;
	isl_basic_set *coef;
	struct isl_sched_node *node = edge->src;

	coef = intra_coefficients(graph, node, map, 0);

	offset = coef_var_offset(coef);

	if (!coef)
		return isl_stat_error;

	dim_map = intra_dim_map(ctx, graph, node, offset, 1);
	graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);

	return isl_stat_ok;
}

/* Add constraints to graph->lp that force validity for the given
 * dependence from node i to node j.
 * That is, add constraints that enforce
 *
 *	(c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
 *
 * for each (x,y) in R.
 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
 * of valid constraints for R and then plug in
 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
 */
static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
	struct isl_sched_edge *edge)
{
	int offset;
	isl_map *map;
	isl_ctx *ctx;
	isl_dim_map *dim_map;
	isl_basic_set *coef;
	struct isl_sched_node *src = edge->src;
	struct isl_sched_node *dst = edge->dst;

	if (!graph->lp)
		return isl_stat_error;

	map = isl_map_copy(edge->map);
	ctx = isl_map_get_ctx(map);
	coef = inter_coefficients(graph, edge, map);

	offset = coef_var_offset(coef);

	if (!coef)
		return isl_stat_error;

	dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);

	edge->start = graph->lp->n_ineq;
	graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
	if (!graph->lp)
		return isl_stat_error;
	edge->end = graph->lp->n_ineq;

	return isl_stat_ok;
}

/* Add constraints to graph->lp that bound the dependence distance for the given
 * dependence from a node i to itself.
 * If s = 1, we add the constraint
 *
 *	c_i_x (y - x) <= m_0 + m_n n
 *
 * or
 *
 *	-c_i_x (y - x) + m_0 + m_n n >= 0
 *
 * for each (x,y) in R.
 * If s = -1, we add the constraint
 *
 *	-c_i_x (y - x) <= m_0 + m_n n
 *
 * or
 *
 *	c_i_x (y - x) + m_0 + m_n n >= 0
 *
 * for each (x,y) in R.
 * We obtain general constraints on coefficients (c_0, c_n, c_x)
 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
 * with each coefficient (except m_0) represented as a pair of non-negative
 * coefficients.
 *
 *
 * If "local" is set, then we add constraints
 *
 *	c_i_x (y - x) <= 0
 *
 * or
 *
 *	-c_i_x (y - x) <= 0
 *
 * instead, forcing the dependence distance to be (less than or) equal to 0.
 * That is, we plug in (0, 0, -s * c_i_x),
 * intra_coefficients is not required to have c_n in its result when
 * "local" is set.  If they are missing, then (0, -s * c_i_x) is plugged in.
 * Note that dependences marked local are treated as validity constraints
 * by add_all_validity_constraints and therefore also have
 * their distances bounded by 0 from below.
 */
static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
	struct isl_sched_edge *edge, int s, int local)
{
	int offset;
	unsigned nparam;
	isl_map *map = isl_map_copy(edge->map);
	isl_ctx *ctx = isl_map_get_ctx(map);
	isl_dim_map *dim_map;
	isl_basic_set *coef;
	struct isl_sched_node *node = edge->src;

	coef = intra_coefficients(graph, node, map, !local);

	offset = coef_var_offset(coef);

	if (!coef)
		return isl_stat_error;

	nparam = isl_space_dim(node->space, isl_dim_param);
	dim_map = intra_dim_map(ctx, graph, node, offset, -s);

	if (!local) {
		isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
		isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
		isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
	}
	graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);

	return isl_stat_ok;
}

/* Add constraints to graph->lp that bound the dependence distance for the given
 * dependence from node i to node j.
 * If s = 1, we add the constraint
 *
 *	(c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
 *		<= m_0 + m_n n
 *
 * or
 *
 *	-(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
 *		m_0 + m_n n >= 0
 *
 * for each (x,y) in R.
 * If s = -1, we add the constraint
 *
 *	-((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
 *		<= m_0 + m_n n
 *
 * or
 *
 *	(c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
 *		m_0 + m_n n >= 0
 *
 * for each (x,y) in R.
 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
 * of valid constraints for R and then plug in
 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
 *  s*c_i_x, -s*c_j_x)
 * with each coefficient (except m_0, c_*_0 and c_*_n)
 * represented as a pair of non-negative coefficients.
 *
 *
 * If "local" is set (and s = 1), then we add constraints
 *
 *	(c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
 *
 * or
 *
 *	-((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
 *
 * instead, forcing the dependence distance to be (less than or) equal to 0.
 * That is, we plug in
 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
 * Note that dependences marked local are treated as validity constraints
 * by add_all_validity_constraints and therefore also have
 * their distances bounded by 0 from below.
 */
static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
	struct isl_sched_edge *edge, int s, int local)
{
	int offset;
	unsigned nparam;
	isl_map *map = isl_map_copy(edge->map);
	isl_ctx *ctx = isl_map_get_ctx(map);
	isl_dim_map *dim_map;
	isl_basic_set *coef;
	struct isl_sched_node *src = edge->src;
	struct isl_sched_node *dst = edge->dst;

	coef = inter_coefficients(graph, edge, map);

	offset = coef_var_offset(coef);

	if (!coef)
		return isl_stat_error;

	nparam = isl_space_dim(src->space, isl_dim_param);
	dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);

	if (!local) {
		isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
		isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
		isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
	}

	graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);

	return isl_stat_ok;
}

/* Should the distance over "edge" be forced to zero?
 * That is, is it marked as a local edge?
 * If "use_coincidence" is set, then coincidence edges are treated
 * as local edges.
 */
static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
{
	return is_local(edge) || (use_coincidence && is_coincidence(edge));
}

/* Add all validity constraints to graph->lp.
 *
 * An edge that is forced to be local needs to have its dependence
 * distances equal to zero.  We take care of bounding them by 0 from below
 * here.  add_all_proximity_constraints takes care of bounding them by 0
 * from above.
 *
 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
 * Otherwise, we ignore them.
 */
static int add_all_validity_constraints(struct isl_sched_graph *graph,
	int use_coincidence)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		int zero;

		zero = force_zero(edge, use_coincidence);
		if (!is_validity(edge) && !zero)
			continue;
		if (edge->src != edge->dst)
			continue;
		if (add_intra_validity_constraints(graph, edge) < 0)
			return -1;
	}

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		int zero;

		zero = force_zero(edge, use_coincidence);
		if (!is_validity(edge) && !zero)
			continue;
		if (edge->src == edge->dst)
			continue;
		if (add_inter_validity_constraints(graph, edge) < 0)
			return -1;
	}

	return 0;
}

/* Add constraints to graph->lp that bound the dependence distance
 * for all dependence relations.
 * If a given proximity dependence is identical to a validity
 * dependence, then the dependence distance is already bounded
 * from below (by zero), so we only need to bound the distance
 * from above.  (This includes the case of "local" dependences
 * which are treated as validity dependence by add_all_validity_constraints.)
 * Otherwise, we need to bound the distance both from above and from below.
 *
 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
 * Otherwise, we ignore them.
 */
static int add_all_proximity_constraints(struct isl_sched_graph *graph,
	int use_coincidence)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		int zero;

		zero = force_zero(edge, use_coincidence);
		if (!is_proximity(edge) && !zero)
			continue;
		if (edge->src == edge->dst &&
		    add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
			return -1;
		if (edge->src != edge->dst &&
		    add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
			return -1;
		if (is_validity(edge) || zero)
			continue;
		if (edge->src == edge->dst &&
		    add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
			return -1;
		if (edge->src != edge->dst &&
		    add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
			return -1;
	}

	return 0;
}

/* Normalize the rows of "indep" such that all rows are lexicographically
 * positive and such that each row contains as many final zeros as possible,
 * given the choice for the previous rows.
 * Do this by performing elementary row operations.
 */
static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
{
	indep = isl_mat_reverse_gauss(indep);
	indep = isl_mat_lexnonneg_rows(indep);
	return indep;
}

/* Compute a basis for the rows in the linear part of the schedule
 * and extend this basis to a full basis.  The remaining rows
 * can then be used to force linear independence from the rows
 * in the schedule.
 *
 * In particular, given the schedule rows S, we compute
 *
 *	S   = H Q
 *	S U = H
 *
 * with H the Hermite normal form of S.  That is, all but the
 * first rank columns of H are zero and so each row in S is
 * a linear combination of the first rank rows of Q.
 * The matrix Q can be used as a variable transformation
 * that isolates the directions of S in the first rank rows.
 * Transposing S U = H yields
 *
 *	U^T S^T = H^T
 *
 * with all but the first rank rows of H^T zero.
 * The last rows of U^T are therefore linear combinations
 * of schedule coefficients that are all zero on schedule
 * coefficients that are linearly dependent on the rows of S.
 * At least one of these combinations is non-zero on
 * linearly independent schedule coefficients.
 * The rows are normalized to involve as few of the last
 * coefficients as possible and to have a positive initial value.
 */
static int node_update_vmap(struct isl_sched_node *node)
{
	isl_mat *H, *U, *Q;
	int n_row = isl_mat_rows(node->sched);

	H = isl_mat_sub_alloc(node->sched, 0, n_row,
			      1 + node->nparam, node->nvar);

	H = isl_mat_left_hermite(H, 0, &U, &Q);
	isl_mat_free(node->indep);
	isl_mat_free(node->vmap);
	node->vmap = Q;
	node->indep = isl_mat_transpose(U);
	node->rank = isl_mat_initial_non_zero_cols(H);
	node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
	node->indep = normalize_independent(node->indep);
	isl_mat_free(H);

	if (!node->indep || !node->vmap || node->rank < 0)
		return -1;
	return 0;
}

/* Is "edge" marked as a validity or a conditional validity edge?
 */
static int is_any_validity(struct isl_sched_edge *edge)
{
	return is_validity(edge) || is_conditional_validity(edge);
}

/* How many times should we count the constraints in "edge"?
 *
 * We count as follows
 * validity		-> 1 (>= 0)
 * validity+proximity	-> 2 (>= 0 and upper bound)
 * proximity		-> 2 (lower and upper bound)
 * local(+any)		-> 2 (>= 0 and <= 0)
 *
 * If an edge is only marked conditional_validity then it counts
 * as zero since it is only checked afterwards.
 *
 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
 * Otherwise, we ignore them.
 */
static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
{
	if (is_proximity(edge) || force_zero(edge, use_coincidence))
		return 2;
	if (is_validity(edge))
		return 1;
	return 0;
}

/* How many times should the constraints in "edge" be counted
 * as a parametric intra-node constraint?
 *
 * Only proximity edges that are not forced zero need
 * coefficient constraints that include coefficients for parameters.
 * If the edge is also a validity edge, then only
 * an upper bound is introduced.  Otherwise, both lower and upper bounds
 * are introduced.
 */
static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
	int use_coincidence)
{
	if (edge->src != edge->dst)
		return 0;
	if (!is_proximity(edge))
		return 0;
	if (force_zero(edge, use_coincidence))
		return 0;
	if (is_validity(edge))
		return 1;
	else
		return 2;
}

/* Add "f" times the number of equality and inequality constraints of "bset"
 * to "n_eq" and "n_ineq" and free "bset".
 */
static isl_stat update_count(__isl_take isl_basic_set *bset,
	int f, int *n_eq, int *n_ineq)
{
	if (!bset)
		return isl_stat_error;

	*n_eq += isl_basic_set_n_equality(bset);
	*n_ineq += isl_basic_set_n_inequality(bset);
	isl_basic_set_free(bset);

	return isl_stat_ok;
}

/* Count the number of equality and inequality constraints
 * that will be added for the given map.
 *
 * The edges that require parameter coefficients are counted separately.
 *
 * "use_coincidence" is set if we should take into account coincidence edges.
 */
static isl_stat count_map_constraints(struct isl_sched_graph *graph,
	struct isl_sched_edge *edge, __isl_take isl_map *map,
	int *n_eq, int *n_ineq, int use_coincidence)
{
	isl_map *copy;
	isl_basic_set *coef;
	int f = edge_multiplicity(edge, use_coincidence);
	int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);

	if (f == 0) {
		isl_map_free(map);
		return isl_stat_ok;
	}

	if (edge->src != edge->dst) {
		coef = inter_coefficients(graph, edge, map);
		return update_count(coef, f, n_eq, n_ineq);
	}

	if (fp > 0) {
		copy = isl_map_copy(map);
		coef = intra_coefficients(graph, edge->src, copy, 1);
		if (update_count(coef, fp, n_eq, n_ineq) < 0)
			goto error;
	}

	if (f > fp) {
		copy = isl_map_copy(map);
		coef = intra_coefficients(graph, edge->src, copy, 0);
		if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
			goto error;
	}

	isl_map_free(map);
	return isl_stat_ok;
error:
	isl_map_free(map);
	return isl_stat_error;
}

/* Count the number of equality and inequality constraints
 * that will be added to the main lp problem.
 * We count as follows
 * validity		-> 1 (>= 0)
 * validity+proximity	-> 2 (>= 0 and upper bound)
 * proximity		-> 2 (lower and upper bound)
 * local(+any)		-> 2 (>= 0 and <= 0)
 *
 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
 * Otherwise, we ignore them.
 */
static int count_constraints(struct isl_sched_graph *graph,
	int *n_eq, int *n_ineq, int use_coincidence)
{
	int i;

	*n_eq = *n_ineq = 0;
	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		isl_map *map = isl_map_copy(edge->map);

		if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
					    use_coincidence) < 0)
			return -1;
	}

	return 0;
}

/* Count the number of constraints that will be added by
 * add_bound_constant_constraints to bound the values of the constant terms
 * and increment *n_eq and *n_ineq accordingly.
 *
 * In practice, add_bound_constant_constraints only adds inequalities.
 */
static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
	struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
{
	if (isl_options_get_schedule_max_constant_term(ctx) == -1)
		return isl_stat_ok;

	*n_ineq += graph->n;

	return isl_stat_ok;
}

/* Add constraints to bound the values of the constant terms in the schedule,
 * if requested by the user.
 *
 * The maximal value of the constant terms is defined by the option
 * "schedule_max_constant_term".
 */
static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
	struct isl_sched_graph *graph)
{
	int i, k;
	int max;
	int total;

	max = isl_options_get_schedule_max_constant_term(ctx);
	if (max == -1)
		return isl_stat_ok;

	total = isl_basic_set_dim(graph->lp, isl_dim_set);

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		int pos;

		k = isl_basic_set_alloc_inequality(graph->lp);
		if (k < 0)
			return isl_stat_error;
		isl_seq_clr(graph->lp->ineq[k], 1 + total);
		pos = node_cst_coef_offset(node);
		isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
		isl_int_set_si(graph->lp->ineq[k][0], max);
	}

	return isl_stat_ok;
}

/* Count the number of constraints that will be added by
 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
 * accordingly.
 *
 * In practice, add_bound_coefficient_constraints only adds inequalities.
 */
static int count_bound_coefficient_constraints(isl_ctx *ctx,
	struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
{
	int i;

	if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
	    !isl_options_get_schedule_treat_coalescing(ctx))
		return 0;

	for (i = 0; i < graph->n; ++i)
		*n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;

	return 0;
}

/* Add constraints to graph->lp that bound the values of
 * the parameter schedule coefficients of "node" to "max" and
 * the variable schedule coefficients to the corresponding entry
 * in node->max.
 * In either case, a negative value means that no bound needs to be imposed.
 *
 * For parameter coefficients, this amounts to adding a constraint
 *
 *	c_n <= max
 *
 * i.e.,
 *
 *	-c_n + max >= 0
 *
 * The variables coefficients are, however, not represented directly.
 * Instead, the variable coefficients c_x are written as differences
 * c_x = c_x^+ - c_x^-.
 * That is,
 *
 *	-max_i <= c_x_i <= max_i
 *
 * is encoded as
 *
 *	-max_i <= c_x_i^+ - c_x_i^- <= max_i
 *
 * or
 *
 *	-(c_x_i^+ - c_x_i^-) + max_i >= 0
 *	c_x_i^+ - c_x_i^- + max_i >= 0
 */
static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
{
	int i, j, k;
	int total;
	isl_vec *ineq;

	total = isl_basic_set_dim(graph->lp, isl_dim_set);

	for (j = 0; j < node->nparam; ++j) {
		int dim;

		if (max < 0)
			continue;

		k = isl_basic_set_alloc_inequality(graph->lp);
		if (k < 0)
			return isl_stat_error;
		dim = 1 + node_par_coef_offset(node) + j;
		isl_seq_clr(graph->lp->ineq[k], 1 + total);
		isl_int_set_si(graph->lp->ineq[k][dim], -1);
		isl_int_set_si(graph->lp->ineq[k][0], max);
	}

	ineq = isl_vec_alloc(ctx, 1 + total);
	ineq = isl_vec_clr(ineq);
	if (!ineq)
		return isl_stat_error;
	for (i = 0; i < node->nvar; ++i) {
		int pos = 1 + node_var_coef_pos(node, i);

		if (isl_int_is_neg(node->max->el[i]))
			continue;

		isl_int_set_si(ineq->el[pos], 1);
		isl_int_set_si(ineq->el[pos + 1], -1);
		isl_int_set(ineq->el[0], node->max->el[i]);

		k = isl_basic_set_alloc_inequality(graph->lp);
		if (k < 0)
			goto error;
		isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);

		isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
		k = isl_basic_set_alloc_inequality(graph->lp);
		if (k < 0)
			goto error;
		isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);

		isl_seq_clr(ineq->el + pos, 2);
	}
	isl_vec_free(ineq);

	return isl_stat_ok;
error:
	isl_vec_free(ineq);
	return isl_stat_error;
}

/* Add constraints that bound the values of the variable and parameter
 * coefficients of the schedule.
 *
 * The maximal value of the coefficients is defined by the option
 * 'schedule_max_coefficient' and the entries in node->max.
 * These latter entries are only set if either the schedule_max_coefficient
 * option or the schedule_treat_coalescing option is set.
 */
static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
	struct isl_sched_graph *graph)
{
	int i;
	int max;

	max = isl_options_get_schedule_max_coefficient(ctx);

	if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
		return isl_stat_ok;

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];

		if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Add a constraint to graph->lp that equates the value at position
 * "sum_pos" to the sum of the "n" values starting at "first".
 */
static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
	int sum_pos, int first, int n)
{
	int i, k;
	int total;

	total = isl_basic_set_dim(graph->lp, isl_dim_set);

	k = isl_basic_set_alloc_equality(graph->lp);
	if (k < 0)
		return isl_stat_error;
	isl_seq_clr(graph->lp->eq[k], 1 + total);
	isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
	for (i = 0; i < n; ++i)
		isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);

	return isl_stat_ok;
}

/* Add a constraint to graph->lp that equates the value at position
 * "sum_pos" to the sum of the parameter coefficients of all nodes.
 */
static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
	int sum_pos)
{
	int i, j, k;
	int total;

	total = isl_basic_set_dim(graph->lp, isl_dim_set);

	k = isl_basic_set_alloc_equality(graph->lp);
	if (k < 0)
		return isl_stat_error;
	isl_seq_clr(graph->lp->eq[k], 1 + total);
	isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
	for (i = 0; i < graph->n; ++i) {
		int pos = 1 + node_par_coef_offset(&graph->node[i]);

		for (j = 0; j < graph->node[i].nparam; ++j)
			isl_int_set_si(graph->lp->eq[k][pos + j], 1);
	}

	return isl_stat_ok;
}

/* Add a constraint to graph->lp that equates the value at position
 * "sum_pos" to the sum of the variable coefficients of all nodes.
 */
static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
	int sum_pos)
{
	int i, j, k;
	int total;

	total = isl_basic_set_dim(graph->lp, isl_dim_set);

	k = isl_basic_set_alloc_equality(graph->lp);
	if (k < 0)
		return isl_stat_error;
	isl_seq_clr(graph->lp->eq[k], 1 + total);
	isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		int pos = 1 + node_var_coef_offset(node);

		for (j = 0; j < 2 * node->nvar; ++j)
			isl_int_set_si(graph->lp->eq[k][pos + j], 1);
	}

	return isl_stat_ok;
}

/* Construct an ILP problem for finding schedule coefficients
 * that result in non-negative, but small dependence distances
 * over all dependences.
 * In particular, the dependence distances over proximity edges
 * are bounded by m_0 + m_n n and we compute schedule coefficients
 * with small values (preferably zero) of m_n and m_0.
 *
 * All variables of the ILP are non-negative.  The actual coefficients
 * may be negative, so each coefficient is represented as the difference
 * of two non-negative variables.  The negative part always appears
 * immediately before the positive part.
 * Other than that, the variables have the following order
 *
 *	- sum of positive and negative parts of m_n coefficients
 *	- m_0
 *	- sum of all c_n coefficients
 *		(unconstrained when computing non-parametric schedules)
 *	- sum of positive and negative parts of all c_x coefficients
 *	- positive and negative parts of m_n coefficients
 *	- for each node
 *		- positive and negative parts of c_i_x, in opposite order
 *		- c_i_n (if parametric)
 *		- c_i_0
 *
 * The constraints are those from the edges plus two or three equalities
 * to express the sums.
 *
 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
 * Otherwise, we ignore them.
 */
static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
	int use_coincidence)
{
	int i;
	unsigned nparam;
	unsigned total;
	isl_space *space;
	int parametric;
	int param_pos;
	int n_eq, n_ineq;

	parametric = ctx->opt->schedule_parametric;
	nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
	param_pos = 4;
	total = param_pos + 2 * nparam;
	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[graph->sorted[i]];
		if (node_update_vmap(node) < 0)
			return isl_stat_error;
		node->start = total;
		total += 1 + node->nparam + 2 * node->nvar;
	}

	if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
		return isl_stat_error;
	if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
		return isl_stat_error;
	if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
		return isl_stat_error;

	space = isl_space_set_alloc(ctx, 0, total);
	isl_basic_set_free(graph->lp);
	n_eq += 2 + parametric;

	graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);

	if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
		return isl_stat_error;
	if (parametric && add_param_sum_constraint(graph, 2) < 0)
		return isl_stat_error;
	if (add_var_sum_constraint(graph, 3) < 0)
		return isl_stat_error;
	if (add_bound_constant_constraints(ctx, graph) < 0)
		return isl_stat_error;
	if (add_bound_coefficient_constraints(ctx, graph) < 0)
		return isl_stat_error;
	if (add_all_validity_constraints(graph, use_coincidence) < 0)
		return isl_stat_error;
	if (add_all_proximity_constraints(graph, use_coincidence) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Analyze the conflicting constraint found by
 * isl_tab_basic_set_non_trivial_lexmin.  If it corresponds to the validity
 * constraint of one of the edges between distinct nodes, living, moreover
 * in distinct SCCs, then record the source and sink SCC as this may
 * be a good place to cut between SCCs.
 */
static int check_conflict(int con, void *user)
{
	int i;
	struct isl_sched_graph *graph = user;

	if (graph->src_scc >= 0)
		return 0;

	con -= graph->lp->n_eq;

	if (con >= graph->lp->n_ineq)
		return 0;

	for (i = 0; i < graph->n_edge; ++i) {
		if (!is_validity(&graph->edge[i]))
			continue;
		if (graph->edge[i].src == graph->edge[i].dst)
			continue;
		if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
			continue;
		if (graph->edge[i].start > con)
			continue;
		if (graph->edge[i].end <= con)
			continue;
		graph->src_scc = graph->edge[i].src->scc;
		graph->dst_scc = graph->edge[i].dst->scc;
	}

	return 0;
}

/* Check whether the next schedule row of the given node needs to be
 * non-trivial.  Lower-dimensional domains may have some trivial rows,
 * but as soon as the number of remaining required non-trivial rows
 * is as large as the number or remaining rows to be computed,
 * all remaining rows need to be non-trivial.
 */
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
{
	return node->nvar - node->rank >= graph->maxvar - graph->n_row;
}

/* Construct a non-triviality region with triviality directions
 * corresponding to the rows of "indep".
 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
 * while the triviality directions are expressed in terms of
 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
 * before c^+_i.  Furthermore,
 * the pairs of non-negative variables representing the coefficients
 * are stored in the opposite order.
 */
static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
{
	isl_ctx *ctx;
	isl_mat *mat;
	int i, j, n, n_var;

	if (!indep)
		return NULL;

	ctx = isl_mat_get_ctx(indep);
	n = isl_mat_rows(indep);
	n_var = isl_mat_cols(indep);
	mat = isl_mat_alloc(ctx, n, 2 * n_var);
	if (!mat)
		return NULL;
	for (i = 0; i < n; ++i) {
		for (j = 0; j < n_var; ++j) {
			int nj = n_var - 1 - j;
			isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
			isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
		}
	}

	return mat;
}

/* Solve the ILP problem constructed in setup_lp.
 * For each node such that all the remaining rows of its schedule
 * need to be non-trivial, we construct a non-triviality region.
 * This region imposes that the next row is independent of previous rows.
 * In particular, the non-triviality region enforces that at least
 * one of the linear combinations in the rows of node->indep is non-zero.
 */
static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	int i;
	isl_vec *sol;
	isl_basic_set *lp;

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		isl_mat *trivial;

		graph->region[i].pos = node_var_coef_offset(node);
		if (needs_row(graph, node))
			trivial = construct_trivial(node->indep);
		else
			trivial = isl_mat_zero(ctx, 0, 0);
		graph->region[i].trivial = trivial;
	}
	lp = isl_basic_set_copy(graph->lp);
	sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
				       graph->region, &check_conflict, graph);
	for (i = 0; i < graph->n; ++i)
		isl_mat_free(graph->region[i].trivial);
	return sol;
}

/* Extract the coefficients for the variables of "node" from "sol".
 *
 * Each schedule coefficient c_i_x is represented as the difference
 * between two non-negative variables c_i_x^+ - c_i_x^-.
 * The c_i_x^- appear before their c_i_x^+ counterpart.
 * Furthermore, the order of these pairs is the opposite of that
 * of the corresponding coefficients.
 *
 * Return c_i_x = c_i_x^+ - c_i_x^-
 */
static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
	__isl_keep isl_vec *sol)
{
	int i;
	int pos;
	isl_vec *csol;

	if (!sol)
		return NULL;
	csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
	if (!csol)
		return NULL;

	pos = 1 + node_var_coef_offset(node);
	for (i = 0; i < node->nvar; ++i)
		isl_int_sub(csol->el[node->nvar - 1 - i],
			    sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);

	return csol;
}

/* Update the schedules of all nodes based on the given solution
 * of the LP problem.
 * The new row is added to the current band.
 * All possibly negative coefficients are encoded as a difference
 * of two non-negative variables, so we need to perform the subtraction
 * here.
 *
 * If coincident is set, then the caller guarantees that the new
 * row satisfies the coincidence constraints.
 */
static int update_schedule(struct isl_sched_graph *graph,
	__isl_take isl_vec *sol, int coincident)
{
	int i, j;
	isl_vec *csol = NULL;

	if (!sol)
		goto error;
	if (sol->size == 0)
		isl_die(sol->ctx, isl_error_internal,
			"no solution found", goto error);
	if (graph->n_total_row >= graph->max_row)
		isl_die(sol->ctx, isl_error_internal,
			"too many schedule rows", goto error);

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		int pos;
		int row = isl_mat_rows(node->sched);

		isl_vec_free(csol);
		csol = extract_var_coef(node, sol);
		if (!csol)
			goto error;

		isl_map_free(node->sched_map);
		node->sched_map = NULL;
		node->sched = isl_mat_add_rows(node->sched, 1);
		if (!node->sched)
			goto error;
		pos = node_cst_coef_offset(node);
		node->sched = isl_mat_set_element(node->sched,
					row, 0, sol->el[1 + pos]);
		pos = node_par_coef_offset(node);
		for (j = 0; j < node->nparam; ++j)
			node->sched = isl_mat_set_element(node->sched,
					row, 1 + j, sol->el[1 + pos + j]);
		for (j = 0; j < node->nvar; ++j)
			node->sched = isl_mat_set_element(node->sched,
					row, 1 + node->nparam + j, csol->el[j]);
		node->coincident[graph->n_total_row] = coincident;
	}
	isl_vec_free(sol);
	isl_vec_free(csol);

	graph->n_row++;
	graph->n_total_row++;

	return 0;
error:
	isl_vec_free(sol);
	isl_vec_free(csol);
	return -1;
}

/* Convert row "row" of node->sched into an isl_aff living in "ls"
 * and return this isl_aff.
 */
static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
	struct isl_sched_node *node, int row)
{
	int j;
	isl_int v;
	isl_aff *aff;

	isl_int_init(v);

	aff = isl_aff_zero_on_domain(ls);
	if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
		goto error;
	aff = isl_aff_set_constant(aff, v);
	for (j = 0; j < node->nparam; ++j) {
		if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
			goto error;
		aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
	}
	for (j = 0; j < node->nvar; ++j) {
		if (isl_mat_get_element(node->sched, row,
					1 + node->nparam + j, &v) < 0)
			goto error;
		aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
	}

	isl_int_clear(v);

	return aff;
error:
	isl_int_clear(v);
	isl_aff_free(aff);
	return NULL;
}

/* Convert the "n" rows starting at "first" of node->sched into a multi_aff
 * and return this multi_aff.
 *
 * The result is defined over the uncompressed node domain.
 */
static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
	struct isl_sched_node *node, int first, int n)
{
	int i;
	isl_space *space;
	isl_local_space *ls;
	isl_aff *aff;
	isl_multi_aff *ma;
	int nrow;

	if (!node)
		return NULL;
	nrow = isl_mat_rows(node->sched);
	if (node->compressed)
		space = isl_multi_aff_get_domain_space(node->decompress);
	else
		space = isl_space_copy(node->space);
	ls = isl_local_space_from_space(isl_space_copy(space));
	space = isl_space_from_domain(space);
	space = isl_space_add_dims(space, isl_dim_out, n);
	ma = isl_multi_aff_zero(space);

	for (i = first; i < first + n; ++i) {
		aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
		ma = isl_multi_aff_set_aff(ma, i - first, aff);
	}

	isl_local_space_free(ls);

	if (node->compressed)
		ma = isl_multi_aff_pullback_multi_aff(ma,
					isl_multi_aff_copy(node->compress));

	return ma;
}

/* Convert node->sched into a multi_aff and return this multi_aff.
 *
 * The result is defined over the uncompressed node domain.
 */
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
	struct isl_sched_node *node)
{
	int nrow;

	nrow = isl_mat_rows(node->sched);
	return node_extract_partial_schedule_multi_aff(node, 0, nrow);
}

/* Convert node->sched into a map and return this map.
 *
 * The result is cached in node->sched_map, which needs to be released
 * whenever node->sched is updated.
 * It is defined over the uncompressed node domain.
 */
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
{
	if (!node->sched_map) {
		isl_multi_aff *ma;

		ma = node_extract_schedule_multi_aff(node);
		node->sched_map = isl_map_from_multi_aff(ma);
	}

	return isl_map_copy(node->sched_map);
}

/* Construct a map that can be used to update a dependence relation
 * based on the current schedule.
 * That is, construct a map expressing that source and sink
 * are executed within the same iteration of the current schedule.
 * This map can then be intersected with the dependence relation.
 * This is not the most efficient way, but this shouldn't be a critical
 * operation.
 */
static __isl_give isl_map *specializer(struct isl_sched_node *src,
	struct isl_sched_node *dst)
{
	isl_map *src_sched, *dst_sched;

	src_sched = node_extract_schedule(src);
	dst_sched = node_extract_schedule(dst);
	return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
}

/* Intersect the domains of the nested relations in domain and range
 * of "umap" with "map".
 */
static __isl_give isl_union_map *intersect_domains(
	__isl_take isl_union_map *umap, __isl_keep isl_map *map)
{
	isl_union_set *uset;

	umap = isl_union_map_zip(umap);
	uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
	umap = isl_union_map_intersect_domain(umap, uset);
	umap = isl_union_map_zip(umap);
	return umap;
}

/* Update the dependence relation of the given edge based
 * on the current schedule.
 * If the dependence is carried completely by the current schedule, then
 * it is removed from the edge_tables.  It is kept in the list of edges
 * as otherwise all edge_tables would have to be recomputed.
 *
 * If the edge is of a type that can appear multiple times
 * between the same pair of nodes, then it is added to
 * the edge table (again).  This prevents the situation
 * where none of these edges is referenced from the edge table
 * because the one that was referenced turned out to be empty and
 * was therefore removed from the table.
 */
static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
	struct isl_sched_edge *edge)
{
	int empty;
	isl_map *id;

	id = specializer(edge->src, edge->dst);
	edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
	if (!edge->map)
		goto error;

	if (edge->tagged_condition) {
		edge->tagged_condition =
			intersect_domains(edge->tagged_condition, id);
		if (!edge->tagged_condition)
			goto error;
	}
	if (edge->tagged_validity) {
		edge->tagged_validity =
			intersect_domains(edge->tagged_validity, id);
		if (!edge->tagged_validity)
			goto error;
	}

	empty = isl_map_plain_is_empty(edge->map);
	if (empty < 0)
		goto error;
	if (empty) {
		graph_remove_edge(graph, edge);
	} else if (is_multi_edge_type(edge)) {
		if (graph_edge_tables_add(ctx, graph, edge) < 0)
			goto error;
	}

	isl_map_free(id);
	return isl_stat_ok;
error:
	isl_map_free(id);
	return isl_stat_error;
}

/* Does the domain of "umap" intersect "uset"?
 */
static int domain_intersects(__isl_keep isl_union_map *umap,
	__isl_keep isl_union_set *uset)
{
	int empty;

	umap = isl_union_map_copy(umap);
	umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
	empty = isl_union_map_is_empty(umap);
	isl_union_map_free(umap);

	return empty < 0 ? -1 : !empty;
}

/* Does the range of "umap" intersect "uset"?
 */
static int range_intersects(__isl_keep isl_union_map *umap,
	__isl_keep isl_union_set *uset)
{
	int empty;

	umap = isl_union_map_copy(umap);
	umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
	empty = isl_union_map_is_empty(umap);
	isl_union_map_free(umap);

	return empty < 0 ? -1 : !empty;
}

/* Are the condition dependences of "edge" local with respect to
 * the current schedule?
 *
 * That is, are domain and range of the condition dependences mapped
 * to the same point?
 *
 * In other words, is the condition false?
 */
static int is_condition_false(struct isl_sched_edge *edge)
{
	isl_union_map *umap;
	isl_map *map, *sched, *test;
	int empty, local;

	empty = isl_union_map_is_empty(edge->tagged_condition);
	if (empty < 0 || empty)
		return empty;

	umap = isl_union_map_copy(edge->tagged_condition);
	umap = isl_union_map_zip(umap);
	umap = isl_union_set_unwrap(isl_union_map_domain(umap));
	map = isl_map_from_union_map(umap);

	sched = node_extract_schedule(edge->src);
	map = isl_map_apply_domain(map, sched);
	sched = node_extract_schedule(edge->dst);
	map = isl_map_apply_range(map, sched);

	test = isl_map_identity(isl_map_get_space(map));
	local = isl_map_is_subset(map, test);
	isl_map_free(map);
	isl_map_free(test);

	return local;
}

/* For each conditional validity constraint that is adjacent
 * to a condition with domain in condition_source or range in condition_sink,
 * turn it into an unconditional validity constraint.
 */
static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
	__isl_take isl_union_set *condition_source,
	__isl_take isl_union_set *condition_sink)
{
	int i;

	condition_source = isl_union_set_coalesce(condition_source);
	condition_sink = isl_union_set_coalesce(condition_sink);

	for (i = 0; i < graph->n_edge; ++i) {
		int adjacent;
		isl_union_map *validity;

		if (!is_conditional_validity(&graph->edge[i]))
			continue;
		if (is_validity(&graph->edge[i]))
			continue;

		validity = graph->edge[i].tagged_validity;
		adjacent = domain_intersects(validity, condition_sink);
		if (adjacent >= 0 && !adjacent)
			adjacent = range_intersects(validity, condition_source);
		if (adjacent < 0)
			goto error;
		if (!adjacent)
			continue;

		set_validity(&graph->edge[i]);
	}

	isl_union_set_free(condition_source);
	isl_union_set_free(condition_sink);
	return 0;
error:
	isl_union_set_free(condition_source);
	isl_union_set_free(condition_sink);
	return -1;
}

/* Update the dependence relations of all edges based on the current schedule
 * and enforce conditional validity constraints that are adjacent
 * to satisfied condition constraints.
 *
 * First check if any of the condition constraints are satisfied
 * (i.e., not local to the outer schedule) and keep track of
 * their domain and range.
 * Then update all dependence relations (which removes the non-local
 * constraints).
 * Finally, if any condition constraints turned out to be satisfied,
 * then turn all adjacent conditional validity constraints into
 * unconditional validity constraints.
 */
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	int i;
	int any = 0;
	isl_union_set *source, *sink;

	source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
	sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
	for (i = 0; i < graph->n_edge; ++i) {
		int local;
		isl_union_set *uset;
		isl_union_map *umap;

		if (!is_condition(&graph->edge[i]))
			continue;
		if (is_local(&graph->edge[i]))
			continue;
		local = is_condition_false(&graph->edge[i]);
		if (local < 0)
			goto error;
		if (local)
			continue;

		any = 1;

		umap = isl_union_map_copy(graph->edge[i].tagged_condition);
		uset = isl_union_map_domain(umap);
		source = isl_union_set_union(source, uset);

		umap = isl_union_map_copy(graph->edge[i].tagged_condition);
		uset = isl_union_map_range(umap);
		sink = isl_union_set_union(sink, uset);
	}

	for (i = 0; i < graph->n_edge; ++i) {
		if (update_edge(ctx, graph, &graph->edge[i]) < 0)
			goto error;
	}

	if (any)
		return unconditionalize_adjacent_validity(graph, source, sink);

	isl_union_set_free(source);
	isl_union_set_free(sink);
	return 0;
error:
	isl_union_set_free(source);
	isl_union_set_free(sink);
	return -1;
}

static void next_band(struct isl_sched_graph *graph)
{
	graph->band_start = graph->n_total_row;
}

/* Return the union of the universe domains of the nodes in "graph"
 * that satisfy "pred".
 */
static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
	struct isl_sched_graph *graph,
	int (*pred)(struct isl_sched_node *node, int data), int data)
{
	int i;
	isl_set *set;
	isl_union_set *dom;

	for (i = 0; i < graph->n; ++i)
		if (pred(&graph->node[i], data))
			break;

	if (i >= graph->n)
		isl_die(ctx, isl_error_internal,
			"empty component", return NULL);

	set = isl_set_universe(isl_space_copy(graph->node[i].space));
	dom = isl_union_set_from_set(set);

	for (i = i + 1; i < graph->n; ++i) {
		if (!pred(&graph->node[i], data))
			continue;
		set = isl_set_universe(isl_space_copy(graph->node[i].space));
		dom = isl_union_set_union(dom, isl_union_set_from_set(set));
	}

	return dom;
}

/* Return a list of unions of universe domains, where each element
 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
 */
static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
	struct isl_sched_graph *graph)
{
	int i;
	isl_union_set_list *filters;

	filters = isl_union_set_list_alloc(ctx, graph->scc);
	for (i = 0; i < graph->scc; ++i) {
		isl_union_set *dom;

		dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
		filters = isl_union_set_list_add(filters, dom);
	}

	return filters;
}

/* Return a list of two unions of universe domains, one for the SCCs up
 * to and including graph->src_scc and another for the other SCCs.
 */
static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
	struct isl_sched_graph *graph)
{
	isl_union_set *dom;
	isl_union_set_list *filters;

	filters = isl_union_set_list_alloc(ctx, 2);
	dom = isl_sched_graph_domain(ctx, graph,
					&node_scc_at_most, graph->src_scc);
	filters = isl_union_set_list_add(filters, dom);
	dom = isl_sched_graph_domain(ctx, graph,
					&node_scc_at_least, graph->src_scc + 1);
	filters = isl_union_set_list_add(filters, dom);

	return filters;
}

/* Copy nodes that satisfy node_pred from the src dependence graph
 * to the dst dependence graph.
 */
static isl_stat copy_nodes(struct isl_sched_graph *dst,
	struct isl_sched_graph *src,
	int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
	int i;

	dst->n = 0;
	for (i = 0; i < src->n; ++i) {
		int j;

		if (!node_pred(&src->node[i], data))
			continue;

		j = dst->n;
		dst->node[j].space = isl_space_copy(src->node[i].space);
		dst->node[j].compressed = src->node[i].compressed;
		dst->node[j].hull = isl_set_copy(src->node[i].hull);
		dst->node[j].compress =
			isl_multi_aff_copy(src->node[i].compress);
		dst->node[j].decompress =
			isl_multi_aff_copy(src->node[i].decompress);
		dst->node[j].nvar = src->node[i].nvar;
		dst->node[j].nparam = src->node[i].nparam;
		dst->node[j].sched = isl_mat_copy(src->node[i].sched);
		dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
		dst->node[j].coincident = src->node[i].coincident;
		dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
		dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
		dst->node[j].max = isl_vec_copy(src->node[i].max);
		dst->n++;

		if (!dst->node[j].space || !dst->node[j].sched)
			return isl_stat_error;
		if (dst->node[j].compressed &&
		    (!dst->node[j].hull || !dst->node[j].compress ||
		     !dst->node[j].decompress))
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
 * to the dst dependence graph.
 * If the source or destination node of the edge is not in the destination
 * graph, then it must be a backward proximity edge and it should simply
 * be ignored.
 */
static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
	struct isl_sched_graph *src,
	int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
{
	int i;

	dst->n_edge = 0;
	for (i = 0; i < src->n_edge; ++i) {
		struct isl_sched_edge *edge = &src->edge[i];
		isl_map *map;
		isl_union_map *tagged_condition;
		isl_union_map *tagged_validity;
		struct isl_sched_node *dst_src, *dst_dst;

		if (!edge_pred(edge, data))
			continue;

		if (isl_map_plain_is_empty(edge->map))
			continue;

		dst_src = graph_find_node(ctx, dst, edge->src->space);
		dst_dst = graph_find_node(ctx, dst, edge->dst->space);
		if (!dst_src || !dst_dst)
			return isl_stat_error;
		if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
			if (is_validity(edge) || is_conditional_validity(edge))
				isl_die(ctx, isl_error_internal,
					"backward (conditional) validity edge",
					return isl_stat_error);
			continue;
		}

		map = isl_map_copy(edge->map);
		tagged_condition = isl_union_map_copy(edge->tagged_condition);
		tagged_validity = isl_union_map_copy(edge->tagged_validity);

		dst->edge[dst->n_edge].src = dst_src;
		dst->edge[dst->n_edge].dst = dst_dst;
		dst->edge[dst->n_edge].map = map;
		dst->edge[dst->n_edge].tagged_condition = tagged_condition;
		dst->edge[dst->n_edge].tagged_validity = tagged_validity;
		dst->edge[dst->n_edge].types = edge->types;
		dst->n_edge++;

		if (edge->tagged_condition && !tagged_condition)
			return isl_stat_error;
		if (edge->tagged_validity && !tagged_validity)
			return isl_stat_error;

		if (graph_edge_tables_add(ctx, dst,
					    &dst->edge[dst->n_edge - 1]) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Compute the maximal number of variables over all nodes.
 * This is the maximal number of linearly independent schedule
 * rows that we need to compute.
 * Just in case we end up in a part of the dependence graph
 * with only lower-dimensional domains, we make sure we will
 * compute the required amount of extra linearly independent rows.
 */
static int compute_maxvar(struct isl_sched_graph *graph)
{
	int i;

	graph->maxvar = 0;
	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		int nvar;

		if (node_update_vmap(node) < 0)
			return -1;
		nvar = node->nvar + graph->n_row - node->rank;
		if (nvar > graph->maxvar)
			graph->maxvar = nvar;
	}

	return 0;
}

/* Extract the subgraph of "graph" that consists of the nodes satisfying
 * "node_pred" and the edges satisfying "edge_pred" and store
 * the result in "sub".
 */
static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
	int (*node_pred)(struct isl_sched_node *node, int data),
	int (*edge_pred)(struct isl_sched_edge *edge, int data),
	int data, struct isl_sched_graph *sub)
{
	int i, n = 0, n_edge = 0;
	int t;

	for (i = 0; i < graph->n; ++i)
		if (node_pred(&graph->node[i], data))
			++n;
	for (i = 0; i < graph->n_edge; ++i)
		if (edge_pred(&graph->edge[i], data))
			++n_edge;
	if (graph_alloc(ctx, sub, n, n_edge) < 0)
		return isl_stat_error;
	sub->root = graph->root;
	if (copy_nodes(sub, graph, node_pred, data) < 0)
		return isl_stat_error;
	if (graph_init_table(ctx, sub) < 0)
		return isl_stat_error;
	for (t = 0; t <= isl_edge_last; ++t)
		sub->max_edge[t] = graph->max_edge[t];
	if (graph_init_edge_tables(ctx, sub) < 0)
		return isl_stat_error;
	if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
		return isl_stat_error;
	sub->n_row = graph->n_row;
	sub->max_row = graph->max_row;
	sub->n_total_row = graph->n_total_row;
	sub->band_start = graph->band_start;

	return isl_stat_ok;
}

static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
	struct isl_sched_graph *graph);
static __isl_give isl_schedule_node *compute_schedule_wcc(
	isl_schedule_node *node, struct isl_sched_graph *graph);

/* Compute a schedule for a subgraph of "graph".  In particular, for
 * the graph composed of nodes that satisfy node_pred and edges that
 * that satisfy edge_pred.
 * If the subgraph is known to consist of a single component, then wcc should
 * be set and then we call compute_schedule_wcc on the constructed subgraph.
 * Otherwise, we call compute_schedule, which will check whether the subgraph
 * is connected.
 *
 * The schedule is inserted at "node" and the updated schedule node
 * is returned.
 */
static __isl_give isl_schedule_node *compute_sub_schedule(
	__isl_take isl_schedule_node *node, isl_ctx *ctx,
	struct isl_sched_graph *graph,
	int (*node_pred)(struct isl_sched_node *node, int data),
	int (*edge_pred)(struct isl_sched_edge *edge, int data),
	int data, int wcc)
{
	struct isl_sched_graph split = { 0 };

	if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
				&split) < 0)
		goto error;

	if (wcc)
		node = compute_schedule_wcc(node, &split);
	else
		node = compute_schedule(node, &split);

	graph_free(ctx, &split);
	return node;
error:
	graph_free(ctx, &split);
	return isl_schedule_node_free(node);
}

static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
{
	return edge->src->scc == scc && edge->dst->scc == scc;
}

static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
{
	return edge->dst->scc <= scc;
}

static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
{
	return edge->src->scc >= scc;
}

/* Reset the current band by dropping all its schedule rows.
 */
static isl_stat reset_band(struct isl_sched_graph *graph)
{
	int i;
	int drop;

	drop = graph->n_total_row - graph->band_start;
	graph->n_total_row -= drop;
	graph->n_row -= drop;

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];

		isl_map_free(node->sched_map);
		node->sched_map = NULL;

		node->sched = isl_mat_drop_rows(node->sched,
						graph->band_start, drop);

		if (!node->sched)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Split the current graph into two parts and compute a schedule for each
 * part individually.  In particular, one part consists of all SCCs up
 * to and including graph->src_scc, while the other part contains the other
 * SCCs.  The split is enforced by a sequence node inserted at position "node"
 * in the schedule tree.  Return the updated schedule node.
 * If either of these two parts consists of a sequence, then it is spliced
 * into the sequence containing the two parts.
 *
 * The current band is reset. It would be possible to reuse
 * the previously computed rows as the first rows in the next
 * band, but recomputing them may result in better rows as we are looking
 * at a smaller part of the dependence graph.
 */
static __isl_give isl_schedule_node *compute_split_schedule(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	int is_seq;
	isl_ctx *ctx;
	isl_union_set_list *filters;

	if (!node)
		return NULL;

	if (reset_band(graph) < 0)
		return isl_schedule_node_free(node);

	next_band(graph);

	ctx = isl_schedule_node_get_ctx(node);
	filters = extract_split(ctx, graph);
	node = isl_schedule_node_insert_sequence(node, filters);
	node = isl_schedule_node_child(node, 1);
	node = isl_schedule_node_child(node, 0);

	node = compute_sub_schedule(node, ctx, graph,
				&node_scc_at_least, &edge_src_scc_at_least,
				graph->src_scc + 1, 0);
	is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
	node = isl_schedule_node_parent(node);
	node = isl_schedule_node_parent(node);
	if (is_seq)
		node = isl_schedule_node_sequence_splice_child(node, 1);
	node = isl_schedule_node_child(node, 0);
	node = isl_schedule_node_child(node, 0);
	node = compute_sub_schedule(node, ctx, graph,
				&node_scc_at_most, &edge_dst_scc_at_most,
				graph->src_scc, 0);
	is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
	node = isl_schedule_node_parent(node);
	node = isl_schedule_node_parent(node);
	if (is_seq)
		node = isl_schedule_node_sequence_splice_child(node, 0);

	return node;
}

/* Insert a band node at position "node" in the schedule tree corresponding
 * to the current band in "graph".  Mark the band node permutable
 * if "permutable" is set.
 * The partial schedules and the coincidence property are extracted
 * from the graph nodes.
 * Return the updated schedule node.
 */
static __isl_give isl_schedule_node *insert_current_band(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	int permutable)
{
	int i;
	int start, end, n;
	isl_multi_aff *ma;
	isl_multi_pw_aff *mpa;
	isl_multi_union_pw_aff *mupa;

	if (!node)
		return NULL;

	if (graph->n < 1)
		isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
			"graph should have at least one node",
			return isl_schedule_node_free(node));

	start = graph->band_start;
	end = graph->n_total_row;
	n = end - start;

	ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
	mpa = isl_multi_pw_aff_from_multi_aff(ma);
	mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);

	for (i = 1; i < graph->n; ++i) {
		isl_multi_union_pw_aff *mupa_i;

		ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
								start, n);
		mpa = isl_multi_pw_aff_from_multi_aff(ma);
		mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
		mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
	}
	node = isl_schedule_node_insert_partial_schedule(node, mupa);

	for (i = 0; i < n; ++i)
		node = isl_schedule_node_band_member_set_coincident(node, i,
					graph->node[0].coincident[start + i]);
	node = isl_schedule_node_band_set_permutable(node, permutable);

	return node;
}

/* Update the dependence relations based on the current schedule,
 * add the current band to "node" and then continue with the computation
 * of the next band.
 * Return the updated schedule node.
 */
static __isl_give isl_schedule_node *compute_next_band(
	__isl_take isl_schedule_node *node,
	struct isl_sched_graph *graph, int permutable)
{
	isl_ctx *ctx;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	if (update_edges(ctx, graph) < 0)
		return isl_schedule_node_free(node);
	node = insert_current_band(node, graph, permutable);
	next_band(graph);

	node = isl_schedule_node_child(node, 0);
	node = compute_schedule(node, graph);
	node = isl_schedule_node_parent(node);

	return node;
}

/* Add the constraints "coef" derived from an edge from "node" to itself
 * to graph->lp in order to respect the dependences and to try and carry them.
 * "pos" is the sequence number of the edge that needs to be carried.
 * "coef" represents general constraints on coefficients (c_0, c_x)
 * of valid constraints for (y - x) with x and y instances of the node.
 *
 * The constraints added to graph->lp need to enforce
 *
 *	(c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
 *	= c_j_x (y - x) >= e_i
 *
 * for each (x,y) in the dependence relation of the edge.
 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
 * taking into account that each coefficient in c_j_x is represented
 * as a pair of non-negative coefficients.
 */
static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
	struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
{
	int offset;
	isl_ctx *ctx;
	isl_dim_map *dim_map;

	if (!coef)
		return isl_stat_error;

	ctx = isl_basic_set_get_ctx(coef);
	offset = coef_var_offset(coef);
	dim_map = intra_dim_map(ctx, graph, node, offset, 1);
	isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
	graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);

	return isl_stat_ok;
}

/* Add the constraints "coef" derived from an edge from "src" to "dst"
 * to graph->lp in order to respect the dependences and to try and carry them.
 * "pos" is the sequence number of the edge that needs to be carried or
 * -1 if no attempt should be made to carry the dependences.
 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
 *
 * The constraints added to graph->lp need to enforce
 *
 *	(c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
 *
 * for each (x,y) in the dependence relation of the edge or
 *
 *	(c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
 *
 * if pos is -1.
 * That is,
 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
 * or
 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
 * needs to be plugged in for (c_0, c_n, c_x, c_y),
 * taking into account that each coefficient in c_j_x and c_k_x is represented
 * as a pair of non-negative coefficients.
 */
static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
	struct isl_sched_node *src, struct isl_sched_node *dst,
	__isl_take isl_basic_set *coef, int pos)
{
	int offset;
	isl_ctx *ctx;
	isl_dim_map *dim_map;

	if (!coef)
		return isl_stat_error;

	ctx = isl_basic_set_get_ctx(coef);
	offset = coef_var_offset(coef);
	dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
	if (pos >= 0)
		isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
	graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);

	return isl_stat_ok;
}

/* Data structure for keeping track of the data needed
 * to exploit non-trivial lineality spaces.
 *
 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
 * "equivalent" connects instances to other instances on the same line(s).
 * "mask" contains the domain spaces of "equivalent".
 * Any instance set not in "mask" does not have a non-trivial lineality space.
 */
struct isl_exploit_lineality_data {
	isl_bool any_non_trivial;
	isl_union_map *equivalent;
	isl_union_set *mask;
};

/* Data structure collecting information used during the construction
 * of an LP for carrying dependences.
 *
 * "intra" is a sequence of coefficient constraints for intra-node edges.
 * "inter" is a sequence of coefficient constraints for inter-node edges.
 * "lineality" contains data used to exploit non-trivial lineality spaces.
 */
struct isl_carry {
	isl_basic_set_list *intra;
	isl_basic_set_list *inter;
	struct isl_exploit_lineality_data lineality;
};

/* Free all the data stored in "carry".
 */
static void isl_carry_clear(struct isl_carry *carry)
{
	isl_basic_set_list_free(carry->intra);
	isl_basic_set_list_free(carry->inter);
	isl_union_map_free(carry->lineality.equivalent);
	isl_union_set_free(carry->lineality.mask);
}

/* Return a pointer to the node in "graph" that lives in "space".
 * If the requested node has been compressed, then "space"
 * corresponds to the compressed space.
 * The graph is assumed to have such a node.
 * Return NULL in case of error.
 *
 * First try and see if "space" is the space of an uncompressed node.
 * If so, return that node.
 * Otherwise, "space" was constructed by construct_compressed_id and
 * contains a user pointer pointing to the node in the tuple id.
 * However, this node belongs to the original dependence graph.
 * If "graph" is a subgraph of this original dependence graph,
 * then the node with the same space still needs to be looked up
 * in the current graph.
 */
static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
	struct isl_sched_graph *graph, __isl_keep isl_space *space)
{
	isl_id *id;
	struct isl_sched_node *node;

	if (!space)
		return NULL;

	node = graph_find_node(ctx, graph, space);
	if (!node)
		return NULL;
	if (is_node(graph, node))
		return node;

	id = isl_space_get_tuple_id(space, isl_dim_set);
	node = isl_id_get_user(id);
	isl_id_free(id);

	if (!node)
		return NULL;

	if (!is_node(graph->root, node))
		isl_die(ctx, isl_error_internal,
			"space points to invalid node", return NULL);
	if (graph != graph->root)
		node = graph_find_node(ctx, graph, node->space);
	if (!is_node(graph, node))
		isl_die(ctx, isl_error_internal,
			"unable to find node", return NULL);

	return node;
}

/* Internal data structure for add_all_constraints.
 *
 * "graph" is the schedule constraint graph for which an LP problem
 * is being constructed.
 * "carry_inter" indicates whether inter-node edges should be carried.
 * "pos" is the position of the next edge that needs to be carried.
 */
struct isl_add_all_constraints_data {
	isl_ctx *ctx;
	struct isl_sched_graph *graph;
	int carry_inter;
	int pos;
};

/* Add the constraints "coef" derived from an edge from a node to itself
 * to data->graph->lp in order to respect the dependences and
 * to try and carry them.
 *
 * The space of "coef" is of the form
 *
 *	coefficients[[c_cst] -> S[c_x]]
 *
 * with S[c_x] the (compressed) space of the node.
 * Extract the node from the space and call add_intra_constraints.
 */
static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
{
	struct isl_add_all_constraints_data *data = user;
	isl_space *space;
	struct isl_sched_node *node;

	space = isl_basic_set_get_space(coef);
	space = isl_space_range(isl_space_unwrap(space));
	node = graph_find_compressed_node(data->ctx, data->graph, space);
	isl_space_free(space);
	return add_intra_constraints(data->graph, node, coef, data->pos++);
}

/* Add the constraints "coef" derived from an edge from a node j
 * to a node k to data->graph->lp in order to respect the dependences and
 * to try and carry them (provided data->carry_inter is set).
 *
 * The space of "coef" is of the form
 *
 *	coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
 *
 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
 * Extract the nodes from the space and call add_inter_constraints.
 */
static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
{
	struct isl_add_all_constraints_data *data = user;
	isl_space *space, *dom;
	struct isl_sched_node *src, *dst;
	int pos;

	space = isl_basic_set_get_space(coef);
	space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
	dom = isl_space_domain(isl_space_copy(space));
	src = graph_find_compressed_node(data->ctx, data->graph, dom);
	isl_space_free(dom);
	space = isl_space_range(space);
	dst = graph_find_compressed_node(data->ctx, data->graph, space);
	isl_space_free(space);

	pos = data->carry_inter ? data->pos++ : -1;
	return add_inter_constraints(data->graph, src, dst, coef, pos);
}

/* Add constraints to graph->lp that force all (conditional) validity
 * dependences to be respected and attempt to carry them.
 * "intra" is the sequence of coefficient constraints for intra-node edges.
 * "inter" is the sequence of coefficient constraints for inter-node edges.
 * "carry_inter" indicates whether inter-node edges should be carried or
 * only respected.
 */
static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
	__isl_keep isl_basic_set_list *intra,
	__isl_keep isl_basic_set_list *inter, int carry_inter)
{
	struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };

	data.pos = 0;
	if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
		return isl_stat_error;
	if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
		return isl_stat_error;
	return isl_stat_ok;
}

/* Internal data structure for count_all_constraints
 * for keeping track of the number of equality and inequality constraints.
 */
struct isl_sched_count {
	int n_eq;
	int n_ineq;
};

/* Add the number of equality and inequality constraints of "bset"
 * to data->n_eq and data->n_ineq.
 */
static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
{
	struct isl_sched_count *data = user;

	return update_count(bset, 1, &data->n_eq, &data->n_ineq);
}

/* Count the number of equality and inequality constraints
 * that will be added to the carry_lp problem.
 * We count each edge exactly once.
 * "intra" is the sequence of coefficient constraints for intra-node edges.
 * "inter" is the sequence of coefficient constraints for inter-node edges.
 */
static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
	__isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
{
	struct isl_sched_count data;

	data.n_eq = data.n_ineq = 0;
	if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
		return isl_stat_error;
	if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
		return isl_stat_error;

	*n_eq = data.n_eq;
	*n_ineq = data.n_ineq;

	return isl_stat_ok;
}

/* Construct an LP problem for finding schedule coefficients
 * such that the schedule carries as many validity dependences as possible.
 * In particular, for each dependence i, we bound the dependence distance
 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
 * of all e_i's.  Dependences with e_i = 0 in the solution are simply
 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
 * "intra" is the sequence of coefficient constraints for intra-node edges.
 * "inter" is the sequence of coefficient constraints for inter-node edges.
 * "n_edge" is the total number of edges.
 * "carry_inter" indicates whether inter-node edges should be carried or
 * only respected.  That is, if "carry_inter" is not set, then
 * no e_i variables are introduced for the inter-node edges.
 *
 * All variables of the LP are non-negative.  The actual coefficients
 * may be negative, so each coefficient is represented as the difference
 * of two non-negative variables.  The negative part always appears
 * immediately before the positive part.
 * Other than that, the variables have the following order
 *
 *	- sum of (1 - e_i) over all edges
 *	- sum of all c_n coefficients
 *		(unconstrained when computing non-parametric schedules)
 *	- sum of positive and negative parts of all c_x coefficients
 *	- for each edge
 *		- e_i
 *	- for each node
 *		- positive and negative parts of c_i_x, in opposite order
 *		- c_i_n (if parametric)
 *		- c_i_0
 *
 * The constraints are those from the (validity) edges plus three equalities
 * to express the sums and n_edge inequalities to express e_i <= 1.
 */
static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
	int n_edge, __isl_keep isl_basic_set_list *intra,
	__isl_keep isl_basic_set_list *inter, int carry_inter)
{
	int i;
	int k;
	isl_space *dim;
	unsigned total;
	int n_eq, n_ineq;

	total = 3 + n_edge;
	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[graph->sorted[i]];
		node->start = total;
		total += 1 + node->nparam + 2 * node->nvar;
	}

	if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
		return isl_stat_error;

	dim = isl_space_set_alloc(ctx, 0, total);
	isl_basic_set_free(graph->lp);
	n_eq += 3;
	n_ineq += n_edge;
	graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
	graph->lp = isl_basic_set_set_rational(graph->lp);

	k = isl_basic_set_alloc_equality(graph->lp);
	if (k < 0)
		return isl_stat_error;
	isl_seq_clr(graph->lp->eq[k], 1 + total);
	isl_int_set_si(graph->lp->eq[k][0], -n_edge);
	isl_int_set_si(graph->lp->eq[k][1], 1);
	for (i = 0; i < n_edge; ++i)
		isl_int_set_si(graph->lp->eq[k][4 + i], 1);

	if (add_param_sum_constraint(graph, 1) < 0)
		return isl_stat_error;
	if (add_var_sum_constraint(graph, 2) < 0)
		return isl_stat_error;

	for (i = 0; i < n_edge; ++i) {
		k = isl_basic_set_alloc_inequality(graph->lp);
		if (k < 0)
			return isl_stat_error;
		isl_seq_clr(graph->lp->ineq[k], 1 + total);
		isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
		isl_int_set_si(graph->lp->ineq[k][0], 1);
	}

	if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
		return isl_stat_error;

	return isl_stat_ok;
}

static __isl_give isl_schedule_node *compute_component_schedule(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	int wcc);

/* If the schedule_split_scaled option is set and if the linear
 * parts of the scheduling rows for all nodes in the graphs have
 * a non-trivial common divisor, then remove this
 * common divisor from the linear part.
 * Otherwise, insert a band node directly and continue with
 * the construction of the schedule.
 *
 * If a non-trivial common divisor is found, then
 * the linear part is reduced and the remainder is ignored.
 * The pieces of the graph that are assigned different remainders
 * form (groups of) strongly connected components within
 * the scaled down band.  If needed, they can therefore
 * be ordered along this remainder in a sequence node.
 * However, this ordering is not enforced here in order to allow
 * the scheduler to combine some of the strongly connected components.
 */
static __isl_give isl_schedule_node *split_scaled(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	int i;
	int row;
	isl_ctx *ctx;
	isl_int gcd, gcd_i;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	if (!ctx->opt->schedule_split_scaled)
		return compute_next_band(node, graph, 0);
	if (graph->n <= 1)
		return compute_next_band(node, graph, 0);

	isl_int_init(gcd);
	isl_int_init(gcd_i);

	isl_int_set_si(gcd, 0);

	row = isl_mat_rows(graph->node[0].sched) - 1;

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		int cols = isl_mat_cols(node->sched);

		isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
		isl_int_gcd(gcd, gcd, gcd_i);
	}

	isl_int_clear(gcd_i);

	if (isl_int_cmp_si(gcd, 1) <= 0) {
		isl_int_clear(gcd);
		return compute_next_band(node, graph, 0);
	}

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];

		isl_int_fdiv_q(node->sched->row[row][0],
			       node->sched->row[row][0], gcd);
		isl_int_mul(node->sched->row[row][0],
			    node->sched->row[row][0], gcd);
		node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
		if (!node->sched)
			goto error;
	}

	isl_int_clear(gcd);

	return compute_next_band(node, graph, 0);
error:
	isl_int_clear(gcd);
	return isl_schedule_node_free(node);
}

/* Is the schedule row "sol" trivial on node "node"?
 * That is, is the solution zero on the dimensions linearly independent of
 * the previously found solutions?
 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
 *
 * Each coefficient is represented as the difference between
 * two non-negative values in "sol".
 * We construct the schedule row s and check if it is linearly
 * independent of previously computed schedule rows
 * by computing T s, with T the linear combinations that are zero
 * on linearly dependent schedule rows.
 * If the result consists of all zeros, then the solution is trivial.
 */
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
{
	int trivial;
	isl_vec *node_sol;

	if (!sol)
		return -1;
	if (node->nvar == node->rank)
		return 0;

	node_sol = extract_var_coef(node, sol);
	node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
	if (!node_sol)
		return -1;

	trivial = isl_seq_first_non_zero(node_sol->el,
					node->nvar - node->rank) == -1;

	isl_vec_free(node_sol);

	return trivial;
}

/* Is the schedule row "sol" trivial on any node where it should
 * not be trivial?
 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
 */
static int is_any_trivial(struct isl_sched_graph *graph,
	__isl_keep isl_vec *sol)
{
	int i;

	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		int trivial;

		if (!needs_row(graph, node))
			continue;
		trivial = is_trivial(node, sol);
		if (trivial < 0 || trivial)
			return trivial;
	}

	return 0;
}

/* Does the schedule represented by "sol" perform loop coalescing on "node"?
 * If so, return the position of the coalesced dimension.
 * Otherwise, return node->nvar or -1 on error.
 *
 * In particular, look for pairs of coefficients c_i and c_j such that
 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
 * If any such pair is found, then return i.
 * If size_i is infinity, then no check on c_i needs to be performed.
 */
static int find_node_coalescing(struct isl_sched_node *node,
	__isl_keep isl_vec *sol)
{
	int i, j;
	isl_int max;
	isl_vec *csol;

	if (node->nvar <= 1)
		return node->nvar;

	csol = extract_var_coef(node, sol);
	if (!csol)
		return -1;
	isl_int_init(max);
	for (i = 0; i < node->nvar; ++i) {
		isl_val *v;

		if (isl_int_is_zero(csol->el[i]))
			continue;
		v = isl_multi_val_get_val(node->sizes, i);
		if (!v)
			goto error;
		if (!isl_val_is_int(v)) {
			isl_val_free(v);
			continue;
		}
		v = isl_val_div_ui(v, 2);
		v = isl_val_ceil(v);
		if (!v)
			goto error;
		isl_int_mul(max, v->n, csol->el[i]);
		isl_val_free(v);

		for (j = 0; j < node->nvar; ++j) {
			if (j == i)
				continue;
			if (isl_int_abs_gt(csol->el[j], max))
				break;
		}
		if (j < node->nvar)
			break;
	}

	isl_int_clear(max);
	isl_vec_free(csol);
	return i;
error:
	isl_int_clear(max);
	isl_vec_free(csol);
	return -1;
}

/* Force the schedule coefficient at position "pos" of "node" to be zero
 * in "tl".
 * The coefficient is encoded as the difference between two non-negative
 * variables.  Force these two variables to have the same value.
 */
static __isl_give isl_tab_lexmin *zero_out_node_coef(
	__isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
{
	int dim;
	isl_ctx *ctx;
	isl_vec *eq;

	ctx = isl_space_get_ctx(node->space);
	dim = isl_tab_lexmin_dim(tl);
	if (dim < 0)
		return isl_tab_lexmin_free(tl);
	eq = isl_vec_alloc(ctx, 1 + dim);
	eq = isl_vec_clr(eq);
	if (!eq)
		return isl_tab_lexmin_free(tl);

	pos = 1 + node_var_coef_pos(node, pos);
	isl_int_set_si(eq->el[pos], 1);
	isl_int_set_si(eq->el[pos + 1], -1);
	tl = isl_tab_lexmin_add_eq(tl, eq->el);
	isl_vec_free(eq);

	return tl;
}

/* Return the lexicographically smallest rational point in the basic set
 * from which "tl" was constructed, double checking that this input set
 * was not empty.
 */
static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
{
	isl_vec *sol;

	sol = isl_tab_lexmin_get_solution(tl);
	if (!sol)
		return NULL;
	if (sol->size == 0)
		isl_die(isl_vec_get_ctx(sol), isl_error_internal,
			"error in schedule construction",
			return isl_vec_free(sol));
	return sol;
}

/* Does the solution "sol" of the LP problem constructed by setup_carry_lp
 * carry any of the "n_edge" groups of dependences?
 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
 * by the edge are carried by the solution.
 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
 * one of those is carried.
 *
 * Note that despite the fact that the problem is solved using a rational
 * solver, the solution is guaranteed to be integral.
 * Specifically, the dependence distance lower bounds e_i (and therefore
 * also their sum) are integers.  See Lemma 5 of [1].
 *
 * Any potential denominator of the sum is cleared by this function.
 * The denominator is not relevant for any of the other elements
 * in the solution.
 *
 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
 *     Problem, Part II: Multi-Dimensional Time.
 *     In Intl. Journal of Parallel Programming, 1992.
 */
static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
{
	isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
	isl_int_set_si(sol->el[0], 1);
	return isl_int_cmp_si(sol->el[1], n_edge) < 0;
}

/* Return the lexicographically smallest rational point in "lp",
 * assuming that all variables are non-negative and performing some
 * additional sanity checks.
 * If "want_integral" is set, then compute the lexicographically smallest
 * integer point instead.
 * In particular, "lp" should not be empty by construction.
 * Double check that this is the case.
 * If dependences are not carried for any of the "n_edge" edges,
 * then return an empty vector.
 *
 * If the schedule_treat_coalescing option is set and
 * if the computed schedule performs loop coalescing on a given node,
 * i.e., if it is of the form
 *
 *	c_i i + c_j j + ...
 *
 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
 * to cut out this solution.  Repeat this process until no more loop
 * coalescing occurs or until no more dependences can be carried.
 * In the latter case, revert to the previously computed solution.
 *
 * If the caller requests an integral solution and if coalescing should
 * be treated, then perform the coalescing treatment first as
 * an integral solution computed before coalescing treatment
 * would carry the same number of edges and would therefore probably
 * also be coalescing.
 *
 * To allow the coalescing treatment to be performed first,
 * the initial solution is allowed to be rational and it is only
 * cut out (if needed) in the next iteration, if no coalescing measures
 * were taken.
 */
static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
	__isl_take isl_basic_set *lp, int n_edge, int want_integral)
{
	int i, pos, cut;
	isl_ctx *ctx;
	isl_tab_lexmin *tl;
	isl_vec *sol = NULL, *prev;
	int treat_coalescing;
	int try_again;

	if (!lp)
		return NULL;
	ctx = isl_basic_set_get_ctx(lp);
	treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
	tl = isl_tab_lexmin_from_basic_set(lp);

	cut = 0;
	do {
		int integral;

		try_again = 0;
		if (cut)
			tl = isl_tab_lexmin_cut_to_integer(tl);
		prev = sol;
		sol = non_empty_solution(tl);
		if (!sol)
			goto error;

		integral = isl_int_is_one(sol->el[0]);
		if (!carries_dependences(sol, n_edge)) {
			if (!prev)
				prev = isl_vec_alloc(ctx, 0);
			isl_vec_free(sol);
			sol = prev;
			break;
		}
		prev = isl_vec_free(prev);
		cut = want_integral && !integral;
		if (cut)
			try_again = 1;
		if (!treat_coalescing)
			continue;
		for (i = 0; i < graph->n; ++i) {
			struct isl_sched_node *node = &graph->node[i];

			pos = find_node_coalescing(node, sol);
			if (pos < 0)
				goto error;
			if (pos < node->nvar)
				break;
		}
		if (i < graph->n) {
			try_again = 1;
			tl = zero_out_node_coef(tl, &graph->node[i], pos);
			cut = 0;
		}
	} while (try_again);

	isl_tab_lexmin_free(tl);

	return sol;
error:
	isl_tab_lexmin_free(tl);
	isl_vec_free(prev);
	isl_vec_free(sol);
	return NULL;
}

/* If "edge" is an edge from a node to itself, then add the corresponding
 * dependence relation to "umap".
 * If "node" has been compressed, then the dependence relation
 * is also compressed first.
 */
static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
	struct isl_sched_edge *edge)
{
	isl_map *map;
	struct isl_sched_node *node = edge->src;

	if (edge->src != edge->dst)
		return umap;

	map = isl_map_copy(edge->map);
	if (node->compressed) {
		map = isl_map_preimage_domain_multi_aff(map,
				    isl_multi_aff_copy(node->decompress));
		map = isl_map_preimage_range_multi_aff(map,
				    isl_multi_aff_copy(node->decompress));
	}
	umap = isl_union_map_add_map(umap, map);
	return umap;
}

/* If "edge" is an edge from a node to another node, then add the corresponding
 * dependence relation to "umap".
 * If the source or destination nodes of "edge" have been compressed,
 * then the dependence relation is also compressed first.
 */
static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
	struct isl_sched_edge *edge)
{
	isl_map *map;

	if (edge->src == edge->dst)
		return umap;

	map = isl_map_copy(edge->map);
	if (edge->src->compressed)
		map = isl_map_preimage_domain_multi_aff(map,
				    isl_multi_aff_copy(edge->src->decompress));
	if (edge->dst->compressed)
		map = isl_map_preimage_range_multi_aff(map,
				    isl_multi_aff_copy(edge->dst->decompress));
	umap = isl_union_map_add_map(umap, map);
	return umap;
}

/* Internal data structure used by union_drop_coalescing_constraints
 * to collect bounds on all relevant statements.
 *
 * "graph" is the schedule constraint graph for which an LP problem
 * is being constructed.
 * "bounds" collects the bounds.
 */
struct isl_collect_bounds_data {
	isl_ctx *ctx;
	struct isl_sched_graph *graph;
	isl_union_set *bounds;
};

/* Add the size bounds for the node with instance deltas in "set"
 * to data->bounds.
 */
static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
{
	struct isl_collect_bounds_data *data = user;
	struct isl_sched_node *node;
	isl_space *space;
	isl_set *bounds;

	space = isl_set_get_space(set);
	isl_set_free(set);

	node = graph_find_compressed_node(data->ctx, data->graph, space);
	isl_space_free(space);

	bounds = isl_set_from_basic_set(get_size_bounds(node));
	data->bounds = isl_union_set_add_set(data->bounds, bounds);

	return isl_stat_ok;
}

/* Drop some constraints from "delta" that could be exploited
 * to construct loop coalescing schedules.
 * In particular, drop those constraint that bound the difference
 * to the size of the domain.
 * Do this for each set/node in "delta" separately.
 * The parameters are assumed to have been projected out by the caller.
 */
static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
	struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
{
	struct isl_collect_bounds_data data = { ctx, graph };

	data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
	if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
		data.bounds = isl_union_set_free(data.bounds);
	delta = isl_union_set_plain_gist(delta, data.bounds);

	return delta;
}

/* Given a non-trivial lineality space "lineality", add the corresponding
 * universe set to data->mask and add a map from elements to
 * other elements along the lines in "lineality" to data->equivalent.
 * If this is the first time this function gets called
 * (data->any_non_trivial is still false), then set data->any_non_trivial and
 * initialize data->mask and data->equivalent.
 *
 * In particular, if the lineality space is defined by equality constraints
 *
 *	E x = 0
 *
 * then construct an affine mapping
 *
 *	f : x -> E x
 *
 * and compute the equivalence relation of having the same image under f:
 *
 *	{ x -> x' : E x = E x' }
 */
static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
	struct isl_exploit_lineality_data *data)
{
	isl_mat *eq;
	isl_space *space;
	isl_set *univ;
	isl_multi_aff *ma;
	isl_multi_pw_aff *mpa;
	isl_map *map;
	int n;

	if (!lineality)
		return isl_stat_error;
	if (isl_basic_set_dim(lineality, isl_dim_div) != 0)
		isl_die(isl_basic_set_get_ctx(lineality), isl_error_internal,
			"local variables not allowed", goto error);

	space = isl_basic_set_get_space(lineality);
	if (!data->any_non_trivial) {
		data->equivalent = isl_union_map_empty(isl_space_copy(space));
		data->mask = isl_union_set_empty(isl_space_copy(space));
	}
	data->any_non_trivial = isl_bool_true;

	univ = isl_set_universe(isl_space_copy(space));
	data->mask = isl_union_set_add_set(data->mask, univ);

	eq = isl_basic_set_extract_equalities(lineality);
	n = isl_mat_rows(eq);
	eq = isl_mat_insert_zero_rows(eq, 0, 1);
	eq = isl_mat_set_element_si(eq, 0, 0, 1);
	space = isl_space_from_domain(space);
	space = isl_space_add_dims(space, isl_dim_out, n);
	ma = isl_multi_aff_from_aff_mat(space, eq);
	mpa = isl_multi_pw_aff_from_multi_aff(ma);
	map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
	data->equivalent = isl_union_map_add_map(data->equivalent, map);

	isl_basic_set_free(lineality);
	return isl_stat_ok;
error:
	isl_basic_set_free(lineality);
	return isl_stat_error;
}

/* Check if the lineality space "set" is non-trivial (i.e., is not just
 * the origin or, in other words, satisfies a number of equality constraints
 * that is smaller than the dimension of the set).
 * If so, extend data->mask and data->equivalent accordingly.
 *
 * The input should not have any local variables already, but
 * isl_set_remove_divs is called to make sure it does not.
 */
static isl_stat add_lineality(__isl_take isl_set *set, void *user)
{
	struct isl_exploit_lineality_data *data = user;
	isl_basic_set *hull;
	int dim, n_eq;

	set = isl_set_remove_divs(set);
	hull = isl_set_unshifted_simple_hull(set);
	dim = isl_basic_set_dim(hull, isl_dim_set);
	n_eq = isl_basic_set_n_equality(hull);
	if (!hull)
		return isl_stat_error;
	if (dim != n_eq)
		return add_non_trivial_lineality(hull, data);
	isl_basic_set_free(hull);
	return isl_stat_ok;
}

/* Check if the difference set on intra-node schedule constraints "intra"
 * has any non-trivial lineality space.
 * If so, then extend the difference set to a difference set
 * on equivalent elements.  That is, if "intra" is
 *
 *	{ y - x : (x,y) \in V }
 *
 * and elements are equivalent if they have the same image under f,
 * then return
 *
 *	{ y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
 *
 * or, since f is linear,
 *
 *	{ y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
 *
 * The results of the search for non-trivial lineality spaces is stored
 * in "data".
 */
static __isl_give isl_union_set *exploit_intra_lineality(
	__isl_take isl_union_set *intra,
	struct isl_exploit_lineality_data *data)
{
	isl_union_set *lineality;
	isl_union_set *uset;

	data->any_non_trivial = isl_bool_false;
	lineality = isl_union_set_copy(intra);
	lineality = isl_union_set_combined_lineality_space(lineality);
	if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
		data->any_non_trivial = isl_bool_error;
	isl_union_set_free(lineality);

	if (data->any_non_trivial < 0)
		return isl_union_set_free(intra);
	if (!data->any_non_trivial)
		return intra;

	uset = isl_union_set_copy(intra);
	intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
	uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
	intra = isl_union_set_union(intra, uset);

	intra = isl_union_set_remove_divs(intra);

	return intra;
}

/* If the difference set on intra-node schedule constraints was found to have
 * any non-trivial lineality space by exploit_intra_lineality,
 * as recorded in "data", then extend the inter-node
 * schedule constraints "inter" to schedule constraints on equivalent elements.
 * That is, if "inter" is V and
 * elements are equivalent if they have the same image under f, then return
 *
 *	{ (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
 */
static __isl_give isl_union_map *exploit_inter_lineality(
	__isl_take isl_union_map *inter,
	struct isl_exploit_lineality_data *data)
{
	isl_union_map *umap;

	if (data->any_non_trivial < 0)
		return isl_union_map_free(inter);
	if (!data->any_non_trivial)
		return inter;

	umap = isl_union_map_copy(inter);
	inter = isl_union_map_subtract_range(inter,
				isl_union_set_copy(data->mask));
	umap = isl_union_map_apply_range(umap,
				isl_union_map_copy(data->equivalent));
	inter = isl_union_map_union(inter, umap);
	umap = isl_union_map_copy(inter);
	inter = isl_union_map_subtract_domain(inter,
				isl_union_set_copy(data->mask));
	umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
				umap);
	inter = isl_union_map_union(inter, umap);

	inter = isl_union_map_remove_divs(inter);

	return inter;
}

/* For each (conditional) validity edge in "graph",
 * add the corresponding dependence relation using "add"
 * to a collection of dependence relations and return the result.
 * If "coincidence" is set, then coincidence edges are considered as well.
 */
static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
	__isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
		struct isl_sched_edge *edge), int coincidence)
{
	int i;
	isl_space *space;
	isl_union_map *umap;

	space = isl_space_copy(graph->node[0].space);
	umap = isl_union_map_empty(space);

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];

		if (!is_any_validity(edge) &&
		    (!coincidence || !is_coincidence(edge)))
			continue;

		umap = add(umap, edge);
	}

	return umap;
}

/* Project out all parameters from "uset" and return the result.
 */
static __isl_give isl_union_set *union_set_drop_parameters(
	__isl_take isl_union_set *uset)
{
	unsigned nparam;

	nparam = isl_union_set_dim(uset, isl_dim_param);
	return isl_union_set_project_out(uset, isl_dim_param, 0, nparam);
}

/* For each dependence relation on a (conditional) validity edge
 * from a node to itself,
 * construct the set of coefficients of valid constraints for elements
 * in that dependence relation and collect the results.
 * If "coincidence" is set, then coincidence edges are considered as well.
 *
 * In particular, for each dependence relation R, constraints
 * on coefficients (c_0, c_x) are constructed such that
 *
 *	c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
 *
 * If the schedule_treat_coalescing option is set, then some constraints
 * that could be exploited to construct coalescing schedules
 * are removed before the dual is computed, but after the parameters
 * have been projected out.
 * The entire computation is essentially the same as that performed
 * by intra_coefficients, except that it operates on multiple
 * edges together and that the parameters are always projected out.
 *
 * Additionally, exploit any non-trivial lineality space
 * in the difference set after removing coalescing constraints and
 * store the results of the non-trivial lineality space detection in "data".
 * The procedure is currently run unconditionally, but it is unlikely
 * to find any non-trivial lineality spaces if no coalescing constraints
 * have been removed.
 *
 * Note that if a dependence relation is a union of basic maps,
 * then each basic map needs to be treated individually as it may only
 * be possible to carry the dependences expressed by some of those
 * basic maps and not all of them.
 * The collected validity constraints are therefore not coalesced and
 * it is assumed that they are not coalesced automatically.
 * Duplicate basic maps can be removed, however.
 * In particular, if the same basic map appears as a disjunct
 * in multiple edges, then it only needs to be carried once.
 */
static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
	struct isl_sched_graph *graph, int coincidence,
	struct isl_exploit_lineality_data *data)
{
	isl_union_map *intra;
	isl_union_set *delta;
	isl_basic_set_list *list;

	intra = collect_validity(graph, &add_intra, coincidence);
	delta = isl_union_map_deltas(intra);
	delta = union_set_drop_parameters(delta);
	delta = isl_union_set_remove_divs(delta);
	if (isl_options_get_schedule_treat_coalescing(ctx))
		delta = union_drop_coalescing_constraints(ctx, graph, delta);
	delta = exploit_intra_lineality(delta, data);
	list = isl_union_set_get_basic_set_list(delta);
	isl_union_set_free(delta);

	return isl_basic_set_list_coefficients(list);
}

/* For each dependence relation on a (conditional) validity edge
 * from a node to some other node,
 * construct the set of coefficients of valid constraints for elements
 * in that dependence relation and collect the results.
 * If "coincidence" is set, then coincidence edges are considered as well.
 *
 * In particular, for each dependence relation R, constraints
 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
 *
 *	c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
 *
 * This computation is essentially the same as that performed
 * by inter_coefficients, except that it operates on multiple
 * edges together.
 *
 * Additionally, exploit any non-trivial lineality space
 * that may have been discovered by collect_intra_validity
 * (as stored in "data").
 *
 * Note that if a dependence relation is a union of basic maps,
 * then each basic map needs to be treated individually as it may only
 * be possible to carry the dependences expressed by some of those
 * basic maps and not all of them.
 * The collected validity constraints are therefore not coalesced and
 * it is assumed that they are not coalesced automatically.
 * Duplicate basic maps can be removed, however.
 * In particular, if the same basic map appears as a disjunct
 * in multiple edges, then it only needs to be carried once.
 */
static __isl_give isl_basic_set_list *collect_inter_validity(
	struct isl_sched_graph *graph, int coincidence,
	struct isl_exploit_lineality_data *data)
{
	isl_union_map *inter;
	isl_union_set *wrap;
	isl_basic_set_list *list;

	inter = collect_validity(graph, &add_inter, coincidence);
	inter = exploit_inter_lineality(inter, data);
	inter = isl_union_map_remove_divs(inter);
	wrap = isl_union_map_wrap(inter);
	list = isl_union_set_get_basic_set_list(wrap);
	isl_union_set_free(wrap);
	return isl_basic_set_list_coefficients(list);
}

/* Construct an LP problem for finding schedule coefficients
 * such that the schedule carries as many of the "n_edge" groups of
 * dependences as possible based on the corresponding coefficient
 * constraints and return the lexicographically smallest non-trivial solution.
 * "intra" is the sequence of coefficient constraints for intra-node edges.
 * "inter" is the sequence of coefficient constraints for inter-node edges.
 * If "want_integral" is set, then compute an integral solution
 * for the coefficients rather than using the numerators
 * of a rational solution.
 * "carry_inter" indicates whether inter-node edges should be carried or
 * only respected.
 *
 * If none of the "n_edge" groups can be carried
 * then return an empty vector.
 */
static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
	struct isl_sched_graph *graph, int n_edge,
	__isl_keep isl_basic_set_list *intra,
	__isl_keep isl_basic_set_list *inter, int want_integral,
	int carry_inter)
{
	isl_basic_set *lp;

	if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
		return NULL;

	lp = isl_basic_set_copy(graph->lp);
	return non_neg_lexmin(graph, lp, n_edge, want_integral);
}

/* Construct an LP problem for finding schedule coefficients
 * such that the schedule carries as many of the validity dependences
 * as possible and
 * return the lexicographically smallest non-trivial solution.
 * If "fallback" is set, then the carrying is performed as a fallback
 * for the Pluto-like scheduler.
 * If "coincidence" is set, then try and carry coincidence edges as well.
 *
 * The variable "n_edge" stores the number of groups that should be carried.
 * If none of the "n_edge" groups can be carried
 * then return an empty vector.
 * If, moreover, "n_edge" is zero, then the LP problem does not even
 * need to be constructed.
 *
 * If a fallback solution is being computed, then compute an integral solution
 * for the coefficients rather than using the numerators
 * of a rational solution.
 *
 * If a fallback solution is being computed, if there are any intra-node
 * dependences, and if requested by the user, then first try
 * to only carry those intra-node dependences.
 * If this fails to carry any dependences, then try again
 * with the inter-node dependences included.
 */
static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
	struct isl_sched_graph *graph, int fallback, int coincidence)
{
	int n_intra, n_inter;
	int n_edge;
	struct isl_carry carry = { 0 };
	isl_vec *sol;

	carry.intra = collect_intra_validity(ctx, graph, coincidence,
						&carry.lineality);
	carry.inter = collect_inter_validity(graph, coincidence,
						&carry.lineality);
	if (!carry.intra || !carry.inter)
		goto error;
	n_intra = isl_basic_set_list_n_basic_set(carry.intra);
	n_inter = isl_basic_set_list_n_basic_set(carry.inter);

	if (fallback && n_intra > 0 &&
	    isl_options_get_schedule_carry_self_first(ctx)) {
		sol = compute_carrying_sol_coef(ctx, graph, n_intra,
				carry.intra, carry.inter, fallback, 0);
		if (!sol || sol->size != 0 || n_inter == 0) {
			isl_carry_clear(&carry);
			return sol;
		}
		isl_vec_free(sol);
	}

	n_edge = n_intra + n_inter;
	if (n_edge == 0) {
		isl_carry_clear(&carry);
		return isl_vec_alloc(ctx, 0);
	}

	sol = compute_carrying_sol_coef(ctx, graph, n_edge,
				carry.intra, carry.inter, fallback, 1);
	isl_carry_clear(&carry);
	return sol;
error:
	isl_carry_clear(&carry);
	return NULL;
}

/* Construct a schedule row for each node such that as many validity dependences
 * as possible are carried and then continue with the next band.
 * If "fallback" is set, then the carrying is performed as a fallback
 * for the Pluto-like scheduler.
 * If "coincidence" is set, then try and carry coincidence edges as well.
 *
 * If there are no validity dependences, then no dependence can be carried and
 * the procedure is guaranteed to fail.  If there is more than one component,
 * then try computing a schedule on each component separately
 * to prevent or at least postpone this failure.
 *
 * If a schedule row is computed, then check that dependences are carried
 * for at least one of the edges.
 *
 * If the computed schedule row turns out to be trivial on one or
 * more nodes where it should not be trivial, then we throw it away
 * and try again on each component separately.
 *
 * If there is only one component, then we accept the schedule row anyway,
 * but we do not consider it as a complete row and therefore do not
 * increment graph->n_row.  Note that the ranks of the nodes that
 * do get a non-trivial schedule part will get updated regardless and
 * graph->maxvar is computed based on these ranks.  The test for
 * whether more schedule rows are required in compute_schedule_wcc
 * is therefore not affected.
 *
 * Insert a band corresponding to the schedule row at position "node"
 * of the schedule tree and continue with the construction of the schedule.
 * This insertion and the continued construction is performed by split_scaled
 * after optionally checking for non-trivial common divisors.
 */
static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
	struct isl_sched_graph *graph, int fallback, int coincidence)
{
	int trivial;
	isl_ctx *ctx;
	isl_vec *sol;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
	if (!sol)
		return isl_schedule_node_free(node);
	if (sol->size == 0) {
		isl_vec_free(sol);
		if (graph->scc > 1)
			return compute_component_schedule(node, graph, 1);
		isl_die(ctx, isl_error_unknown, "unable to carry dependences",
			return isl_schedule_node_free(node));
	}

	trivial = is_any_trivial(graph, sol);
	if (trivial < 0) {
		sol = isl_vec_free(sol);
	} else if (trivial && graph->scc > 1) {
		isl_vec_free(sol);
		return compute_component_schedule(node, graph, 1);
	}

	if (update_schedule(graph, sol, 0) < 0)
		return isl_schedule_node_free(node);
	if (trivial)
		graph->n_row--;

	return split_scaled(node, graph);
}

/* Construct a schedule row for each node such that as many validity dependences
 * as possible are carried and then continue with the next band.
 * Do so as a fallback for the Pluto-like scheduler.
 * If "coincidence" is set, then try and carry coincidence edges as well.
 */
static __isl_give isl_schedule_node *carry_fallback(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	int coincidence)
{
	return carry(node, graph, 1, coincidence);
}

/* Construct a schedule row for each node such that as many validity dependences
 * as possible are carried and then continue with the next band.
 * Do so for the case where the Feautrier scheduler was selected
 * by the user.
 */
static __isl_give isl_schedule_node *carry_feautrier(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	return carry(node, graph, 0, 0);
}

/* Construct a schedule row for each node such that as many validity dependences
 * as possible are carried and then continue with the next band.
 * Do so as a fallback for the Pluto-like scheduler.
 */
static __isl_give isl_schedule_node *carry_dependences(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	return carry_fallback(node, graph, 0);
}

/* Construct a schedule row for each node such that as many validity or
 * coincidence dependences as possible are carried and
 * then continue with the next band.
 * Do so as a fallback for the Pluto-like scheduler.
 */
static __isl_give isl_schedule_node *carry_coincidence(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	return carry_fallback(node, graph, 1);
}

/* Topologically sort statements mapped to the same schedule iteration
 * and add insert a sequence node in front of "node"
 * corresponding to this order.
 * If "initialized" is set, then it may be assumed that compute_maxvar
 * has been called on the current band.  Otherwise, call
 * compute_maxvar if and before carry_dependences gets called.
 *
 * If it turns out to be impossible to sort the statements apart,
 * because different dependences impose different orderings
 * on the statements, then we extend the schedule such that
 * it carries at least one more dependence.
 */
static __isl_give isl_schedule_node *sort_statements(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	int initialized)
{
	isl_ctx *ctx;
	isl_union_set_list *filters;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	if (graph->n < 1)
		isl_die(ctx, isl_error_internal,
			"graph should have at least one node",
			return isl_schedule_node_free(node));

	if (graph->n == 1)
		return node;

	if (update_edges(ctx, graph) < 0)
		return isl_schedule_node_free(node);

	if (graph->n_edge == 0)
		return node;

	if (detect_sccs(ctx, graph) < 0)
		return isl_schedule_node_free(node);

	next_band(graph);
	if (graph->scc < graph->n) {
		if (!initialized && compute_maxvar(graph) < 0)
			return isl_schedule_node_free(node);
		return carry_dependences(node, graph);
	}

	filters = extract_sccs(ctx, graph);
	node = isl_schedule_node_insert_sequence(node, filters);

	return node;
}

/* Are there any (non-empty) (conditional) validity edges in the graph?
 */
static int has_validity_edges(struct isl_sched_graph *graph)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i) {
		int empty;

		empty = isl_map_plain_is_empty(graph->edge[i].map);
		if (empty < 0)
			return -1;
		if (empty)
			continue;
		if (is_any_validity(&graph->edge[i]))
			return 1;
	}

	return 0;
}

/* Should we apply a Feautrier step?
 * That is, did the user request the Feautrier algorithm and are
 * there any validity dependences (left)?
 */
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
{
	if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
		return 0;

	return has_validity_edges(graph);
}

/* Compute a schedule for a connected dependence graph using Feautrier's
 * multi-dimensional scheduling algorithm and return the updated schedule node.
 *
 * The original algorithm is described in [1].
 * The main idea is to minimize the number of scheduling dimensions, by
 * trying to satisfy as many dependences as possible per scheduling dimension.
 *
 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
 *     Problem, Part II: Multi-Dimensional Time.
 *     In Intl. Journal of Parallel Programming, 1992.
 */
static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
	isl_schedule_node *node, struct isl_sched_graph *graph)
{
	return carry_feautrier(node, graph);
}

/* Turn off the "local" bit on all (condition) edges.
 */
static void clear_local_edges(struct isl_sched_graph *graph)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i)
		if (is_condition(&graph->edge[i]))
			clear_local(&graph->edge[i]);
}

/* Does "graph" have both condition and conditional validity edges?
 */
static int need_condition_check(struct isl_sched_graph *graph)
{
	int i;
	int any_condition = 0;
	int any_conditional_validity = 0;

	for (i = 0; i < graph->n_edge; ++i) {
		if (is_condition(&graph->edge[i]))
			any_condition = 1;
		if (is_conditional_validity(&graph->edge[i]))
			any_conditional_validity = 1;
	}

	return any_condition && any_conditional_validity;
}

/* Does "graph" contain any coincidence edge?
 */
static int has_any_coincidence(struct isl_sched_graph *graph)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i)
		if (is_coincidence(&graph->edge[i]))
			return 1;

	return 0;
}

/* Extract the final schedule row as a map with the iteration domain
 * of "node" as domain.
 */
static __isl_give isl_map *final_row(struct isl_sched_node *node)
{
	isl_multi_aff *ma;
	int row;

	row = isl_mat_rows(node->sched) - 1;
	ma = node_extract_partial_schedule_multi_aff(node, row, 1);
	return isl_map_from_multi_aff(ma);
}

/* Is the conditional validity dependence in the edge with index "edge_index"
 * violated by the latest (i.e., final) row of the schedule?
 * That is, is i scheduled after j
 * for any conditional validity dependence i -> j?
 */
static int is_violated(struct isl_sched_graph *graph, int edge_index)
{
	isl_map *src_sched, *dst_sched, *map;
	struct isl_sched_edge *edge = &graph->edge[edge_index];
	int empty;

	src_sched = final_row(edge->src);
	dst_sched = final_row(edge->dst);
	map = isl_map_copy(edge->map);
	map = isl_map_apply_domain(map, src_sched);
	map = isl_map_apply_range(map, dst_sched);
	map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
	empty = isl_map_is_empty(map);
	isl_map_free(map);

	if (empty < 0)
		return -1;

	return !empty;
}

/* Does "graph" have any satisfied condition edges that
 * are adjacent to the conditional validity constraint with
 * domain "conditional_source" and range "conditional_sink"?
 *
 * A satisfied condition is one that is not local.
 * If a condition was forced to be local already (i.e., marked as local)
 * then there is no need to check if it is in fact local.
 *
 * Additionally, mark all adjacent condition edges found as local.
 */
static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
	__isl_keep isl_union_set *conditional_source,
	__isl_keep isl_union_set *conditional_sink)
{
	int i;
	int any = 0;

	for (i = 0; i < graph->n_edge; ++i) {
		int adjacent, local;
		isl_union_map *condition;

		if (!is_condition(&graph->edge[i]))
			continue;
		if (is_local(&graph->edge[i]))
			continue;

		condition = graph->edge[i].tagged_condition;
		adjacent = domain_intersects(condition, conditional_sink);
		if (adjacent >= 0 && !adjacent)
			adjacent = range_intersects(condition,
							conditional_source);
		if (adjacent < 0)
			return -1;
		if (!adjacent)
			continue;

		set_local(&graph->edge[i]);

		local = is_condition_false(&graph->edge[i]);
		if (local < 0)
			return -1;
		if (!local)
			any = 1;
	}

	return any;
}

/* Are there any violated conditional validity dependences with
 * adjacent condition dependences that are not local with respect
 * to the current schedule?
 * That is, is the conditional validity constraint violated?
 *
 * Additionally, mark all those adjacent condition dependences as local.
 * We also mark those adjacent condition dependences that were not marked
 * as local before, but just happened to be local already.  This ensures
 * that they remain local if the schedule is recomputed.
 *
 * We first collect domain and range of all violated conditional validity
 * dependences and then check if there are any adjacent non-local
 * condition dependences.
 */
static int has_violated_conditional_constraint(isl_ctx *ctx,
	struct isl_sched_graph *graph)
{
	int i;
	int any = 0;
	isl_union_set *source, *sink;

	source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
	sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
	for (i = 0; i < graph->n_edge; ++i) {
		isl_union_set *uset;
		isl_union_map *umap;
		int violated;

		if (!is_conditional_validity(&graph->edge[i]))
			continue;

		violated = is_violated(graph, i);
		if (violated < 0)
			goto error;
		if (!violated)
			continue;

		any = 1;

		umap = isl_union_map_copy(graph->edge[i].tagged_validity);
		uset = isl_union_map_domain(umap);
		source = isl_union_set_union(source, uset);
		source = isl_union_set_coalesce(source);

		umap = isl_union_map_copy(graph->edge[i].tagged_validity);
		uset = isl_union_map_range(umap);
		sink = isl_union_set_union(sink, uset);
		sink = isl_union_set_coalesce(sink);
	}

	if (any)
		any = has_adjacent_true_conditions(graph, source, sink);

	isl_union_set_free(source);
	isl_union_set_free(sink);
	return any;
error:
	isl_union_set_free(source);
	isl_union_set_free(sink);
	return -1;
}

/* Examine the current band (the rows between graph->band_start and
 * graph->n_total_row), deciding whether to drop it or add it to "node"
 * and then continue with the computation of the next band, if any.
 * If "initialized" is set, then it may be assumed that compute_maxvar
 * has been called on the current band.  Otherwise, call
 * compute_maxvar if and before carry_dependences gets called.
 *
 * The caller keeps looking for a new row as long as
 * graph->n_row < graph->maxvar.  If the latest attempt to find
 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
 * then we either
 * - split between SCCs and start over (assuming we found an interesting
 *	pair of SCCs between which to split)
 * - continue with the next band (assuming the current band has at least
 *	one row)
 * - if there is more than one SCC left, then split along all SCCs
 * - if outer coincidence needs to be enforced, then try to carry as many
 *	validity or coincidence dependences as possible and
 *	continue with the next band
 * - try to carry as many validity dependences as possible and
 *	continue with the next band
 * In each case, we first insert a band node in the schedule tree
 * if any rows have been computed.
 *
 * If the caller managed to complete the schedule and the current band
 * is empty, then finish off by topologically
 * sorting the statements based on the remaining dependences.
 * If, on the other hand, the current band has at least one row,
 * then continue with the next band.  Note that this next band
 * will necessarily be empty, but the graph may still be split up
 * into weakly connected components before arriving back here.
 */
static __isl_give isl_schedule_node *compute_schedule_finish_band(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	int initialized)
{
	int empty;

	if (!node)
		return NULL;

	empty = graph->n_total_row == graph->band_start;
	if (graph->n_row < graph->maxvar) {
		isl_ctx *ctx;

		ctx = isl_schedule_node_get_ctx(node);
		if (!ctx->opt->schedule_maximize_band_depth && !empty)
			return compute_next_band(node, graph, 1);
		if (graph->src_scc >= 0)
			return compute_split_schedule(node, graph);
		if (!empty)
			return compute_next_band(node, graph, 1);
		if (graph->scc > 1)
			return compute_component_schedule(node, graph, 1);
		if (!initialized && compute_maxvar(graph) < 0)
			return isl_schedule_node_free(node);
		if (isl_options_get_schedule_outer_coincidence(ctx))
			return carry_coincidence(node, graph);
		return carry_dependences(node, graph);
	}

	if (!empty)
		return compute_next_band(node, graph, 1);
	return sort_statements(node, graph, initialized);
}

/* Construct a band of schedule rows for a connected dependence graph.
 * The caller is responsible for determining the strongly connected
 * components and calling compute_maxvar first.
 *
 * We try to find a sequence of as many schedule rows as possible that result
 * in non-negative dependence distances (independent of the previous rows
 * in the sequence, i.e., such that the sequence is tilable), with as
 * many of the initial rows as possible satisfying the coincidence constraints.
 * The computation stops if we can't find any more rows or if we have found
 * all the rows we wanted to find.
 *
 * If ctx->opt->schedule_outer_coincidence is set, then we force the
 * outermost dimension to satisfy the coincidence constraints.  If this
 * turns out to be impossible, we fall back on the general scheme above
 * and try to carry as many dependences as possible.
 *
 * If "graph" contains both condition and conditional validity dependences,
 * then we need to check that that the conditional schedule constraint
 * is satisfied, i.e., there are no violated conditional validity dependences
 * that are adjacent to any non-local condition dependences.
 * If there are, then we mark all those adjacent condition dependences
 * as local and recompute the current band.  Those dependences that
 * are marked local will then be forced to be local.
 * The initial computation is performed with no dependences marked as local.
 * If we are lucky, then there will be no violated conditional validity
 * dependences adjacent to any non-local condition dependences.
 * Otherwise, we mark some additional condition dependences as local and
 * recompute.  We continue this process until there are no violations left or
 * until we are no longer able to compute a schedule.
 * Since there are only a finite number of dependences,
 * there will only be a finite number of iterations.
 */
static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
	struct isl_sched_graph *graph)
{
	int has_coincidence;
	int use_coincidence;
	int force_coincidence = 0;
	int check_conditional;

	if (sort_sccs(graph) < 0)
		return isl_stat_error;

	clear_local_edges(graph);
	check_conditional = need_condition_check(graph);
	has_coincidence = has_any_coincidence(graph);

	if (ctx->opt->schedule_outer_coincidence)
		force_coincidence = 1;

	use_coincidence = has_coincidence;
	while (graph->n_row < graph->maxvar) {
		isl_vec *sol;
		int violated;
		int coincident;

		graph->src_scc = -1;
		graph->dst_scc = -1;

		if (setup_lp(ctx, graph, use_coincidence) < 0)
			return isl_stat_error;
		sol = solve_lp(ctx, graph);
		if (!sol)
			return isl_stat_error;
		if (sol->size == 0) {
			int empty = graph->n_total_row == graph->band_start;

			isl_vec_free(sol);
			if (use_coincidence && (!force_coincidence || !empty)) {
				use_coincidence = 0;
				continue;
			}
			return isl_stat_ok;
		}
		coincident = !has_coincidence || use_coincidence;
		if (update_schedule(graph, sol, coincident) < 0)
			return isl_stat_error;

		if (!check_conditional)
			continue;
		violated = has_violated_conditional_constraint(ctx, graph);
		if (violated < 0)
			return isl_stat_error;
		if (!violated)
			continue;
		if (reset_band(graph) < 0)
			return isl_stat_error;
		use_coincidence = has_coincidence;
	}

	return isl_stat_ok;
}

/* Compute a schedule for a connected dependence graph by considering
 * the graph as a whole and return the updated schedule node.
 *
 * The actual schedule rows of the current band are computed by
 * compute_schedule_wcc_band.  compute_schedule_finish_band takes
 * care of integrating the band into "node" and continuing
 * the computation.
 */
static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	isl_ctx *ctx;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	if (compute_schedule_wcc_band(ctx, graph) < 0)
		return isl_schedule_node_free(node);

	return compute_schedule_finish_band(node, graph, 1);
}

/* Clustering information used by compute_schedule_wcc_clustering.
 *
 * "n" is the number of SCCs in the original dependence graph
 * "scc" is an array of "n" elements, each representing an SCC
 * of the original dependence graph.  All entries in the same cluster
 * have the same number of schedule rows.
 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
 * where each cluster is represented by the index of the first SCC
 * in the cluster.  Initially, each SCC belongs to a cluster containing
 * only that SCC.
 *
 * "scc_in_merge" is used by merge_clusters_along_edge to keep
 * track of which SCCs need to be merged.
 *
 * "cluster" contains the merged clusters of SCCs after the clustering
 * has completed.
 *
 * "scc_node" is a temporary data structure used inside copy_partial.
 * For each SCC, it keeps track of the number of nodes in the SCC
 * that have already been copied.
 */
struct isl_clustering {
	int n;
	struct isl_sched_graph *scc;
	struct isl_sched_graph *cluster;
	int *scc_cluster;
	int *scc_node;
	int *scc_in_merge;
};

/* Initialize the clustering data structure "c" from "graph".
 *
 * In particular, allocate memory, extract the SCCs from "graph"
 * into c->scc, initialize scc_cluster and construct
 * a band of schedule rows for each SCC.
 * Within each SCC, there is only one SCC by definition.
 * Each SCC initially belongs to a cluster containing only that SCC.
 */
static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
	struct isl_sched_graph *graph)
{
	int i;

	c->n = graph->scc;
	c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
	c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
	c->scc_cluster = isl_calloc_array(ctx, int, c->n);
	c->scc_node = isl_calloc_array(ctx, int, c->n);
	c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
	if (!c->scc || !c->cluster ||
	    !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
		return isl_stat_error;

	for (i = 0; i < c->n; ++i) {
		if (extract_sub_graph(ctx, graph, &node_scc_exactly,
					&edge_scc_exactly, i, &c->scc[i]) < 0)
			return isl_stat_error;
		c->scc[i].scc = 1;
		if (compute_maxvar(&c->scc[i]) < 0)
			return isl_stat_error;
		if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
			return isl_stat_error;
		c->scc_cluster[i] = i;
	}

	return isl_stat_ok;
}

/* Free all memory allocated for "c".
 */
static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
{
	int i;

	if (c->scc)
		for (i = 0; i < c->n; ++i)
			graph_free(ctx, &c->scc[i]);
	free(c->scc);
	if (c->cluster)
		for (i = 0; i < c->n; ++i)
			graph_free(ctx, &c->cluster[i]);
	free(c->cluster);
	free(c->scc_cluster);
	free(c->scc_node);
	free(c->scc_in_merge);
}

/* Should we refrain from merging the cluster in "graph" with
 * any other cluster?
 * In particular, is its current schedule band empty and incomplete.
 */
static int bad_cluster(struct isl_sched_graph *graph)
{
	return graph->n_row < graph->maxvar &&
		graph->n_total_row == graph->band_start;
}

/* Is "edge" a proximity edge with a non-empty dependence relation?
 */
static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
{
	if (!is_proximity(edge))
		return isl_bool_false;
	return isl_bool_not(isl_map_plain_is_empty(edge->map));
}

/* Return the index of an edge in "graph" that can be used to merge
 * two clusters in "c".
 * Return graph->n_edge if no such edge can be found.
 * Return -1 on error.
 *
 * In particular, return a proximity edge between two clusters
 * that is not marked "no_merge" and such that neither of the
 * two clusters has an incomplete, empty band.
 *
 * If there are multiple such edges, then try and find the most
 * appropriate edge to use for merging.  In particular, pick the edge
 * with the greatest weight.  If there are multiple of those,
 * then pick one with the shortest distance between
 * the two cluster representatives.
 */
static int find_proximity(struct isl_sched_graph *graph,
	struct isl_clustering *c)
{
	int i, best = graph->n_edge, best_dist, best_weight;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		int dist, weight;
		isl_bool prox;

		prox = is_non_empty_proximity(edge);
		if (prox < 0)
			return -1;
		if (!prox)
			continue;
		if (edge->no_merge)
			continue;
		if (bad_cluster(&c->scc[edge->src->scc]) ||
		    bad_cluster(&c->scc[edge->dst->scc]))
			continue;
		dist = c->scc_cluster[edge->dst->scc] -
			c->scc_cluster[edge->src->scc];
		if (dist == 0)
			continue;
		weight = edge->weight;
		if (best < graph->n_edge) {
			if (best_weight > weight)
				continue;
			if (best_weight == weight && best_dist <= dist)
				continue;
		}
		best = i;
		best_dist = dist;
		best_weight = weight;
	}

	return best;
}

/* Internal data structure used in mark_merge_sccs.
 *
 * "graph" is the dependence graph in which a strongly connected
 * component is constructed.
 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
 * "src" and "dst" are the indices of the nodes that are being merged.
 */
struct isl_mark_merge_sccs_data {
	struct isl_sched_graph *graph;
	int *scc_cluster;
	int src;
	int dst;
};

/* Check whether the cluster containing node "i" depends on the cluster
 * containing node "j".  If "i" and "j" belong to the same cluster,
 * then they are taken to depend on each other to ensure that
 * the resulting strongly connected component consists of complete
 * clusters.  Furthermore, if "i" and "j" are the two nodes that
 * are being merged, then they are taken to depend on each other as well.
 * Otherwise, check if there is a (conditional) validity dependence
 * from node[j] to node[i], forcing node[i] to follow node[j].
 */
static isl_bool cluster_follows(int i, int j, void *user)
{
	struct isl_mark_merge_sccs_data *data = user;
	struct isl_sched_graph *graph = data->graph;
	int *scc_cluster = data->scc_cluster;

	if (data->src == i && data->dst == j)
		return isl_bool_true;
	if (data->src == j && data->dst == i)
		return isl_bool_true;
	if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
		return isl_bool_true;

	return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}

/* Mark all SCCs that belong to either of the two clusters in "c"
 * connected by the edge in "graph" with index "edge", or to any
 * of the intermediate clusters.
 * The marking is recorded in c->scc_in_merge.
 *
 * The given edge has been selected for merging two clusters,
 * meaning that there is at least a proximity edge between the two nodes.
 * However, there may also be (indirect) validity dependences
 * between the two nodes.  When merging the two clusters, all clusters
 * containing one or more of the intermediate nodes along the
 * indirect validity dependences need to be merged in as well.
 *
 * First collect all such nodes by computing the strongly connected
 * component (SCC) containing the two nodes connected by the edge, where
 * the two nodes are considered to depend on each other to make
 * sure they end up in the same SCC.  Similarly, each node is considered
 * to depend on every other node in the same cluster to ensure
 * that the SCC consists of complete clusters.
 *
 * Then the original SCCs that contain any of these nodes are marked
 * in c->scc_in_merge.
 */
static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
	int edge, struct isl_clustering *c)
{
	struct isl_mark_merge_sccs_data data;
	struct isl_tarjan_graph *g;
	int i;

	for (i = 0; i < c->n; ++i)
		c->scc_in_merge[i] = 0;

	data.graph = graph;
	data.scc_cluster = c->scc_cluster;
	data.src = graph->edge[edge].src - graph->node;
	data.dst = graph->edge[edge].dst - graph->node;

	g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
					&cluster_follows, &data);
	if (!g)
		goto error;

	i = g->op;
	if (i < 3)
		isl_die(ctx, isl_error_internal,
			"expecting at least two nodes in component",
			goto error);
	if (g->order[--i] != -1)
		isl_die(ctx, isl_error_internal,
			"expecting end of component marker", goto error);

	for (--i; i >= 0 && g->order[i] != -1; --i) {
		int scc = graph->node[g->order[i]].scc;
		c->scc_in_merge[scc] = 1;
	}

	isl_tarjan_graph_free(g);
	return isl_stat_ok;
error:
	isl_tarjan_graph_free(g);
	return isl_stat_error;
}

/* Construct the identifier "cluster_i".
 */
static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
{
	char name[40];

	snprintf(name, sizeof(name), "cluster_%d", i);
	return isl_id_alloc(ctx, name, NULL);
}

/* Construct the space of the cluster with index "i" containing
 * the strongly connected component "scc".
 *
 * In particular, construct a space called cluster_i with dimension equal
 * to the number of schedule rows in the current band of "scc".
 */
static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
{
	int nvar;
	isl_space *space;
	isl_id *id;

	nvar = scc->n_total_row - scc->band_start;
	space = isl_space_copy(scc->node[0].space);
	space = isl_space_params(space);
	space = isl_space_set_from_params(space);
	space = isl_space_add_dims(space, isl_dim_set, nvar);
	id = cluster_id(isl_space_get_ctx(space), i);
	space = isl_space_set_tuple_id(space, isl_dim_set, id);

	return space;
}

/* Collect the domain of the graph for merging clusters.
 *
 * In particular, for each cluster with first SCC "i", construct
 * a set in the space called cluster_i with dimension equal
 * to the number of schedule rows in the current band of the cluster.
 */
static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_clustering *c)
{
	int i;
	isl_space *space;
	isl_union_set *domain;

	space = isl_space_params_alloc(ctx, 0);
	domain = isl_union_set_empty(space);

	for (i = 0; i < graph->scc; ++i) {
		isl_space *space;

		if (!c->scc_in_merge[i])
			continue;
		if (c->scc_cluster[i] != i)
			continue;
		space = cluster_space(&c->scc[i], i);
		domain = isl_union_set_add_set(domain, isl_set_universe(space));
	}

	return domain;
}

/* Construct a map from the original instances to the corresponding
 * cluster instance in the current bands of the clusters in "c".
 */
static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_clustering *c)
{
	int i, j;
	isl_space *space;
	isl_union_map *cluster_map;

	space = isl_space_params_alloc(ctx, 0);
	cluster_map = isl_union_map_empty(space);
	for (i = 0; i < graph->scc; ++i) {
		int start, n;
		isl_id *id;

		if (!c->scc_in_merge[i])
			continue;

		id = cluster_id(ctx, c->scc_cluster[i]);
		start = c->scc[i].band_start;
		n = c->scc[i].n_total_row - start;
		for (j = 0; j < c->scc[i].n; ++j) {
			isl_multi_aff *ma;
			isl_map *map;
			struct isl_sched_node *node = &c->scc[i].node[j];

			ma = node_extract_partial_schedule_multi_aff(node,
								    start, n);
			ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
							    isl_id_copy(id));
			map = isl_map_from_multi_aff(ma);
			cluster_map = isl_union_map_add_map(cluster_map, map);
		}
		isl_id_free(id);
	}

	return cluster_map;
}

/* Add "umap" to the schedule constraints "sc" of all types of "edge"
 * that are not isl_edge_condition or isl_edge_conditional_validity.
 */
static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
	struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
	__isl_take isl_schedule_constraints *sc)
{
	enum isl_edge_type t;

	if (!sc)
		return NULL;

	for (t = isl_edge_first; t <= isl_edge_last; ++t) {
		if (t == isl_edge_condition ||
		    t == isl_edge_conditional_validity)
			continue;
		if (!is_type(edge, t))
			continue;
		sc = isl_schedule_constraints_add(sc, t,
						    isl_union_map_copy(umap));
	}

	return sc;
}

/* Add schedule constraints of types isl_edge_condition and
 * isl_edge_conditional_validity to "sc" by applying "umap" to
 * the domains of the wrapped relations in domain and range
 * of the corresponding tagged constraints of "edge".
 */
static __isl_give isl_schedule_constraints *add_conditional_constraints(
	struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
	__isl_take isl_schedule_constraints *sc)
{
	enum isl_edge_type t;
	isl_union_map *tagged;

	for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
		if (!is_type(edge, t))
			continue;
		if (t == isl_edge_condition)
			tagged = isl_union_map_copy(edge->tagged_condition);
		else
			tagged = isl_union_map_copy(edge->tagged_validity);
		tagged = isl_union_map_zip(tagged);
		tagged = isl_union_map_apply_domain(tagged,
					isl_union_map_copy(umap));
		tagged = isl_union_map_zip(tagged);
		sc = isl_schedule_constraints_add(sc, t, tagged);
		if (!sc)
			return NULL;
	}

	return sc;
}

/* Given a mapping "cluster_map" from the original instances to
 * the cluster instances, add schedule constraints on the clusters
 * to "sc" corresponding to the original constraints represented by "edge".
 *
 * For non-tagged dependence constraints, the cluster constraints
 * are obtained by applying "cluster_map" to the edge->map.
 *
 * For tagged dependence constraints, "cluster_map" needs to be applied
 * to the domains of the wrapped relations in domain and range
 * of the tagged dependence constraints.  Pick out the mappings
 * from these domains from "cluster_map" and construct their product.
 * This mapping can then be applied to the pair of domains.
 */
static __isl_give isl_schedule_constraints *collect_edge_constraints(
	struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
	__isl_take isl_schedule_constraints *sc)
{
	isl_union_map *umap;
	isl_space *space;
	isl_union_set *uset;
	isl_union_map *umap1, *umap2;

	if (!sc)
		return NULL;

	umap = isl_union_map_from_map(isl_map_copy(edge->map));
	umap = isl_union_map_apply_domain(umap,
				isl_union_map_copy(cluster_map));
	umap = isl_union_map_apply_range(umap,
				isl_union_map_copy(cluster_map));
	sc = add_non_conditional_constraints(edge, umap, sc);
	isl_union_map_free(umap);

	if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
		return sc;

	space = isl_space_domain(isl_map_get_space(edge->map));
	uset = isl_union_set_from_set(isl_set_universe(space));
	umap1 = isl_union_map_copy(cluster_map);
	umap1 = isl_union_map_intersect_domain(umap1, uset);
	space = isl_space_range(isl_map_get_space(edge->map));
	uset = isl_union_set_from_set(isl_set_universe(space));
	umap2 = isl_union_map_copy(cluster_map);
	umap2 = isl_union_map_intersect_domain(umap2, uset);
	umap = isl_union_map_product(umap1, umap2);

	sc = add_conditional_constraints(edge, umap, sc);

	isl_union_map_free(umap);
	return sc;
}

/* Given a mapping "cluster_map" from the original instances to
 * the cluster instances, add schedule constraints on the clusters
 * to "sc" corresponding to all edges in "graph" between nodes that
 * belong to SCCs that are marked for merging in "scc_in_merge".
 */
static __isl_give isl_schedule_constraints *collect_constraints(
	struct isl_sched_graph *graph, int *scc_in_merge,
	__isl_keep isl_union_map *cluster_map,
	__isl_take isl_schedule_constraints *sc)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];

		if (!scc_in_merge[edge->src->scc])
			continue;
		if (!scc_in_merge[edge->dst->scc])
			continue;
		sc = collect_edge_constraints(edge, cluster_map, sc);
	}

	return sc;
}

/* Construct a dependence graph for scheduling clusters with respect
 * to each other and store the result in "merge_graph".
 * In particular, the nodes of the graph correspond to the schedule
 * dimensions of the current bands of those clusters that have been
 * marked for merging in "c".
 *
 * First construct an isl_schedule_constraints object for this domain
 * by transforming the edges in "graph" to the domain.
 * Then initialize a dependence graph for scheduling from these
 * constraints.
 */
static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
	struct isl_clustering *c, struct isl_sched_graph *merge_graph)
{
	isl_union_set *domain;
	isl_union_map *cluster_map;
	isl_schedule_constraints *sc;
	isl_stat r;

	domain = collect_domain(ctx, graph, c);
	sc = isl_schedule_constraints_on_domain(domain);
	if (!sc)
		return isl_stat_error;
	cluster_map = collect_cluster_map(ctx, graph, c);
	sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
	isl_union_map_free(cluster_map);

	r = graph_init(merge_graph, sc);

	isl_schedule_constraints_free(sc);

	return r;
}

/* Compute the maximal number of remaining schedule rows that still need
 * to be computed for the nodes that belong to clusters with the maximal
 * dimension for the current band (i.e., the band that is to be merged).
 * Only clusters that are about to be merged are considered.
 * "maxvar" is the maximal dimension for the current band.
 * "c" contains information about the clusters.
 *
 * Return the maximal number of remaining schedule rows or -1 on error.
 */
static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
{
	int i, j;
	int max_slack;

	max_slack = 0;
	for (i = 0; i < c->n; ++i) {
		int nvar;
		struct isl_sched_graph *scc;

		if (!c->scc_in_merge[i])
			continue;
		scc = &c->scc[i];
		nvar = scc->n_total_row - scc->band_start;
		if (nvar != maxvar)
			continue;
		for (j = 0; j < scc->n; ++j) {
			struct isl_sched_node *node = &scc->node[j];
			int slack;

			if (node_update_vmap(node) < 0)
				return -1;
			slack = node->nvar - node->rank;
			if (slack > max_slack)
				max_slack = slack;
		}
	}

	return max_slack;
}

/* If there are any clusters where the dimension of the current band
 * (i.e., the band that is to be merged) is smaller than "maxvar" and
 * if there are any nodes in such a cluster where the number
 * of remaining schedule rows that still need to be computed
 * is greater than "max_slack", then return the smallest current band
 * dimension of all these clusters.  Otherwise return the original value
 * of "maxvar".  Return -1 in case of any error.
 * Only clusters that are about to be merged are considered.
 * "c" contains information about the clusters.
 */
static int limit_maxvar_to_slack(int maxvar, int max_slack,
	struct isl_clustering *c)
{
	int i, j;

	for (i = 0; i < c->n; ++i) {
		int nvar;
		struct isl_sched_graph *scc;

		if (!c->scc_in_merge[i])
			continue;
		scc = &c->scc[i];
		nvar = scc->n_total_row - scc->band_start;
		if (nvar >= maxvar)
			continue;
		for (j = 0; j < scc->n; ++j) {
			struct isl_sched_node *node = &scc->node[j];
			int slack;

			if (node_update_vmap(node) < 0)
				return -1;
			slack = node->nvar - node->rank;
			if (slack > max_slack) {
				maxvar = nvar;
				break;
			}
		}
	}

	return maxvar;
}

/* Adjust merge_graph->maxvar based on the number of remaining schedule rows
 * that still need to be computed.  In particular, if there is a node
 * in a cluster where the dimension of the current band is smaller
 * than merge_graph->maxvar, but the number of remaining schedule rows
 * is greater than that of any node in a cluster with the maximal
 * dimension for the current band (i.e., merge_graph->maxvar),
 * then adjust merge_graph->maxvar to the (smallest) current band dimension
 * of those clusters.  Without this adjustment, the total number of
 * schedule dimensions would be increased, resulting in a skewed view
 * of the number of coincident dimensions.
 * "c" contains information about the clusters.
 *
 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
 * then there is no point in attempting any merge since it will be rejected
 * anyway.  Set merge_graph->maxvar to zero in such cases.
 */
static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
	struct isl_sched_graph *merge_graph, struct isl_clustering *c)
{
	int max_slack, maxvar;

	max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
	if (max_slack < 0)
		return isl_stat_error;
	maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
	if (maxvar < 0)
		return isl_stat_error;

	if (maxvar < merge_graph->maxvar) {
		if (isl_options_get_schedule_maximize_band_depth(ctx))
			merge_graph->maxvar = 0;
		else
			merge_graph->maxvar = maxvar;
	}

	return isl_stat_ok;
}

/* Return the number of coincident dimensions in the current band of "graph",
 * where the nodes of "graph" are assumed to be scheduled by a single band.
 */
static int get_n_coincident(struct isl_sched_graph *graph)
{
	int i;

	for (i = graph->band_start; i < graph->n_total_row; ++i)
		if (!graph->node[0].coincident[i])
			break;

	return i - graph->band_start;
}

/* Should the clusters be merged based on the cluster schedule
 * in the current (and only) band of "merge_graph", given that
 * coincidence should be maximized?
 *
 * If the number of coincident schedule dimensions in the merged band
 * would be less than the maximal number of coincident schedule dimensions
 * in any of the merged clusters, then the clusters should not be merged.
 */
static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
	struct isl_sched_graph *merge_graph)
{
	int i;
	int n_coincident;
	int max_coincident;

	max_coincident = 0;
	for (i = 0; i < c->n; ++i) {
		if (!c->scc_in_merge[i])
			continue;
		n_coincident = get_n_coincident(&c->scc[i]);
		if (n_coincident > max_coincident)
			max_coincident = n_coincident;
	}

	n_coincident = get_n_coincident(merge_graph);

	return n_coincident >= max_coincident;
}

/* Return the transformation on "node" expressed by the current (and only)
 * band of "merge_graph" applied to the clusters in "c".
 *
 * First find the representation of "node" in its SCC in "c" and
 * extract the transformation expressed by the current band.
 * Then extract the transformation applied by "merge_graph"
 * to the cluster to which this SCC belongs.
 * Combine the two to obtain the complete transformation on the node.
 *
 * Note that the range of the first transformation is an anonymous space,
 * while the domain of the second is named "cluster_X".  The range
 * of the former therefore needs to be adjusted before the two
 * can be combined.
 */
static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
	struct isl_sched_node *node, struct isl_clustering *c,
	struct isl_sched_graph *merge_graph)
{
	struct isl_sched_node *scc_node, *cluster_node;
	int start, n;
	isl_id *id;
	isl_space *space;
	isl_multi_aff *ma, *ma2;

	scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
	if (scc_node && !is_node(&c->scc[node->scc], scc_node))
		isl_die(ctx, isl_error_internal, "unable to find node",
			return NULL);
	start = c->scc[node->scc].band_start;
	n = c->scc[node->scc].n_total_row - start;
	ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
	space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
	cluster_node = graph_find_node(ctx, merge_graph, space);
	if (cluster_node && !is_node(merge_graph, cluster_node))
		isl_die(ctx, isl_error_internal, "unable to find cluster",
			space = isl_space_free(space));
	id = isl_space_get_tuple_id(space, isl_dim_set);
	ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
	isl_space_free(space);
	n = merge_graph->n_total_row;
	ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
	ma = isl_multi_aff_pullback_multi_aff(ma2, ma);

	return isl_map_from_multi_aff(ma);
}

/* Give a set of distances "set", are they bounded by a small constant
 * in direction "pos"?
 * In practice, check if they are bounded by 2 by checking that there
 * are no elements with a value greater than or equal to 3 or
 * smaller than or equal to -3.
 */
static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
{
	isl_bool bounded;
	isl_set *test;

	if (!set)
		return isl_bool_error;

	test = isl_set_copy(set);
	test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
	bounded = isl_set_is_empty(test);
	isl_set_free(test);

	if (bounded < 0 || !bounded)
		return bounded;

	test = isl_set_copy(set);
	test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
	bounded = isl_set_is_empty(test);
	isl_set_free(test);

	return bounded;
}

/* Does the set "set" have a fixed (but possible parametric) value
 * at dimension "pos"?
 */
static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
{
	int n;
	isl_bool single;

	if (!set)
		return isl_bool_error;
	set = isl_set_copy(set);
	n = isl_set_dim(set, isl_dim_set);
	set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
	set = isl_set_project_out(set, isl_dim_set, 0, pos);
	single = isl_set_is_singleton(set);
	isl_set_free(set);

	return single;
}

/* Does "map" have a fixed (but possible parametric) value
 * at dimension "pos" of either its domain or its range?
 */
static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
{
	isl_set *set;
	isl_bool single;

	set = isl_map_domain(isl_map_copy(map));
	single = has_single_value(set, pos);
	isl_set_free(set);

	if (single < 0 || single)
		return single;

	set = isl_map_range(isl_map_copy(map));
	single = has_single_value(set, pos);
	isl_set_free(set);

	return single;
}

/* Does the edge "edge" from "graph" have bounded dependence distances
 * in the merged graph "merge_graph" of a selection of clusters in "c"?
 *
 * Extract the complete transformations of the source and destination
 * nodes of the edge, apply them to the edge constraints and
 * compute the differences.  Finally, check if these differences are bounded
 * in each direction.
 *
 * If the dimension of the band is greater than the number of
 * dimensions that can be expected to be optimized by the edge
 * (based on its weight), then also allow the differences to be unbounded
 * in the remaining dimensions, but only if either the source or
 * the destination has a fixed value in that direction.
 * This allows a statement that produces values that are used by
 * several instances of another statement to be merged with that
 * other statement.
 * However, merging such clusters will introduce an inherently
 * large proximity distance inside the merged cluster, meaning
 * that proximity distances will no longer be optimized in
 * subsequent merges.  These merges are therefore only allowed
 * after all other possible merges have been tried.
 * The first time such a merge is encountered, the weight of the edge
 * is replaced by a negative weight.  The second time (i.e., after
 * all merges over edges with a non-negative weight have been tried),
 * the merge is allowed.
 */
static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
	struct isl_sched_graph *graph, struct isl_clustering *c,
	struct isl_sched_graph *merge_graph)
{
	int i, n, n_slack;
	isl_bool bounded;
	isl_map *map, *t;
	isl_set *dist;

	map = isl_map_copy(edge->map);
	t = extract_node_transformation(ctx, edge->src, c, merge_graph);
	map = isl_map_apply_domain(map, t);
	t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
	map = isl_map_apply_range(map, t);
	dist = isl_map_deltas(isl_map_copy(map));

	bounded = isl_bool_true;
	n = isl_set_dim(dist, isl_dim_set);
	n_slack = n - edge->weight;
	if (edge->weight < 0)
		n_slack -= graph->max_weight + 1;
	for (i = 0; i < n; ++i) {
		isl_bool bounded_i, singular_i;

		bounded_i = distance_is_bounded(dist, i);
		if (bounded_i < 0)
			goto error;
		if (bounded_i)
			continue;
		if (edge->weight >= 0)
			bounded = isl_bool_false;
		n_slack--;
		if (n_slack < 0)
			break;
		singular_i = has_singular_src_or_dst(map, i);
		if (singular_i < 0)
			goto error;
		if (singular_i)
			continue;
		bounded = isl_bool_false;
		break;
	}
	if (!bounded && i >= n && edge->weight >= 0)
		edge->weight -= graph->max_weight + 1;
	isl_map_free(map);
	isl_set_free(dist);

	return bounded;
error:
	isl_map_free(map);
	isl_set_free(dist);
	return isl_bool_error;
}

/* Should the clusters be merged based on the cluster schedule
 * in the current (and only) band of "merge_graph"?
 * "graph" is the original dependence graph, while "c" records
 * which SCCs are involved in the latest merge.
 *
 * In particular, is there at least one proximity constraint
 * that is optimized by the merge?
 *
 * A proximity constraint is considered to be optimized
 * if the dependence distances are small.
 */
static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_clustering *c,
	struct isl_sched_graph *merge_graph)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		isl_bool bounded;

		if (!is_proximity(edge))
			continue;
		if (!c->scc_in_merge[edge->src->scc])
			continue;
		if (!c->scc_in_merge[edge->dst->scc])
			continue;
		if (c->scc_cluster[edge->dst->scc] ==
		    c->scc_cluster[edge->src->scc])
			continue;
		bounded = has_bounded_distances(ctx, edge, graph, c,
						merge_graph);
		if (bounded < 0 || bounded)
			return bounded;
	}

	return isl_bool_false;
}

/* Should the clusters be merged based on the cluster schedule
 * in the current (and only) band of "merge_graph"?
 * "graph" is the original dependence graph, while "c" records
 * which SCCs are involved in the latest merge.
 *
 * If the current band is empty, then the clusters should not be merged.
 *
 * If the band depth should be maximized and the merge schedule
 * is incomplete (meaning that the dimension of some of the schedule
 * bands in the original schedule will be reduced), then the clusters
 * should not be merged.
 *
 * If the schedule_maximize_coincidence option is set, then check that
 * the number of coincident schedule dimensions is not reduced.
 *
 * Finally, only allow the merge if at least one proximity
 * constraint is optimized.
 */
static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
	struct isl_clustering *c, struct isl_sched_graph *merge_graph)
{
	if (merge_graph->n_total_row == merge_graph->band_start)
		return isl_bool_false;

	if (isl_options_get_schedule_maximize_band_depth(ctx) &&
	    merge_graph->n_total_row < merge_graph->maxvar)
		return isl_bool_false;

	if (isl_options_get_schedule_maximize_coincidence(ctx)) {
		isl_bool ok;

		ok = ok_to_merge_coincident(c, merge_graph);
		if (ok < 0 || !ok)
			return ok;
	}

	return ok_to_merge_proximity(ctx, graph, c, merge_graph);
}

/* Apply the schedule in "t_node" to the "n" rows starting at "first"
 * of the schedule in "node" and return the result.
 *
 * That is, essentially compute
 *
 *	T * N(first:first+n-1)
 *
 * taking into account the constant term and the parameter coefficients
 * in "t_node".
 */
static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
	struct isl_sched_node *t_node, struct isl_sched_node *node,
	int first, int n)
{
	int i, j;
	isl_mat *t;
	int n_row, n_col, n_param, n_var;

	n_param = node->nparam;
	n_var = node->nvar;
	n_row = isl_mat_rows(t_node->sched);
	n_col = isl_mat_cols(node->sched);
	t = isl_mat_alloc(ctx, n_row, n_col);
	if (!t)
		return NULL;
	for (i = 0; i < n_row; ++i) {
		isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
		isl_seq_clr(t->row[i] + 1 + n_param, n_var);
		for (j = 0; j < n; ++j)
			isl_seq_addmul(t->row[i],
					t_node->sched->row[i][1 + n_param + j],
					node->sched->row[first + j],
					1 + n_param + n_var);
	}
	return t;
}

/* Apply the cluster schedule in "t_node" to the current band
 * schedule of the nodes in "graph".
 *
 * In particular, replace the rows starting at band_start
 * by the result of applying the cluster schedule in "t_node"
 * to the original rows.
 *
 * The coincidence of the schedule is determined by the coincidence
 * of the cluster schedule.
 */
static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
	struct isl_sched_node *t_node)
{
	int i, j;
	int n_new;
	int start, n;

	start = graph->band_start;
	n = graph->n_total_row - start;

	n_new = isl_mat_rows(t_node->sched);
	for (i = 0; i < graph->n; ++i) {
		struct isl_sched_node *node = &graph->node[i];
		isl_mat *t;

		t = node_transformation(ctx, t_node, node, start, n);
		node->sched = isl_mat_drop_rows(node->sched, start, n);
		node->sched = isl_mat_concat(node->sched, t);
		node->sched_map = isl_map_free(node->sched_map);
		if (!node->sched)
			return isl_stat_error;
		for (j = 0; j < n_new; ++j)
			node->coincident[start + j] = t_node->coincident[j];
	}
	graph->n_total_row -= n;
	graph->n_row -= n;
	graph->n_total_row += n_new;
	graph->n_row += n_new;

	return isl_stat_ok;
}

/* Merge the clusters marked for merging in "c" into a single
 * cluster using the cluster schedule in the current band of "merge_graph".
 * The representative SCC for the new cluster is the SCC with
 * the smallest index.
 *
 * The current band schedule of each SCC in the new cluster is obtained
 * by applying the schedule of the corresponding original cluster
 * to the original band schedule.
 * All SCCs in the new cluster have the same number of schedule rows.
 */
static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
	struct isl_sched_graph *merge_graph)
{
	int i;
	int cluster = -1;
	isl_space *space;

	for (i = 0; i < c->n; ++i) {
		struct isl_sched_node *node;

		if (!c->scc_in_merge[i])
			continue;
		if (cluster < 0)
			cluster = i;
		space = cluster_space(&c->scc[i], c->scc_cluster[i]);
		node = graph_find_node(ctx, merge_graph, space);
		isl_space_free(space);
		if (!node)
			return isl_stat_error;
		if (!is_node(merge_graph, node))
			isl_die(ctx, isl_error_internal,
				"unable to find cluster",
				return isl_stat_error);
		if (transform(ctx, &c->scc[i], node) < 0)
			return isl_stat_error;
		c->scc_cluster[i] = cluster;
	}

	return isl_stat_ok;
}

/* Try and merge the clusters of SCCs marked in c->scc_in_merge
 * by scheduling the current cluster bands with respect to each other.
 *
 * Construct a dependence graph with a space for each cluster and
 * with the coordinates of each space corresponding to the schedule
 * dimensions of the current band of that cluster.
 * Construct a cluster schedule in this cluster dependence graph and
 * apply it to the current cluster bands if it is applicable
 * according to ok_to_merge.
 *
 * If the number of remaining schedule dimensions in a cluster
 * with a non-maximal current schedule dimension is greater than
 * the number of remaining schedule dimensions in clusters
 * with a maximal current schedule dimension, then restrict
 * the number of rows to be computed in the cluster schedule
 * to the minimal such non-maximal current schedule dimension.
 * Do this by adjusting merge_graph.maxvar.
 *
 * Return isl_bool_true if the clusters have effectively been merged
 * into a single cluster.
 *
 * Note that since the standard scheduling algorithm minimizes the maximal
 * distance over proximity constraints, the proximity constraints between
 * the merged clusters may not be optimized any further than what is
 * sufficient to bring the distances within the limits of the internal
 * proximity constraints inside the individual clusters.
 * It may therefore make sense to perform an additional translation step
 * to bring the clusters closer to each other, while maintaining
 * the linear part of the merging schedule found using the standard
 * scheduling algorithm.
 */
static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
	struct isl_clustering *c)
{
	struct isl_sched_graph merge_graph = { 0 };
	isl_bool merged;

	if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
		goto error;

	if (compute_maxvar(&merge_graph) < 0)
		goto error;
	if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
		goto error;
	if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
		goto error;
	merged = ok_to_merge(ctx, graph, c, &merge_graph);
	if (merged && merge(ctx, c, &merge_graph) < 0)
		goto error;

	graph_free(ctx, &merge_graph);
	return merged;
error:
	graph_free(ctx, &merge_graph);
	return isl_bool_error;
}

/* Is there any edge marked "no_merge" between two SCCs that are
 * about to be merged (i.e., that are set in "scc_in_merge")?
 * "merge_edge" is the proximity edge along which the clusters of SCCs
 * are going to be merged.
 *
 * If there is any edge between two SCCs with a negative weight,
 * while the weight of "merge_edge" is non-negative, then this
 * means that the edge was postponed.  "merge_edge" should then
 * also be postponed since merging along the edge with negative weight should
 * be postponed until all edges with non-negative weight have been tried.
 * Replace the weight of "merge_edge" by a negative weight as well and
 * tell the caller not to attempt a merge.
 */
static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
	struct isl_sched_edge *merge_edge)
{
	int i;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];

		if (!scc_in_merge[edge->src->scc])
			continue;
		if (!scc_in_merge[edge->dst->scc])
			continue;
		if (edge->no_merge)
			return 1;
		if (merge_edge->weight >= 0 && edge->weight < 0) {
			merge_edge->weight -= graph->max_weight + 1;
			return 1;
		}
	}

	return 0;
}

/* Merge the two clusters in "c" connected by the edge in "graph"
 * with index "edge" into a single cluster.
 * If it turns out to be impossible to merge these two clusters,
 * then mark the edge as "no_merge" such that it will not be
 * considered again.
 *
 * First mark all SCCs that need to be merged.  This includes the SCCs
 * in the two clusters, but it may also include the SCCs
 * of intermediate clusters.
 * If there is already a no_merge edge between any pair of such SCCs,
 * then simply mark the current edge as no_merge as well.
 * Likewise, if any of those edges was postponed by has_bounded_distances,
 * then postpone the current edge as well.
 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
 * if the clusters did not end up getting merged, unless the non-merge
 * is due to the fact that the edge was postponed.  This postponement
 * can be recognized by a change in weight (from non-negative to negative).
 */
static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
	struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
{
	isl_bool merged;
	int edge_weight = graph->edge[edge].weight;

	if (mark_merge_sccs(ctx, graph, edge, c) < 0)
		return isl_stat_error;

	if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
		merged = isl_bool_false;
	else
		merged = try_merge(ctx, graph, c);
	if (merged < 0)
		return isl_stat_error;
	if (!merged && edge_weight == graph->edge[edge].weight)
		graph->edge[edge].no_merge = 1;

	return isl_stat_ok;
}

/* Does "node" belong to the cluster identified by "cluster"?
 */
static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
{
	return node->cluster == cluster;
}

/* Does "edge" connect two nodes belonging to the cluster
 * identified by "cluster"?
 */
static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
{
	return edge->src->cluster == cluster && edge->dst->cluster == cluster;
}

/* Swap the schedule of "node1" and "node2".
 * Both nodes have been derived from the same node in a common parent graph.
 * Since the "coincident" field is shared with that node
 * in the parent graph, there is no need to also swap this field.
 */
static void swap_sched(struct isl_sched_node *node1,
	struct isl_sched_node *node2)
{
	isl_mat *sched;
	isl_map *sched_map;

	sched = node1->sched;
	node1->sched = node2->sched;
	node2->sched = sched;

	sched_map = node1->sched_map;
	node1->sched_map = node2->sched_map;
	node2->sched_map = sched_map;
}

/* Copy the current band schedule from the SCCs that form the cluster
 * with index "pos" to the actual cluster at position "pos".
 * By construction, the index of the first SCC that belongs to the cluster
 * is also "pos".
 *
 * The order of the nodes inside both the SCCs and the cluster
 * is assumed to be same as the order in the original "graph".
 *
 * Since the SCC graphs will no longer be used after this function,
 * the schedules are actually swapped rather than copied.
 */
static isl_stat copy_partial(struct isl_sched_graph *graph,
	struct isl_clustering *c, int pos)
{
	int i, j;

	c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
	c->cluster[pos].n_row = c->scc[pos].n_row;
	c->cluster[pos].maxvar = c->scc[pos].maxvar;
	j = 0;
	for (i = 0; i < graph->n; ++i) {
		int k;
		int s;

		if (graph->node[i].cluster != pos)
			continue;
		s = graph->node[i].scc;
		k = c->scc_node[s]++;
		swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
		if (c->scc[s].maxvar > c->cluster[pos].maxvar)
			c->cluster[pos].maxvar = c->scc[s].maxvar;
		++j;
	}

	return isl_stat_ok;
}

/* Is there a (conditional) validity dependence from node[j] to node[i],
 * forcing node[i] to follow node[j] or do the nodes belong to the same
 * cluster?
 */
static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
{
	struct isl_sched_graph *graph = user;

	if (graph->node[i].cluster == graph->node[j].cluster)
		return isl_bool_true;
	return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}

/* Extract the merged clusters of SCCs in "graph", sort them, and
 * store them in c->clusters.  Update c->scc_cluster accordingly.
 *
 * First keep track of the cluster containing the SCC to which a node
 * belongs in the node itself.
 * Then extract the clusters into c->clusters, copying the current
 * band schedule from the SCCs that belong to the cluster.
 * Do this only once per cluster.
 *
 * Finally, topologically sort the clusters and update c->scc_cluster
 * to match the new scc numbering.  While the SCCs were originally
 * sorted already, some SCCs that depend on some other SCCs may
 * have been merged with SCCs that appear before these other SCCs.
 * A reordering may therefore be required.
 */
static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
	struct isl_clustering *c)
{
	int i;

	for (i = 0; i < graph->n; ++i)
		graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];

	for (i = 0; i < graph->scc; ++i) {
		if (c->scc_cluster[i] != i)
			continue;
		if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
				&edge_cluster_exactly, i, &c->cluster[i]) < 0)
			return isl_stat_error;
		c->cluster[i].src_scc = -1;
		c->cluster[i].dst_scc = -1;
		if (copy_partial(graph, c, i) < 0)
			return isl_stat_error;
	}

	if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
		return isl_stat_error;
	for (i = 0; i < graph->n; ++i)
		c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;

	return isl_stat_ok;
}

/* Compute weights on the proximity edges of "graph" that can
 * be used by find_proximity to find the most appropriate
 * proximity edge to use to merge two clusters in "c".
 * The weights are also used by has_bounded_distances to determine
 * whether the merge should be allowed.
 * Store the maximum of the computed weights in graph->max_weight.
 *
 * The computed weight is a measure for the number of remaining schedule
 * dimensions that can still be completely aligned.
 * In particular, compute the number of equalities between
 * input dimensions and output dimensions in the proximity constraints.
 * The directions that are already handled by outer schedule bands
 * are projected out prior to determining this number.
 *
 * Edges that will never be considered by find_proximity are ignored.
 */
static isl_stat compute_weights(struct isl_sched_graph *graph,
	struct isl_clustering *c)
{
	int i;

	graph->max_weight = 0;

	for (i = 0; i < graph->n_edge; ++i) {
		struct isl_sched_edge *edge = &graph->edge[i];
		struct isl_sched_node *src = edge->src;
		struct isl_sched_node *dst = edge->dst;
		isl_basic_map *hull;
		isl_bool prox;
		int n_in, n_out;

		prox = is_non_empty_proximity(edge);
		if (prox < 0)
			return isl_stat_error;
		if (!prox)
			continue;
		if (bad_cluster(&c->scc[edge->src->scc]) ||
		    bad_cluster(&c->scc[edge->dst->scc]))
			continue;
		if (c->scc_cluster[edge->dst->scc] ==
		    c->scc_cluster[edge->src->scc])
			continue;

		hull = isl_map_affine_hull(isl_map_copy(edge->map));
		hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
						    isl_mat_copy(src->vmap));
		hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
						    isl_mat_copy(dst->vmap));
		hull = isl_basic_map_project_out(hull,
						isl_dim_in, 0, src->rank);
		hull = isl_basic_map_project_out(hull,
						isl_dim_out, 0, dst->rank);
		hull = isl_basic_map_remove_divs(hull);
		n_in = isl_basic_map_dim(hull, isl_dim_in);
		n_out = isl_basic_map_dim(hull, isl_dim_out);
		hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
							isl_dim_in, 0, n_in);
		hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
							isl_dim_out, 0, n_out);
		if (!hull)
			return isl_stat_error;
		edge->weight = isl_basic_map_n_equality(hull);
		isl_basic_map_free(hull);

		if (edge->weight > graph->max_weight)
			graph->max_weight = edge->weight;
	}

	return isl_stat_ok;
}

/* Call compute_schedule_finish_band on each of the clusters in "c"
 * in their topological order.  This order is determined by the scc
 * fields of the nodes in "graph".
 * Combine the results in a sequence expressing the topological order.
 *
 * If there is only one cluster left, then there is no need to introduce
 * a sequence node.  Also, in this case, the cluster necessarily contains
 * the SCC at position 0 in the original graph and is therefore also
 * stored in the first cluster of "c".
 */
static __isl_give isl_schedule_node *finish_bands_clustering(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	struct isl_clustering *c)
{
	int i;
	isl_ctx *ctx;
	isl_union_set_list *filters;

	if (graph->scc == 1)
		return compute_schedule_finish_band(node, &c->cluster[0], 0);

	ctx = isl_schedule_node_get_ctx(node);

	filters = extract_sccs(ctx, graph);
	node = isl_schedule_node_insert_sequence(node, filters);

	for (i = 0; i < graph->scc; ++i) {
		int j = c->scc_cluster[i];
		node = isl_schedule_node_child(node, i);
		node = isl_schedule_node_child(node, 0);
		node = compute_schedule_finish_band(node, &c->cluster[j], 0);
		node = isl_schedule_node_parent(node);
		node = isl_schedule_node_parent(node);
	}

	return node;
}

/* Compute a schedule for a connected dependence graph by first considering
 * each strongly connected component (SCC) in the graph separately and then
 * incrementally combining them into clusters.
 * Return the updated schedule node.
 *
 * Initially, each cluster consists of a single SCC, each with its
 * own band schedule.  The algorithm then tries to merge pairs
 * of clusters along a proximity edge until no more suitable
 * proximity edges can be found.  During this merging, the schedule
 * is maintained in the individual SCCs.
 * After the merging is completed, the full resulting clusters
 * are extracted and in finish_bands_clustering,
 * compute_schedule_finish_band is called on each of them to integrate
 * the band into "node" and to continue the computation.
 *
 * compute_weights initializes the weights that are used by find_proximity.
 */
static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	isl_ctx *ctx;
	struct isl_clustering c;
	int i;

	ctx = isl_schedule_node_get_ctx(node);

	if (clustering_init(ctx, &c, graph) < 0)
		goto error;

	if (compute_weights(graph, &c) < 0)
		goto error;

	for (;;) {
		i = find_proximity(graph, &c);
		if (i < 0)
			goto error;
		if (i >= graph->n_edge)
			break;
		if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
			goto error;
	}

	if (extract_clusters(ctx, graph, &c) < 0)
		goto error;

	node = finish_bands_clustering(node, graph, &c);

	clustering_free(ctx, &c);
	return node;
error:
	clustering_free(ctx, &c);
	return isl_schedule_node_free(node);
}

/* Compute a schedule for a connected dependence graph and return
 * the updated schedule node.
 *
 * If Feautrier's algorithm is selected, we first recursively try to satisfy
 * as many validity dependences as possible. When all validity dependences
 * are satisfied we extend the schedule to a full-dimensional schedule.
 *
 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
 * depending on whether the user has selected the option to try and
 * compute a schedule for the entire (weakly connected) component first.
 * If there is only a single strongly connected component (SCC), then
 * there is no point in trying to combine SCCs
 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
 * is called instead.
 */
static __isl_give isl_schedule_node *compute_schedule_wcc(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
	isl_ctx *ctx;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	if (detect_sccs(ctx, graph) < 0)
		return isl_schedule_node_free(node);

	if (compute_maxvar(graph) < 0)
		return isl_schedule_node_free(node);

	if (need_feautrier_step(ctx, graph))
		return compute_schedule_wcc_feautrier(node, graph);

	if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
		return compute_schedule_wcc_whole(node, graph);
	else
		return compute_schedule_wcc_clustering(node, graph);
}

/* Compute a schedule for each group of nodes identified by node->scc
 * separately and then combine them in a sequence node (or as set node
 * if graph->weak is set) inserted at position "node" of the schedule tree.
 * Return the updated schedule node.
 *
 * If "wcc" is set then each of the groups belongs to a single
 * weakly connected component in the dependence graph so that
 * there is no need for compute_sub_schedule to look for weakly
 * connected components.
 *
 * If a set node would be introduced and if the number of components
 * is equal to the number of nodes, then check if the schedule
 * is already complete.  If so, a redundant set node would be introduced
 * (without any further descendants) stating that the statements
 * can be executed in arbitrary order, which is also expressed
 * by the absence of any node.  Refrain from inserting any nodes
 * in this case and simply return.
 */
static __isl_give isl_schedule_node *compute_component_schedule(
	__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
	int wcc)
{
	int component;
	isl_ctx *ctx;
	isl_union_set_list *filters;

	if (!node)
		return NULL;

	if (graph->weak && graph->scc == graph->n) {
		if (compute_maxvar(graph) < 0)
			return isl_schedule_node_free(node);
		if (graph->n_row >= graph->maxvar)
			return node;
	}

	ctx = isl_schedule_node_get_ctx(node);
	filters = extract_sccs(ctx, graph);
	if (graph->weak)
		node = isl_schedule_node_insert_set(node, filters);
	else
		node = isl_schedule_node_insert_sequence(node, filters);

	for (component = 0; component < graph->scc; ++component) {
		node = isl_schedule_node_child(node, component);
		node = isl_schedule_node_child(node, 0);
		node = compute_sub_schedule(node, ctx, graph,
				    &node_scc_exactly,
				    &edge_scc_exactly, component, wcc);
		node = isl_schedule_node_parent(node);
		node = isl_schedule_node_parent(node);
	}

	return node;
}

/* Compute a schedule for the given dependence graph and insert it at "node".
 * Return the updated schedule node.
 *
 * We first check if the graph is connected (through validity and conditional
 * validity dependences) and, if not, compute a schedule
 * for each component separately.
 * If the schedule_serialize_sccs option is set, then we check for strongly
 * connected components instead and compute a separate schedule for
 * each such strongly connected component.
 */
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
	struct isl_sched_graph *graph)
{
	isl_ctx *ctx;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	if (isl_options_get_schedule_serialize_sccs(ctx)) {
		if (detect_sccs(ctx, graph) < 0)
			return isl_schedule_node_free(node);
	} else {
		if (detect_wccs(ctx, graph) < 0)
			return isl_schedule_node_free(node);
	}

	if (graph->scc > 1)
		return compute_component_schedule(node, graph, 1);

	return compute_schedule_wcc(node, graph);
}

/* Compute a schedule on sc->domain that respects the given schedule
 * constraints.
 *
 * In particular, the schedule respects all the validity dependences.
 * If the default isl scheduling algorithm is used, it tries to minimize
 * the dependence distances over the proximity dependences.
 * If Feautrier's scheduling algorithm is used, the proximity dependence
 * distances are only minimized during the extension to a full-dimensional
 * schedule.
 *
 * If there are any condition and conditional validity dependences,
 * then the conditional validity dependences may be violated inside
 * a tilable band, provided they have no adjacent non-local
 * condition dependences.
 */
__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
	__isl_take isl_schedule_constraints *sc)
{
	isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
	struct isl_sched_graph graph = { 0 };
	isl_schedule *sched;
	isl_schedule_node *node;
	isl_union_set *domain;

	sc = isl_schedule_constraints_align_params(sc);

	domain = isl_schedule_constraints_get_domain(sc);
	if (isl_union_set_n_set(domain) == 0) {
		isl_schedule_constraints_free(sc);
		return isl_schedule_from_domain(domain);
	}

	if (graph_init(&graph, sc) < 0)
		domain = isl_union_set_free(domain);

	node = isl_schedule_node_from_domain(domain);
	node = isl_schedule_node_child(node, 0);
	if (graph.n > 0)
		node = compute_schedule(node, &graph);
	sched = isl_schedule_node_get_schedule(node);
	isl_schedule_node_free(node);

	graph_free(ctx, &graph);
	isl_schedule_constraints_free(sc);

	return sched;
}

/* Compute a schedule for the given union of domains that respects
 * all the validity dependences and minimizes
 * the dependence distances over the proximity dependences.
 *
 * This function is kept for backward compatibility.
 */
__isl_give isl_schedule *isl_union_set_compute_schedule(
	__isl_take isl_union_set *domain,
	__isl_take isl_union_map *validity,
	__isl_take isl_union_map *proximity)
{
	isl_schedule_constraints *sc;

	sc = isl_schedule_constraints_on_domain(domain);
	sc = isl_schedule_constraints_set_validity(sc, validity);
	sc = isl_schedule_constraints_set_proximity(sc, proximity);

	return isl_schedule_constraints_compute_schedule(sc);
}