1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
| /*
* Copyright 2011 INRIA Saclay
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2015-2016 Sven Verdoolaege
* Copyright 2016 INRIA Paris
* Copyright 2017 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
* and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
* CS 42112, 75589 Paris Cedex 12, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_space_private.h>
#include <isl_aff_private.h>
#include <isl/hash.h>
#include <isl/id.h>
#include <isl/constraint.h>
#include <isl/schedule.h>
#include <isl_schedule_constraints.h>
#include <isl/schedule_node.h>
#include <isl_mat_private.h>
#include <isl_vec_private.h>
#include <isl/set.h>
#include <isl_union_set_private.h>
#include <isl_seq.h>
#include <isl_tab.h>
#include <isl_dim_map.h>
#include <isl/map_to_basic_set.h>
#include <isl_sort.h>
#include <isl_options_private.h>
#include <isl_tarjan.h>
#include <isl_morph.h>
#include <isl/ilp.h>
#include <isl_val_private.h>
/*
* The scheduling algorithm implemented in this file was inspired by
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
* Parallelization and Locality Optimization in the Polyhedral Model".
*
* For a detailed description of the variant implemented in isl,
* see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
*/
/* Internal information about a node that is used during the construction
* of a schedule.
* space represents the original space in which the domain lives;
* that is, the space is not affected by compression
* sched is a matrix representation of the schedule being constructed
* for this node; if compressed is set, then this schedule is
* defined over the compressed domain space
* sched_map is an isl_map representation of the same (partial) schedule
* sched_map may be NULL; if compressed is set, then this map
* is defined over the uncompressed domain space
* rank is the number of linearly independent rows in the linear part
* of sched
* the rows of "vmap" represent a change of basis for the node
* variables; the first rank rows span the linear part of
* the schedule rows; the remaining rows are linearly independent
* the rows of "indep" represent linear combinations of the schedule
* coefficients that are non-zero when the schedule coefficients are
* linearly independent of previously computed schedule rows.
* start is the first variable in the LP problem in the sequences that
* represents the schedule coefficients of this node
* nvar is the dimension of the (compressed) domain
* nparam is the number of parameters or 0 if we are not constructing
* a parametric schedule
*
* If compressed is set, then hull represents the constraints
* that were used to derive the compression, while compress and
* decompress map the original space to the compressed space and
* vice versa.
*
* scc is the index of SCC (or WCC) this node belongs to
*
* "cluster" is only used inside extract_clusters and identifies
* the cluster of SCCs that the node belongs to.
*
* coincident contains a boolean for each of the rows of the schedule,
* indicating whether the corresponding scheduling dimension satisfies
* the coincidence constraints in the sense that the corresponding
* dependence distances are zero.
*
* If the schedule_treat_coalescing option is set, then
* "sizes" contains the sizes of the (compressed) instance set
* in each direction. If there is no fixed size in a given direction,
* then the corresponding size value is set to infinity.
* If the schedule_treat_coalescing option or the schedule_max_coefficient
* option is set, then "max" contains the maximal values for
* schedule coefficients of the (compressed) variables. If no bound
* needs to be imposed on a particular variable, then the corresponding
* value is negative.
* If not NULL, then "bounds" contains a non-parametric set
* in the compressed space that is bounded by the size in each direction.
*/
struct isl_sched_node {
isl_space *space;
int compressed;
isl_set *hull;
isl_multi_aff *compress;
isl_multi_aff *decompress;
isl_mat *sched;
isl_map *sched_map;
int rank;
isl_mat *indep;
isl_mat *vmap;
int start;
int nvar;
int nparam;
int scc;
int cluster;
int *coincident;
isl_multi_val *sizes;
isl_basic_set *bounds;
isl_vec *max;
};
static int node_has_tuples(const void *entry, const void *val)
{
struct isl_sched_node *node = (struct isl_sched_node *)entry;
isl_space *space = (isl_space *) val;
return isl_space_has_equal_tuples(node->space, space);
}
static int node_scc_exactly(struct isl_sched_node *node, int scc)
{
return node->scc == scc;
}
static int node_scc_at_most(struct isl_sched_node *node, int scc)
{
return node->scc <= scc;
}
static int node_scc_at_least(struct isl_sched_node *node, int scc)
{
return node->scc >= scc;
}
/* An edge in the dependence graph. An edge may be used to
* ensure validity of the generated schedule, to minimize the dependence
* distance or both
*
* map is the dependence relation, with i -> j in the map if j depends on i
* tagged_condition and tagged_validity contain the union of all tagged
* condition or conditional validity dependence relations that
* specialize the dependence relation "map"; that is,
* if (i -> a) -> (j -> b) is an element of "tagged_condition"
* or "tagged_validity", then i -> j is an element of "map".
* If these fields are NULL, then they represent the empty relation.
* src is the source node
* dst is the sink node
*
* types is a bit vector containing the types of this edge.
* validity is set if the edge is used to ensure correctness
* coincidence is used to enforce zero dependence distances
* proximity is set if the edge is used to minimize dependence distances
* condition is set if the edge represents a condition
* for a conditional validity schedule constraint
* local can only be set for condition edges and indicates that
* the dependence distance over the edge should be zero
* conditional_validity is set if the edge is used to conditionally
* ensure correctness
*
* For validity edges, start and end mark the sequence of inequality
* constraints in the LP problem that encode the validity constraint
* corresponding to this edge.
*
* During clustering, an edge may be marked "no_merge" if it should
* not be used to merge clusters.
* The weight is also only used during clustering and it is
* an indication of how many schedule dimensions on either side
* of the schedule constraints can be aligned.
* If the weight is negative, then this means that this edge was postponed
* by has_bounded_distances or any_no_merge. The original weight can
* be retrieved by adding 1 + graph->max_weight, with "graph"
* the graph containing this edge.
*/
struct isl_sched_edge {
isl_map *map;
isl_union_map *tagged_condition;
isl_union_map *tagged_validity;
struct isl_sched_node *src;
struct isl_sched_node *dst;
unsigned types;
int start;
int end;
int no_merge;
int weight;
};
/* Is "edge" marked as being of type "type"?
*/
static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
{
return ISL_FL_ISSET(edge->types, 1 << type);
}
/* Mark "edge" as being of type "type".
*/
static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
{
ISL_FL_SET(edge->types, 1 << type);
}
/* No longer mark "edge" as being of type "type"?
*/
static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
{
ISL_FL_CLR(edge->types, 1 << type);
}
/* Is "edge" marked as a validity edge?
*/
static int is_validity(struct isl_sched_edge *edge)
{
return is_type(edge, isl_edge_validity);
}
/* Mark "edge" as a validity edge.
*/
static void set_validity(struct isl_sched_edge *edge)
{
set_type(edge, isl_edge_validity);
}
/* Is "edge" marked as a proximity edge?
*/
static int is_proximity(struct isl_sched_edge *edge)
{
return is_type(edge, isl_edge_proximity);
}
/* Is "edge" marked as a local edge?
*/
static int is_local(struct isl_sched_edge *edge)
{
return is_type(edge, isl_edge_local);
}
/* Mark "edge" as a local edge.
*/
static void set_local(struct isl_sched_edge *edge)
{
set_type(edge, isl_edge_local);
}
/* No longer mark "edge" as a local edge.
*/
static void clear_local(struct isl_sched_edge *edge)
{
clear_type(edge, isl_edge_local);
}
/* Is "edge" marked as a coincidence edge?
*/
static int is_coincidence(struct isl_sched_edge *edge)
{
return is_type(edge, isl_edge_coincidence);
}
/* Is "edge" marked as a condition edge?
*/
static int is_condition(struct isl_sched_edge *edge)
{
return is_type(edge, isl_edge_condition);
}
/* Is "edge" marked as a conditional validity edge?
*/
static int is_conditional_validity(struct isl_sched_edge *edge)
{
return is_type(edge, isl_edge_conditional_validity);
}
/* Is "edge" of a type that can appear multiple times between
* the same pair of nodes?
*
* Condition edges and conditional validity edges may have tagged
* dependence relations, in which case an edge is added for each
* pair of tags.
*/
static int is_multi_edge_type(struct isl_sched_edge *edge)
{
return is_condition(edge) || is_conditional_validity(edge);
}
/* Internal information about the dependence graph used during
* the construction of the schedule.
*
* intra_hmap is a cache, mapping dependence relations to their dual,
* for dependences from a node to itself, possibly without
* coefficients for the parameters
* intra_hmap_param is a cache, mapping dependence relations to their dual,
* for dependences from a node to itself, including coefficients
* for the parameters
* inter_hmap is a cache, mapping dependence relations to their dual,
* for dependences between distinct nodes
* if compression is involved then the key for these maps
* is the original, uncompressed dependence relation, while
* the value is the dual of the compressed dependence relation.
*
* n is the number of nodes
* node is the list of nodes
* maxvar is the maximal number of variables over all nodes
* max_row is the allocated number of rows in the schedule
* n_row is the current (maximal) number of linearly independent
* rows in the node schedules
* n_total_row is the current number of rows in the node schedules
* band_start is the starting row in the node schedules of the current band
* root is set to the original dependence graph from which this graph
* is derived through splitting. If this graph is not the result of
* splitting, then the root field points to the graph itself.
*
* sorted contains a list of node indices sorted according to the
* SCC to which a node belongs
*
* n_edge is the number of edges
* edge is the list of edges
* max_edge contains the maximal number of edges of each type;
* in particular, it contains the number of edges in the inital graph.
* edge_table contains pointers into the edge array, hashed on the source
* and sink spaces; there is one such table for each type;
* a given edge may be referenced from more than one table
* if the corresponding relation appears in more than one of the
* sets of dependences; however, for each type there is only
* a single edge between a given pair of source and sink space
* in the entire graph
*
* node_table contains pointers into the node array, hashed on the space tuples
*
* region contains a list of variable sequences that should be non-trivial
*
* lp contains the (I)LP problem used to obtain new schedule rows
*
* src_scc and dst_scc are the source and sink SCCs of an edge with
* conflicting constraints
*
* scc represents the number of components
* weak is set if the components are weakly connected
*
* max_weight is used during clustering and represents the maximal
* weight of the relevant proximity edges.
*/
struct isl_sched_graph {
isl_map_to_basic_set *intra_hmap;
isl_map_to_basic_set *intra_hmap_param;
isl_map_to_basic_set *inter_hmap;
struct isl_sched_node *node;
int n;
int maxvar;
int max_row;
int n_row;
int *sorted;
int n_total_row;
int band_start;
struct isl_sched_graph *root;
struct isl_sched_edge *edge;
int n_edge;
int max_edge[isl_edge_last + 1];
struct isl_hash_table *edge_table[isl_edge_last + 1];
struct isl_hash_table *node_table;
struct isl_trivial_region *region;
isl_basic_set *lp;
int src_scc;
int dst_scc;
int scc;
int weak;
int max_weight;
};
/* Initialize node_table based on the list of nodes.
*/
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
if (!graph->node_table)
return -1;
for (i = 0; i < graph->n; ++i) {
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_tuple_hash(graph->node[i].space);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_tuples,
graph->node[i].space, 1);
if (!entry)
return -1;
entry->data = &graph->node[i];
}
return 0;
}
/* Return a pointer to the node that lives within the given space,
* an invalid node if there is no such node, or NULL in case of error.
*/
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_space *space)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
if (!space)
return NULL;
hash = isl_space_get_tuple_hash(space);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_tuples, space, 0);
return entry ? entry->data : graph->node + graph->n;
}
/* Is "node" a node in "graph"?
*/
static int is_node(struct isl_sched_graph *graph,
struct isl_sched_node *node)
{
return node && node >= &graph->node[0] && node < &graph->node[graph->n];
}
static int edge_has_src_and_dst(const void *entry, const void *val)
{
const struct isl_sched_edge *edge = entry;
const struct isl_sched_edge *temp = val;
return edge->src == temp->src && edge->dst == temp->dst;
}
/* Add the given edge to graph->edge_table[type].
*/
static isl_stat graph_edge_table_add(isl_ctx *ctx,
struct isl_sched_graph *graph, enum isl_edge_type type,
struct isl_sched_edge *edge)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_hash_init();
hash = isl_hash_builtin(hash, edge->src);
hash = isl_hash_builtin(hash, edge->dst);
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, edge, 1);
if (!entry)
return isl_stat_error;
entry->data = edge;
return isl_stat_ok;
}
/* Add "edge" to all relevant edge tables.
* That is, for every type of the edge, add it to the corresponding table.
*/
static isl_stat graph_edge_tables_add(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_sched_edge *edge)
{
enum isl_edge_type t;
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
if (!is_type(edge, t))
continue;
if (graph_edge_table_add(ctx, graph, t, edge) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Allocate the edge_tables based on the maximal number of edges of
* each type.
*/
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
for (i = 0; i <= isl_edge_last; ++i) {
graph->edge_table[i] = isl_hash_table_alloc(ctx,
graph->max_edge[i]);
if (!graph->edge_table[i])
return -1;
}
return 0;
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return the hash table entry of this edge.
* Otherwise, return NULL.
*/
static struct isl_hash_table_entry *graph_find_edge_entry(
struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_ctx *ctx = isl_space_get_ctx(src->space);
uint32_t hash;
struct isl_sched_edge temp = { .src = src, .dst = dst };
hash = isl_hash_init();
hash = isl_hash_builtin(hash, temp.src);
hash = isl_hash_builtin(hash, temp.dst);
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, &temp, 0);
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return this edge.
* Otherwise, return NULL.
*/
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, type, src, dst);
if (!entry)
return NULL;
return entry->data;
}
/* Check whether the dependence graph has an edge of the given type
* between the given two nodes.
*/
static isl_bool graph_has_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_sched_edge *edge;
isl_bool empty;
edge = graph_find_edge(graph, type, src, dst);
if (!edge)
return isl_bool_false;
empty = isl_map_plain_is_empty(edge->map);
if (empty < 0)
return isl_bool_error;
return !empty;
}
/* Look for any edge with the same src, dst and map fields as "model".
*
* Return the matching edge if one can be found.
* Return "model" if no matching edge is found.
* Return NULL on error.
*/
static struct isl_sched_edge *graph_find_matching_edge(
struct isl_sched_graph *graph, struct isl_sched_edge *model)
{
enum isl_edge_type i;
struct isl_sched_edge *edge;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
int is_equal;
edge = graph_find_edge(graph, i, model->src, model->dst);
if (!edge)
continue;
is_equal = isl_map_plain_is_equal(model->map, edge->map);
if (is_equal < 0)
return NULL;
if (is_equal)
return edge;
}
return model;
}
/* Remove the given edge from all the edge_tables that refer to it.
*/
static void graph_remove_edge(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
isl_ctx *ctx = isl_map_get_ctx(edge->map);
enum isl_edge_type i;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
if (!entry)
continue;
if (entry->data != edge)
continue;
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
}
}
/* Check whether the dependence graph has any edge
* between the given two nodes.
*/
static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
enum isl_edge_type i;
isl_bool r;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
r = graph_has_edge(graph, i, src, dst);
if (r < 0 || r)
return r;
}
return r;
}
/* Check whether the dependence graph has a validity edge
* between the given two nodes.
*
* Conditional validity edges are essentially validity edges that
* can be ignored if the corresponding condition edges are iteration private.
* Here, we are only checking for the presence of validity
* edges, so we need to consider the conditional validity edges too.
* In particular, this function is used during the detection
* of strongly connected components and we cannot ignore
* conditional validity edges during this detection.
*/
static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_bool r;
r = graph_has_edge(graph, isl_edge_validity, src, dst);
if (r < 0 || r)
return r;
return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
}
/* Perform all the required memory allocations for a schedule graph "graph"
* with "n_node" nodes and "n_edge" edge and initialize the corresponding
* fields.
*/
static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
int n_node, int n_edge)
{
int i;
graph->n = n_node;
graph->n_edge = n_edge;
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
graph->sorted = isl_calloc_array(ctx, int, graph->n);
graph->region = isl_alloc_array(ctx,
struct isl_trivial_region, graph->n);
graph->edge = isl_calloc_array(ctx,
struct isl_sched_edge, graph->n_edge);
graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
!graph->sorted)
return isl_stat_error;
for(i = 0; i < graph->n; ++i)
graph->sorted[i] = i;
return isl_stat_ok;
}
/* Free the memory associated to node "node" in "graph".
* The "coincident" field is shared by nodes in a graph and its subgraph.
* It therefore only needs to be freed for the original dependence graph,
* i.e., one that is not the result of splitting.
*/
static void clear_node(struct isl_sched_graph *graph,
struct isl_sched_node *node)
{
isl_space_free(node->space);
isl_set_free(node->hull);
isl_multi_aff_free(node->compress);
isl_multi_aff_free(node->decompress);
isl_mat_free(node->sched);
isl_map_free(node->sched_map);
isl_mat_free(node->indep);
isl_mat_free(node->vmap);
if (graph->root == graph)
free(node->coincident);
isl_multi_val_free(node->sizes);
isl_basic_set_free(node->bounds);
isl_vec_free(node->max);
}
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
isl_map_to_basic_set_free(graph->intra_hmap);
isl_map_to_basic_set_free(graph->intra_hmap_param);
isl_map_to_basic_set_free(graph->inter_hmap);
if (graph->node)
for (i = 0; i < graph->n; ++i)
clear_node(graph, &graph->node[i]);
free(graph->node);
free(graph->sorted);
if (graph->edge)
for (i = 0; i < graph->n_edge; ++i) {
isl_map_free(graph->edge[i].map);
isl_union_map_free(graph->edge[i].tagged_condition);
isl_union_map_free(graph->edge[i].tagged_validity);
}
free(graph->edge);
free(graph->region);
for (i = 0; i <= isl_edge_last; ++i)
isl_hash_table_free(ctx, graph->edge_table[i]);
isl_hash_table_free(ctx, graph->node_table);
isl_basic_set_free(graph->lp);
}
/* For each "set" on which this function is called, increment
* graph->n by one and update graph->maxvar.
*/
static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
{
struct isl_sched_graph *graph = user;
int nvar = isl_set_dim(set, isl_dim_set);
graph->n++;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
isl_set_free(set);
return isl_stat_ok;
}
/* Compute the number of rows that should be allocated for the schedule.
* In particular, we need one row for each variable or one row
* for each basic map in the dependences.
* Note that it is practically impossible to exhaust both
* the number of dependences and the number of variables.
*/
static isl_stat compute_max_row(struct isl_sched_graph *graph,
__isl_keep isl_schedule_constraints *sc)
{
int n_edge;
isl_stat r;
isl_union_set *domain;
graph->n = 0;
graph->maxvar = 0;
domain = isl_schedule_constraints_get_domain(sc);
r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
isl_union_set_free(domain);
if (r < 0)
return isl_stat_error;
n_edge = isl_schedule_constraints_n_basic_map(sc);
if (n_edge < 0)
return isl_stat_error;
graph->max_row = n_edge + graph->maxvar;
return isl_stat_ok;
}
/* Does "bset" have any defining equalities for its set variables?
*/
static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
{
int i, n;
if (!bset)
return isl_bool_error;
n = isl_basic_set_dim(bset, isl_dim_set);
for (i = 0; i < n; ++i) {
isl_bool has;
has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
NULL);
if (has < 0 || has)
return has;
}
return isl_bool_false;
}
/* Set the entries of node->max to the value of the schedule_max_coefficient
* option, if set.
*/
static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
{
int max;
max = isl_options_get_schedule_max_coefficient(ctx);
if (max == -1)
return isl_stat_ok;
node->max = isl_vec_alloc(ctx, node->nvar);
node->max = isl_vec_set_si(node->max, max);
if (!node->max)
return isl_stat_error;
return isl_stat_ok;
}
/* Set the entries of node->max to the minimum of the schedule_max_coefficient
* option (if set) and half of the minimum of the sizes in the other
* dimensions. Round up when computing the half such that
* if the minimum of the sizes is one, half of the size is taken to be one
* rather than zero.
* If the global minimum is unbounded (i.e., if both
* the schedule_max_coefficient is not set and the sizes in the other
* dimensions are unbounded), then store a negative value.
* If the schedule coefficient is close to the size of the instance set
* in another dimension, then the schedule may represent a loop
* coalescing transformation (especially if the coefficient
* in that other dimension is one). Forcing the coefficient to be
* smaller than or equal to half the minimal size should avoid this
* situation.
*/
static isl_stat compute_max_coefficient(isl_ctx *ctx,
struct isl_sched_node *node)
{
int max;
int i, j;
isl_vec *v;
max = isl_options_get_schedule_max_coefficient(ctx);
v = isl_vec_alloc(ctx, node->nvar);
if (!v)
return isl_stat_error;
for (i = 0; i < node->nvar; ++i) {
isl_int_set_si(v->el[i], max);
isl_int_mul_si(v->el[i], v->el[i], 2);
}
for (i = 0; i < node->nvar; ++i) {
isl_val *size;
size = isl_multi_val_get_val(node->sizes, i);
if (!size)
goto error;
if (!isl_val_is_int(size)) {
isl_val_free(size);
continue;
}
for (j = 0; j < node->nvar; ++j) {
if (j == i)
continue;
if (isl_int_is_neg(v->el[j]) ||
isl_int_gt(v->el[j], size->n))
isl_int_set(v->el[j], size->n);
}
isl_val_free(size);
}
for (i = 0; i < node->nvar; ++i)
isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
node->max = v;
return isl_stat_ok;
error:
isl_vec_free(v);
return isl_stat_error;
}
/* Compute and return the size of "set" in dimension "dim".
* The size is taken to be the difference in values for that variable
* for fixed values of the other variables.
* This assumes that "set" is convex.
* In particular, the variable is first isolated from the other variables
* in the range of a map
*
* [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
*
* and then duplicated
*
* [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
*
* The shared variables are then projected out and the maximal value
* of i_dim' - i_dim is computed.
*/
static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
{
isl_map *map;
isl_local_space *ls;
isl_aff *obj;
isl_val *v;
map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
map = isl_map_project_out(map, isl_dim_in, dim, 1);
map = isl_map_range_product(map, isl_map_copy(map));
map = isl_set_unwrap(isl_map_range(map));
set = isl_map_deltas(map);
ls = isl_local_space_from_space(isl_set_get_space(set));
obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
v = isl_set_max_val(set, obj);
isl_aff_free(obj);
isl_set_free(set);
return v;
}
/* Compute the size of the instance set "set" of "node", after compression,
* as well as bounds on the corresponding coefficients, if needed.
*
* The sizes are needed when the schedule_treat_coalescing option is set.
* The bounds are needed when the schedule_treat_coalescing option or
* the schedule_max_coefficient option is set.
*
* If the schedule_treat_coalescing option is not set, then at most
* the bounds need to be set and this is done in set_max_coefficient.
* Otherwise, compress the domain if needed, compute the size
* in each direction and store the results in node->size.
* If the domain is not convex, then the sizes are computed
* on a convex superset in order to avoid picking up sizes
* that are valid for the individual disjuncts, but not for
* the domain as a whole.
* Finally, set the bounds on the coefficients based on the sizes
* and the schedule_max_coefficient option in compute_max_coefficient.
*/
static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
__isl_take isl_set *set)
{
int j, n;
isl_multi_val *mv;
if (!isl_options_get_schedule_treat_coalescing(ctx)) {
isl_set_free(set);
return set_max_coefficient(ctx, node);
}
if (node->compressed)
set = isl_set_preimage_multi_aff(set,
isl_multi_aff_copy(node->decompress));
set = isl_set_from_basic_set(isl_set_simple_hull(set));
mv = isl_multi_val_zero(isl_set_get_space(set));
n = isl_set_dim(set, isl_dim_set);
for (j = 0; j < n; ++j) {
isl_val *v;
v = compute_size(isl_set_copy(set), j);
mv = isl_multi_val_set_val(mv, j, v);
}
node->sizes = mv;
isl_set_free(set);
if (!node->sizes)
return isl_stat_error;
return compute_max_coefficient(ctx, node);
}
/* Add a new node to the graph representing the given instance set.
* "nvar" is the (possibly compressed) number of variables and
* may be smaller than then number of set variables in "set"
* if "compressed" is set.
* If "compressed" is set, then "hull" represents the constraints
* that were used to derive the compression, while "compress" and
* "decompress" map the original space to the compressed space and
* vice versa.
* If "compressed" is not set, then "hull", "compress" and "decompress"
* should be NULL.
*
* Compute the size of the instance set and bounds on the coefficients,
* if needed.
*/
static isl_stat add_node(struct isl_sched_graph *graph,
__isl_take isl_set *set, int nvar, int compressed,
__isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
__isl_take isl_multi_aff *decompress)
{
int nparam;
isl_ctx *ctx;
isl_mat *sched;
isl_space *space;
int *coincident;
struct isl_sched_node *node;
if (!set)
return isl_stat_error;
ctx = isl_set_get_ctx(set);
nparam = isl_set_dim(set, isl_dim_param);
if (!ctx->opt->schedule_parametric)
nparam = 0;
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
node = &graph->node[graph->n];
graph->n++;
space = isl_set_get_space(set);
node->space = space;
node->nvar = nvar;
node->nparam = nparam;
node->sched = sched;
node->sched_map = NULL;
coincident = isl_calloc_array(ctx, int, graph->max_row);
node->coincident = coincident;
node->compressed = compressed;
node->hull = hull;
node->compress = compress;
node->decompress = decompress;
if (compute_sizes_and_max(ctx, node, set) < 0)
return isl_stat_error;
if (!space || !sched || (graph->max_row && !coincident))
return isl_stat_error;
if (compressed && (!hull || !compress || !decompress))
return isl_stat_error;
return isl_stat_ok;
}
/* Construct an identifier for node "node", which will represent "set".
* The name of the identifier is either "compressed" or
* "compressed_<name>", with <name> the name of the space of "set".
* The user pointer of the identifier points to "node".
*/
static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
struct isl_sched_node *node)
{
isl_bool has_name;
isl_ctx *ctx;
isl_id *id;
isl_printer *p;
const char *name;
char *id_name;
has_name = isl_set_has_tuple_name(set);
if (has_name < 0)
return NULL;
ctx = isl_set_get_ctx(set);
if (!has_name)
return isl_id_alloc(ctx, "compressed", node);
p = isl_printer_to_str(ctx);
name = isl_set_get_tuple_name(set);
p = isl_printer_print_str(p, "compressed_");
p = isl_printer_print_str(p, name);
id_name = isl_printer_get_str(p);
isl_printer_free(p);
id = isl_id_alloc(ctx, id_name, node);
free(id_name);
return id;
}
/* Add a new node to the graph representing the given set.
*
* If any of the set variables is defined by an equality, then
* we perform variable compression such that we can perform
* the scheduling on the compressed domain.
* In this case, an identifier is used that references the new node
* such that each compressed space is unique and
* such that the node can be recovered from the compressed space.
*/
static isl_stat extract_node(__isl_take isl_set *set, void *user)
{
int nvar;
isl_bool has_equality;
isl_id *id;
isl_basic_set *hull;
isl_set *hull_set;
isl_morph *morph;
isl_multi_aff *compress, *decompress;
struct isl_sched_graph *graph = user;
hull = isl_set_affine_hull(isl_set_copy(set));
hull = isl_basic_set_remove_divs(hull);
nvar = isl_set_dim(set, isl_dim_set);
has_equality = has_any_defining_equality(hull);
if (has_equality < 0)
goto error;
if (!has_equality) {
isl_basic_set_free(hull);
return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
}
id = construct_compressed_id(set, &graph->node[graph->n]);
morph = isl_basic_set_variable_compression_with_id(hull,
isl_dim_set, id);
isl_id_free(id);
nvar = isl_morph_ran_dim(morph, isl_dim_set);
compress = isl_morph_get_var_multi_aff(morph);
morph = isl_morph_inverse(morph);
decompress = isl_morph_get_var_multi_aff(morph);
isl_morph_free(morph);
hull_set = isl_set_from_basic_set(hull);
return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
error:
isl_basic_set_free(hull);
isl_set_free(set);
return isl_stat_error;
}
struct isl_extract_edge_data {
enum isl_edge_type type;
struct isl_sched_graph *graph;
};
/* Merge edge2 into edge1, freeing the contents of edge2.
* Return 0 on success and -1 on failure.
*
* edge1 and edge2 are assumed to have the same value for the map field.
*/
static int merge_edge(struct isl_sched_edge *edge1,
struct isl_sched_edge *edge2)
{
edge1->types |= edge2->types;
isl_map_free(edge2->map);
if (is_condition(edge2)) {
if (!edge1->tagged_condition)
edge1->tagged_condition = edge2->tagged_condition;
else
edge1->tagged_condition =
isl_union_map_union(edge1->tagged_condition,
edge2->tagged_condition);
}
if (is_conditional_validity(edge2)) {
if (!edge1->tagged_validity)
edge1->tagged_validity = edge2->tagged_validity;
else
edge1->tagged_validity =
isl_union_map_union(edge1->tagged_validity,
edge2->tagged_validity);
}
if (is_condition(edge2) && !edge1->tagged_condition)
return -1;
if (is_conditional_validity(edge2) && !edge1->tagged_validity)
return -1;
return 0;
}
/* Insert dummy tags in domain and range of "map".
*
* In particular, if "map" is of the form
*
* A -> B
*
* then return
*
* [A -> dummy_tag] -> [B -> dummy_tag]
*
* where the dummy_tags are identical and equal to any dummy tags
* introduced by any other call to this function.
*/
static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
{
static char dummy;
isl_ctx *ctx;
isl_id *id;
isl_space *space;
isl_set *domain, *range;
ctx = isl_map_get_ctx(map);
id = isl_id_alloc(ctx, NULL, &dummy);
space = isl_space_params(isl_map_get_space(map));
space = isl_space_set_from_params(space);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
space = isl_space_map_from_set(space);
domain = isl_map_wrap(map);
range = isl_map_wrap(isl_map_universe(space));
map = isl_map_from_domain_and_range(domain, range);
map = isl_map_zip(map);
return map;
}
/* Given that at least one of "src" or "dst" is compressed, return
* a map between the spaces of these nodes restricted to the affine
* hull that was used in the compression.
*/
static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
struct isl_sched_node *dst)
{
isl_set *dom, *ran;
if (src->compressed)
dom = isl_set_copy(src->hull);
else
dom = isl_set_universe(isl_space_copy(src->space));
if (dst->compressed)
ran = isl_set_copy(dst->hull);
else
ran = isl_set_universe(isl_space_copy(dst->space));
return isl_map_from_domain_and_range(dom, ran);
}
/* Intersect the domains of the nested relations in domain and range
* of "tagged" with "map".
*/
static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
__isl_keep isl_map *map)
{
isl_set *set;
tagged = isl_map_zip(tagged);
set = isl_map_wrap(isl_map_copy(map));
tagged = isl_map_intersect_domain(tagged, set);
tagged = isl_map_zip(tagged);
return tagged;
}
/* Return a pointer to the node that lives in the domain space of "map",
* an invalid node if there is no such node, or NULL in case of error.
*/
static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_map *map)
{
struct isl_sched_node *node;
isl_space *space;
space = isl_space_domain(isl_map_get_space(map));
node = graph_find_node(ctx, graph, space);
isl_space_free(space);
return node;
}
/* Return a pointer to the node that lives in the range space of "map",
* an invalid node if there is no such node, or NULL in case of error.
*/
static struct isl_sched_node *find_range_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_map *map)
{
struct isl_sched_node *node;
isl_space *space;
space = isl_space_range(isl_map_get_space(map));
node = graph_find_node(ctx, graph, space);
isl_space_free(space);
return node;
}
/* Refrain from adding a new edge based on "map".
* Instead, just free the map.
* "tagged" is either a copy of "map" with additional tags or NULL.
*/
static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
{
isl_map_free(map);
isl_map_free(tagged);
return isl_stat_ok;
}
/* Add a new edge to the graph based on the given map
* and add it to data->graph->edge_table[data->type].
* If a dependence relation of a given type happens to be identical
* to one of the dependence relations of a type that was added before,
* then we don't create a new edge, but instead mark the original edge
* as also representing a dependence of the current type.
*
* Edges of type isl_edge_condition or isl_edge_conditional_validity
* may be specified as "tagged" dependence relations. That is, "map"
* may contain elements (i -> a) -> (j -> b), where i -> j denotes
* the dependence on iterations and a and b are tags.
* edge->map is set to the relation containing the elements i -> j,
* while edge->tagged_condition and edge->tagged_validity contain
* the union of all the "map" relations
* for which extract_edge is called that result in the same edge->map.
*
* If the source or the destination node is compressed, then
* intersect both "map" and "tagged" with the constraints that
* were used to construct the compression.
* This ensures that there are no schedule constraints defined
* outside of these domains, while the scheduler no longer has
* any control over those outside parts.
*/
static isl_stat extract_edge(__isl_take isl_map *map, void *user)
{
isl_bool empty;
isl_ctx *ctx = isl_map_get_ctx(map);
struct isl_extract_edge_data *data = user;
struct isl_sched_graph *graph = data->graph;
struct isl_sched_node *src, *dst;
struct isl_sched_edge *edge;
isl_map *tagged = NULL;
if (data->type == isl_edge_condition ||
data->type == isl_edge_conditional_validity) {
if (isl_map_can_zip(map)) {
tagged = isl_map_copy(map);
map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
} else {
tagged = insert_dummy_tags(isl_map_copy(map));
}
}
src = find_domain_node(ctx, graph, map);
dst = find_range_node(ctx, graph, map);
if (!src || !dst)
goto error;
if (!is_node(graph, src) || !is_node(graph, dst))
return skip_edge(map, tagged);
if (src->compressed || dst->compressed) {
isl_map *hull;
hull = extract_hull(src, dst);
if (tagged)
tagged = map_intersect_domains(tagged, hull);
map = isl_map_intersect(map, hull);
}
empty = isl_map_plain_is_empty(map);
if (empty < 0)
goto error;
if (empty)
return skip_edge(map, tagged);
graph->edge[graph->n_edge].src = src;
graph->edge[graph->n_edge].dst = dst;
graph->edge[graph->n_edge].map = map;
graph->edge[graph->n_edge].types = 0;
graph->edge[graph->n_edge].tagged_condition = NULL;
graph->edge[graph->n_edge].tagged_validity = NULL;
set_type(&graph->edge[graph->n_edge], data->type);
if (data->type == isl_edge_condition)
graph->edge[graph->n_edge].tagged_condition =
isl_union_map_from_map(tagged);
if (data->type == isl_edge_conditional_validity)
graph->edge[graph->n_edge].tagged_validity =
isl_union_map_from_map(tagged);
edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
if (!edge) {
graph->n_edge++;
return isl_stat_error;
}
if (edge == &graph->edge[graph->n_edge])
return graph_edge_table_add(ctx, graph, data->type,
&graph->edge[graph->n_edge++]);
if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
return isl_stat_error;
return graph_edge_table_add(ctx, graph, data->type, edge);
error:
isl_map_free(map);
isl_map_free(tagged);
return isl_stat_error;
}
/* Initialize the schedule graph "graph" from the schedule constraints "sc".
*
* The context is included in the domain before the nodes of
* the graphs are extracted in order to be able to exploit
* any possible additional equalities.
* Note that this intersection is only performed locally here.
*/
static isl_stat graph_init(struct isl_sched_graph *graph,
__isl_keep isl_schedule_constraints *sc)
{
isl_ctx *ctx;
isl_union_set *domain;
isl_union_map *c;
struct isl_extract_edge_data data;
enum isl_edge_type i;
isl_stat r;
if (!sc)
return isl_stat_error;
ctx = isl_schedule_constraints_get_ctx(sc);
domain = isl_schedule_constraints_get_domain(sc);
graph->n = isl_union_set_n_set(domain);
isl_union_set_free(domain);
if (graph_alloc(ctx, graph, graph->n,
isl_schedule_constraints_n_map(sc)) < 0)
return isl_stat_error;
if (compute_max_row(graph, sc) < 0)
return isl_stat_error;
graph->root = graph;
graph->n = 0;
domain = isl_schedule_constraints_get_domain(sc);
domain = isl_union_set_intersect_params(domain,
isl_schedule_constraints_get_context(sc));
r = isl_union_set_foreach_set(domain, &extract_node, graph);
isl_union_set_free(domain);
if (r < 0)
return isl_stat_error;
if (graph_init_table(ctx, graph) < 0)
return isl_stat_error;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
c = isl_schedule_constraints_get(sc, i);
graph->max_edge[i] = isl_union_map_n_map(c);
isl_union_map_free(c);
if (!c)
return isl_stat_error;
}
if (graph_init_edge_tables(ctx, graph) < 0)
return isl_stat_error;
graph->n_edge = 0;
data.graph = graph;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
isl_stat r;
data.type = i;
c = isl_schedule_constraints_get(sc, i);
r = isl_union_map_foreach_map(c, &extract_edge, &data);
isl_union_map_free(c);
if (r < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Check whether there is any dependence from node[j] to node[i]
* or from node[i] to node[j].
*/
static isl_bool node_follows_weak(int i, int j, void *user)
{
isl_bool f;
struct isl_sched_graph *graph = user;
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
if (f < 0 || f)
return f;
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
}
/* Check whether there is a (conditional) validity dependence from node[j]
* to node[i], forcing node[i] to follow node[j].
*/
static isl_bool node_follows_strong(int i, int j, void *user)
{
struct isl_sched_graph *graph = user;
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}
/* Use Tarjan's algorithm for computing the strongly connected components
* in the dependence graph only considering those edges defined by "follows".
*/
static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
isl_bool (*follows)(int i, int j, void *user))
{
int i, n;
struct isl_tarjan_graph *g = NULL;
g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
if (!g)
return isl_stat_error;
graph->scc = 0;
i = 0;
n = graph->n;
while (n) {
while (g->order[i] != -1) {
graph->node[g->order[i]].scc = graph->scc;
--n;
++i;
}
++i;
graph->scc++;
}
isl_tarjan_graph_free(g);
return isl_stat_ok;
}
/* Apply Tarjan's algorithm to detect the strongly connected components
* in the dependence graph.
* Only consider the (conditional) validity dependences and clear "weak".
*/
static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
graph->weak = 0;
return detect_ccs(ctx, graph, &node_follows_strong);
}
/* Apply Tarjan's algorithm to detect the (weakly) connected components
* in the dependence graph.
* Consider all dependences and set "weak".
*/
static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
graph->weak = 1;
return detect_ccs(ctx, graph, &node_follows_weak);
}
static int cmp_scc(const void *a, const void *b, void *data)
{
struct isl_sched_graph *graph = data;
const int *i1 = a;
const int *i2 = b;
return graph->node[*i1].scc - graph->node[*i2].scc;
}
/* Sort the elements of graph->sorted according to the corresponding SCCs.
*/
static int sort_sccs(struct isl_sched_graph *graph)
{
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
}
/* Return a non-parametric set in the compressed space of "node" that is
* bounded by the size in each direction
*
* { [x] : -S_i <= x_i <= S_i }
*
* If S_i is infinity in direction i, then there are no constraints
* in that direction.
*
* Cache the result in node->bounds.
*/
static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
{
isl_space *space;
isl_basic_set *bounds;
int i;
unsigned nparam;
if (node->bounds)
return isl_basic_set_copy(node->bounds);
if (node->compressed)
space = isl_multi_aff_get_domain_space(node->decompress);
else
space = isl_space_copy(node->space);
nparam = isl_space_dim(space, isl_dim_param);
space = isl_space_drop_dims(space, isl_dim_param, 0, nparam);
bounds = isl_basic_set_universe(space);
for (i = 0; i < node->nvar; ++i) {
isl_val *size;
size = isl_multi_val_get_val(node->sizes, i);
if (!size)
return isl_basic_set_free(bounds);
if (!isl_val_is_int(size)) {
isl_val_free(size);
continue;
}
bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
isl_val_copy(size));
bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
isl_val_neg(size));
}
node->bounds = isl_basic_set_copy(bounds);
return bounds;
}
/* Drop some constraints from "delta" that could be exploited
* to construct loop coalescing schedules.
* In particular, drop those constraint that bound the difference
* to the size of the domain.
* First project out the parameters to improve the effectiveness.
*/
static __isl_give isl_set *drop_coalescing_constraints(
__isl_take isl_set *delta, struct isl_sched_node *node)
{
unsigned nparam;
isl_basic_set *bounds;
bounds = get_size_bounds(node);
nparam = isl_set_dim(delta, isl_dim_param);
delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
delta = isl_set_remove_divs(delta);
delta = isl_set_plain_gist_basic_set(delta, bounds);
return delta;
}
/* Given a dependence relation R from "node" to itself,
* construct the set of coefficients of valid constraints for elements
* in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x such that
*
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
*
* or, equivalently,
*
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
*
* We choose here to compute the dual of delta R.
* Alternatively, we could have computed the dual of R, resulting
* in a set of tuples c_0, c_n, c_x, c_y, and then
* plugged in (c_0, c_n, c_x, -c_x).
*
* If "need_param" is set, then the resulting coefficients effectively
* include coefficients for the parameters c_n. Otherwise, they may
* have been projected out already.
* Since the constraints may be different for these two cases,
* they are stored in separate caches.
* In particular, if no parameter coefficients are required and
* the schedule_treat_coalescing option is set, then the parameters
* are projected out and some constraints that could be exploited
* to construct coalescing schedules are removed before the dual
* is computed.
*
* If "node" has been compressed, then the dependence relation
* is also compressed before the set of coefficients is computed.
*/
static __isl_give isl_basic_set *intra_coefficients(
struct isl_sched_graph *graph, struct isl_sched_node *node,
__isl_take isl_map *map, int need_param)
{
isl_ctx *ctx;
isl_set *delta;
isl_map *key;
isl_basic_set *coef;
isl_maybe_isl_basic_set m;
isl_map_to_basic_set **hmap = &graph->intra_hmap;
int treat;
if (!map)
return NULL;
ctx = isl_map_get_ctx(map);
treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
if (!treat)
hmap = &graph->intra_hmap_param;
m = isl_map_to_basic_set_try_get(*hmap, map);
if (m.valid < 0 || m.valid) {
isl_map_free(map);
return m.value;
}
key = isl_map_copy(map);
if (node->compressed) {
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(node->decompress));
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(node->decompress));
}
delta = isl_map_deltas(map);
if (treat)
delta = drop_coalescing_constraints(delta, node);
delta = isl_set_remove_divs(delta);
coef = isl_set_coefficients(delta);
*hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
return coef;
}
/* Given a dependence relation R, construct the set of coefficients
* of valid constraints for elements in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x, c_y such that
*
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
*
* If the source or destination nodes of "edge" have been compressed,
* then the dependence relation is also compressed before
* the set of coefficients is computed.
*/
static __isl_give isl_basic_set *inter_coefficients(
struct isl_sched_graph *graph, struct isl_sched_edge *edge,
__isl_take isl_map *map)
{
isl_set *set;
isl_map *key;
isl_basic_set *coef;
isl_maybe_isl_basic_set m;
m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
if (m.valid < 0 || m.valid) {
isl_map_free(map);
return m.value;
}
key = isl_map_copy(map);
if (edge->src->compressed)
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(edge->src->decompress));
if (edge->dst->compressed)
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(edge->dst->decompress));
set = isl_map_wrap(isl_map_remove_divs(map));
coef = isl_set_coefficients(set);
graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
isl_basic_set_copy(coef));
return coef;
}
/* Return the position of the coefficients of the variables in
* the coefficients constraints "coef".
*
* The space of "coef" is of the form
*
* { coefficients[[cst, params] -> S] }
*
* Return the position of S.
*/
static int coef_var_offset(__isl_keep isl_basic_set *coef)
{
int offset;
isl_space *space;
space = isl_space_unwrap(isl_basic_set_get_space(coef));
offset = isl_space_dim(space, isl_dim_in);
isl_space_free(space);
return offset;
}
/* Return the offset of the coefficient of the constant term of "node"
* within the (I)LP.
*
* Within each node, the coefficients have the following order:
* - positive and negative parts of c_i_x
* - c_i_n (if parametric)
* - c_i_0
*/
static int node_cst_coef_offset(struct isl_sched_node *node)
{
return node->start + 2 * node->nvar + node->nparam;
}
/* Return the offset of the coefficients of the parameters of "node"
* within the (I)LP.
*
* Within each node, the coefficients have the following order:
* - positive and negative parts of c_i_x
* - c_i_n (if parametric)
* - c_i_0
*/
static int node_par_coef_offset(struct isl_sched_node *node)
{
return node->start + 2 * node->nvar;
}
/* Return the offset of the coefficients of the variables of "node"
* within the (I)LP.
*
* Within each node, the coefficients have the following order:
* - positive and negative parts of c_i_x
* - c_i_n (if parametric)
* - c_i_0
*/
static int node_var_coef_offset(struct isl_sched_node *node)
{
return node->start;
}
/* Return the position of the pair of variables encoding
* coefficient "i" of "node".
*
* The order of these variable pairs is the opposite of
* that of the coefficients, with 2 variables per coefficient.
*/
static int node_var_coef_pos(struct isl_sched_node *node, int i)
{
return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
}
/* Construct an isl_dim_map for mapping constraints on coefficients
* for "node" to the corresponding positions in graph->lp.
* "offset" is the offset of the coefficients for the variables
* in the input constraints.
* "s" is the sign of the mapping.
*
* The input constraints are given in terms of the coefficients
* (c_0, c_x) or (c_0, c_n, c_x).
* The mapping produced by this function essentially plugs in
* (0, c_i_x^+ - c_i_x^-) if s = 1 and
* (0, -c_i_x^+ + c_i_x^-) if s = -1 or
* (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
* (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
* Furthermore, the order of these pairs is the opposite of that
* of the corresponding coefficients.
*
* The caller can extend the mapping to also map the other coefficients
* (and therefore not plug in 0).
*/
static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_sched_node *node,
int offset, int s)
{
int pos;
unsigned total;
isl_dim_map *dim_map;
if (!node || !graph->lp)
return NULL;
total = isl_basic_set_total_dim(graph->lp);
pos = node_var_coef_pos(node, 0);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
return dim_map;
}
/* Construct an isl_dim_map for mapping constraints on coefficients
* for "src" (node i) and "dst" (node j) to the corresponding positions
* in graph->lp.
* "offset" is the offset of the coefficients for the variables of "src"
* in the input constraints.
* "s" is the sign of the mapping.
*
* The input constraints are given in terms of the coefficients
* (c_0, c_n, c_x, c_y).
* The mapping produced by this function essentially plugs in
* (c_j_0 - c_i_0, c_j_n - c_i_n,
* -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
* (-c_j_0 + c_i_0, -c_j_n + c_i_n,
* c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
* Furthermore, the order of these pairs is the opposite of that
* of the corresponding coefficients.
*
* The caller can further extend the mapping.
*/
static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_sched_node *src,
struct isl_sched_node *dst, int offset, int s)
{
int pos;
unsigned total;
isl_dim_map *dim_map;
if (!src || !dst || !graph->lp)
return NULL;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
pos = node_cst_coef_offset(dst);
isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
pos = node_par_coef_offset(dst);
isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
pos = node_var_coef_pos(dst, 0);
isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
dst->nvar, -s);
isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
dst->nvar, s);
pos = node_cst_coef_offset(src);
isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
pos = node_par_coef_offset(src);
isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
pos = node_var_coef_pos(src, 0);
isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
return dim_map;
}
/* Add the constraints from "src" to "dst" using "dim_map",
* after making sure there is enough room in "dst" for the extra constraints.
*/
static __isl_give isl_basic_set *add_constraints_dim_map(
__isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
__isl_take isl_dim_map *dim_map)
{
int n_eq, n_ineq;
n_eq = isl_basic_set_n_equality(src);
n_ineq = isl_basic_set_n_inequality(src);
dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
return dst;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from a node i to itself.
* That is, add constraints that enforce
*
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
* = c_i_x (y - x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_x)
* of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
* Note that the result of intra_coefficients may also contain
* parameter coefficients c_n, in which case 0 is plugged in for them as well.
*/
static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
int offset;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map, 0);
offset = coef_var_offset(coef);
if (!coef)
return isl_stat_error;
dim_map = intra_dim_map(ctx, graph, node, offset, 1);
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
return isl_stat_ok;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from node i to node j.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
*/
static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
int offset;
isl_map *map;
isl_ctx *ctx;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
if (!graph->lp)
return isl_stat_error;
map = isl_map_copy(edge->map);
ctx = isl_map_get_ctx(map);
coef = inter_coefficients(graph, edge, map);
offset = coef_var_offset(coef);
if (!coef)
return isl_stat_error;
dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
edge->start = graph->lp->n_ineq;
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
if (!graph->lp)
return isl_stat_error;
edge->end = graph->lp->n_ineq;
return isl_stat_ok;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from a node i to itself.
* If s = 1, we add the constraint
*
* c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* -c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
* with each coefficient (except m_0) represented as a pair of non-negative
* coefficients.
*
*
* If "local" is set, then we add constraints
*
* c_i_x (y - x) <= 0
*
* or
*
* -c_i_x (y - x) <= 0
*
* instead, forcing the dependence distance to be (less than or) equal to 0.
* That is, we plug in (0, 0, -s * c_i_x),
* intra_coefficients is not required to have c_n in its result when
* "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
* Note that dependences marked local are treated as validity constraints
* by add_all_validity_constraints and therefore also have
* their distances bounded by 0 from below.
*/
static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s, int local)
{
int offset;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, node, map, !local);
offset = coef_var_offset(coef);
if (!coef)
return isl_stat_error;
nparam = isl_space_dim(node->space, isl_dim_param);
dim_map = intra_dim_map(ctx, graph, node, offset, -s);
if (!local) {
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
}
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
return isl_stat_ok;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from node i to node j.
* If s = 1, we add the constraint
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
* <= m_0 + m_n n
*
* or
*
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
* <= m_0 + m_n n
*
* or
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
* s*c_i_x, -s*c_j_x)
* with each coefficient (except m_0, c_*_0 and c_*_n)
* represented as a pair of non-negative coefficients.
*
*
* If "local" is set (and s = 1), then we add constraints
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
*
* or
*
* -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
*
* instead, forcing the dependence distance to be (less than or) equal to 0.
* That is, we plug in
* (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
* Note that dependences marked local are treated as validity constraints
* by add_all_validity_constraints and therefore also have
* their distances bounded by 0 from below.
*/
static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s, int local)
{
int offset;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, edge, map);
offset = coef_var_offset(coef);
if (!coef)
return isl_stat_error;
nparam = isl_space_dim(src->space, isl_dim_param);
dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
if (!local) {
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
}
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
return isl_stat_ok;
}
/* Should the distance over "edge" be forced to zero?
* That is, is it marked as a local edge?
* If "use_coincidence" is set, then coincidence edges are treated
* as local edges.
*/
static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
{
return is_local(edge) || (use_coincidence && is_coincidence(edge));
}
/* Add all validity constraints to graph->lp.
*
* An edge that is forced to be local needs to have its dependence
* distances equal to zero. We take care of bounding them by 0 from below
* here. add_all_proximity_constraints takes care of bounding them by 0
* from above.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int add_all_validity_constraints(struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int zero;
zero = force_zero(edge, use_coincidence);
if (!is_validity(edge) && !zero)
continue;
if (edge->src != edge->dst)
continue;
if (add_intra_validity_constraints(graph, edge) < 0)
return -1;
}
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int zero;
zero = force_zero(edge, use_coincidence);
if (!is_validity(edge) && !zero)
continue;
if (edge->src == edge->dst)
continue;
if (add_inter_validity_constraints(graph, edge) < 0)
return -1;
}
return 0;
}
/* Add constraints to graph->lp that bound the dependence distance
* for all dependence relations.
* If a given proximity dependence is identical to a validity
* dependence, then the dependence distance is already bounded
* from below (by zero), so we only need to bound the distance
* from above. (This includes the case of "local" dependences
* which are treated as validity dependence by add_all_validity_constraints.)
* Otherwise, we need to bound the distance both from above and from below.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int add_all_proximity_constraints(struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int zero;
zero = force_zero(edge, use_coincidence);
if (!is_proximity(edge) && !zero)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
return -1;
if (is_validity(edge) || zero)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
return -1;
}
return 0;
}
/* Normalize the rows of "indep" such that all rows are lexicographically
* positive and such that each row contains as many final zeros as possible,
* given the choice for the previous rows.
* Do this by performing elementary row operations.
*/
static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
{
indep = isl_mat_reverse_gauss(indep);
indep = isl_mat_lexnonneg_rows(indep);
return indep;
}
/* Compute a basis for the rows in the linear part of the schedule
* and extend this basis to a full basis. The remaining rows
* can then be used to force linear independence from the rows
* in the schedule.
*
* In particular, given the schedule rows S, we compute
*
* S = H Q
* S U = H
*
* with H the Hermite normal form of S. That is, all but the
* first rank columns of H are zero and so each row in S is
* a linear combination of the first rank rows of Q.
* The matrix Q can be used as a variable transformation
* that isolates the directions of S in the first rank rows.
* Transposing S U = H yields
*
* U^T S^T = H^T
*
* with all but the first rank rows of H^T zero.
* The last rows of U^T are therefore linear combinations
* of schedule coefficients that are all zero on schedule
* coefficients that are linearly dependent on the rows of S.
* At least one of these combinations is non-zero on
* linearly independent schedule coefficients.
* The rows are normalized to involve as few of the last
* coefficients as possible and to have a positive initial value.
*/
static int node_update_vmap(struct isl_sched_node *node)
{
isl_mat *H, *U, *Q;
int n_row = isl_mat_rows(node->sched);
H = isl_mat_sub_alloc(node->sched, 0, n_row,
1 + node->nparam, node->nvar);
H = isl_mat_left_hermite(H, 0, &U, &Q);
isl_mat_free(node->indep);
isl_mat_free(node->vmap);
node->vmap = Q;
node->indep = isl_mat_transpose(U);
node->rank = isl_mat_initial_non_zero_cols(H);
node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
node->indep = normalize_independent(node->indep);
isl_mat_free(H);
if (!node->indep || !node->vmap || node->rank < 0)
return -1;
return 0;
}
/* Is "edge" marked as a validity or a conditional validity edge?
*/
static int is_any_validity(struct isl_sched_edge *edge)
{
return is_validity(edge) || is_conditional_validity(edge);
}
/* How many times should we count the constraints in "edge"?
*
* We count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
* local(+any) -> 2 (>= 0 and <= 0)
*
* If an edge is only marked conditional_validity then it counts
* as zero since it is only checked afterwards.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
{
if (is_proximity(edge) || force_zero(edge, use_coincidence))
return 2;
if (is_validity(edge))
return 1;
return 0;
}
/* How many times should the constraints in "edge" be counted
* as a parametric intra-node constraint?
*
* Only proximity edges that are not forced zero need
* coefficient constraints that include coefficients for parameters.
* If the edge is also a validity edge, then only
* an upper bound is introduced. Otherwise, both lower and upper bounds
* are introduced.
*/
static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
int use_coincidence)
{
if (edge->src != edge->dst)
return 0;
if (!is_proximity(edge))
return 0;
if (force_zero(edge, use_coincidence))
return 0;
if (is_validity(edge))
return 1;
else
return 2;
}
/* Add "f" times the number of equality and inequality constraints of "bset"
* to "n_eq" and "n_ineq" and free "bset".
*/
static isl_stat update_count(__isl_take isl_basic_set *bset,
int f, int *n_eq, int *n_ineq)
{
if (!bset)
return isl_stat_error;
*n_eq += isl_basic_set_n_equality(bset);
*n_ineq += isl_basic_set_n_inequality(bset);
isl_basic_set_free(bset);
return isl_stat_ok;
}
/* Count the number of equality and inequality constraints
* that will be added for the given map.
*
* The edges that require parameter coefficients are counted separately.
*
* "use_coincidence" is set if we should take into account coincidence edges.
*/
static isl_stat count_map_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map,
int *n_eq, int *n_ineq, int use_coincidence)
{
isl_map *copy;
isl_basic_set *coef;
int f = edge_multiplicity(edge, use_coincidence);
int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
if (f == 0) {
isl_map_free(map);
return isl_stat_ok;
}
if (edge->src != edge->dst) {
coef = inter_coefficients(graph, edge, map);
return update_count(coef, f, n_eq, n_ineq);
}
if (fp > 0) {
copy = isl_map_copy(map);
coef = intra_coefficients(graph, edge->src, copy, 1);
if (update_count(coef, fp, n_eq, n_ineq) < 0)
goto error;
}
if (f > fp) {
copy = isl_map_copy(map);
coef = intra_coefficients(graph, edge->src, copy, 0);
if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
goto error;
}
isl_map_free(map);
return isl_stat_ok;
error:
isl_map_free(map);
return isl_stat_error;
}
/* Count the number of equality and inequality constraints
* that will be added to the main lp problem.
* We count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
* local(+any) -> 2 (>= 0 and <= 0)
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static int count_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq, int use_coincidence)
{
int i;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
isl_map *map = isl_map_copy(edge->map);
if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
use_coincidence) < 0)
return -1;
}
return 0;
}
/* Count the number of constraints that will be added by
* add_bound_constant_constraints to bound the values of the constant terms
* and increment *n_eq and *n_ineq accordingly.
*
* In practice, add_bound_constant_constraints only adds inequalities.
*/
static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
{
if (isl_options_get_schedule_max_constant_term(ctx) == -1)
return isl_stat_ok;
*n_ineq += graph->n;
return isl_stat_ok;
}
/* Add constraints to bound the values of the constant terms in the schedule,
* if requested by the user.
*
* The maximal value of the constant terms is defined by the option
* "schedule_max_constant_term".
*/
static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i, k;
int max;
int total;
max = isl_options_get_schedule_max_constant_term(ctx);
if (max == -1)
return isl_stat_ok;
total = isl_basic_set_dim(graph->lp, isl_dim_set);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos;
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return isl_stat_error;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
pos = node_cst_coef_offset(node);
isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
isl_int_set_si(graph->lp->ineq[k][0], max);
}
return isl_stat_ok;
}
/* Count the number of constraints that will be added by
* add_bound_coefficient_constraints and increment *n_eq and *n_ineq
* accordingly.
*
* In practice, add_bound_coefficient_constraints only adds inequalities.
*/
static int count_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
{
int i;
if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
!isl_options_get_schedule_treat_coalescing(ctx))
return 0;
for (i = 0; i < graph->n; ++i)
*n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
return 0;
}
/* Add constraints to graph->lp that bound the values of
* the parameter schedule coefficients of "node" to "max" and
* the variable schedule coefficients to the corresponding entry
* in node->max.
* In either case, a negative value means that no bound needs to be imposed.
*
* For parameter coefficients, this amounts to adding a constraint
*
* c_n <= max
*
* i.e.,
*
* -c_n + max >= 0
*
* The variables coefficients are, however, not represented directly.
* Instead, the variable coefficients c_x are written as differences
* c_x = c_x^+ - c_x^-.
* That is,
*
* -max_i <= c_x_i <= max_i
*
* is encoded as
*
* -max_i <= c_x_i^+ - c_x_i^- <= max_i
*
* or
*
* -(c_x_i^+ - c_x_i^-) + max_i >= 0
* c_x_i^+ - c_x_i^- + max_i >= 0
*/
static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
{
int i, j, k;
int total;
isl_vec *ineq;
total = isl_basic_set_dim(graph->lp, isl_dim_set);
for (j = 0; j < node->nparam; ++j) {
int dim;
if (max < 0)
continue;
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return isl_stat_error;
dim = 1 + node_par_coef_offset(node) + j;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][dim], -1);
isl_int_set_si(graph->lp->ineq[k][0], max);
}
ineq = isl_vec_alloc(ctx, 1 + total);
ineq = isl_vec_clr(ineq);
if (!ineq)
return isl_stat_error;
for (i = 0; i < node->nvar; ++i) {
int pos = 1 + node_var_coef_pos(node, i);
if (isl_int_is_neg(node->max->el[i]))
continue;
isl_int_set_si(ineq->el[pos], 1);
isl_int_set_si(ineq->el[pos + 1], -1);
isl_int_set(ineq->el[0], node->max->el[i]);
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
goto error;
isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
goto error;
isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
isl_seq_clr(ineq->el + pos, 2);
}
isl_vec_free(ineq);
return isl_stat_ok;
error:
isl_vec_free(ineq);
return isl_stat_error;
}
/* Add constraints that bound the values of the variable and parameter
* coefficients of the schedule.
*
* The maximal value of the coefficients is defined by the option
* 'schedule_max_coefficient' and the entries in node->max.
* These latter entries are only set if either the schedule_max_coefficient
* option or the schedule_treat_coalescing option is set.
*/
static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i;
int max;
max = isl_options_get_schedule_max_coefficient(ctx);
if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
return isl_stat_ok;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Add a constraint to graph->lp that equates the value at position
* "sum_pos" to the sum of the "n" values starting at "first".
*/
static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
int sum_pos, int first, int n)
{
int i, k;
int total;
total = isl_basic_set_dim(graph->lp, isl_dim_set);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return isl_stat_error;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
for (i = 0; i < n; ++i)
isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
return isl_stat_ok;
}
/* Add a constraint to graph->lp that equates the value at position
* "sum_pos" to the sum of the parameter coefficients of all nodes.
*/
static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
int sum_pos)
{
int i, j, k;
int total;
total = isl_basic_set_dim(graph->lp, isl_dim_set);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return isl_stat_error;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + node_par_coef_offset(&graph->node[i]);
for (j = 0; j < graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
return isl_stat_ok;
}
/* Add a constraint to graph->lp that equates the value at position
* "sum_pos" to the sum of the variable coefficients of all nodes.
*/
static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
int sum_pos)
{
int i, j, k;
int total;
total = isl_basic_set_dim(graph->lp, isl_dim_set);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return isl_stat_error;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node_var_coef_offset(node);
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
return isl_stat_ok;
}
/* Construct an ILP problem for finding schedule coefficients
* that result in non-negative, but small dependence distances
* over all dependences.
* In particular, the dependence distances over proximity edges
* are bounded by m_0 + m_n n and we compute schedule coefficients
* with small values (preferably zero) of m_n and m_0.
*
* All variables of the ILP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of positive and negative parts of m_n coefficients
* - m_0
* - sum of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - positive and negative parts of m_n coefficients
* - for each node
* - positive and negative parts of c_i_x, in opposite order
* - c_i_n (if parametric)
* - c_i_0
*
* The constraints are those from the edges plus two or three equalities
* to express the sums.
*
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
* Otherwise, we ignore them.
*/
static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
int use_coincidence)
{
int i;
unsigned nparam;
unsigned total;
isl_space *space;
int parametric;
int param_pos;
int n_eq, n_ineq;
parametric = ctx->opt->schedule_parametric;
nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
param_pos = 4;
total = param_pos + 2 * nparam;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
if (node_update_vmap(node) < 0)
return isl_stat_error;
node->start = total;
total += 1 + node->nparam + 2 * node->nvar;
}
if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
return isl_stat_error;
if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
return isl_stat_error;
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
return isl_stat_error;
space = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 2 + parametric;
graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
return isl_stat_error;
if (parametric && add_param_sum_constraint(graph, 2) < 0)
return isl_stat_error;
if (add_var_sum_constraint(graph, 3) < 0)
return isl_stat_error;
if (add_bound_constant_constraints(ctx, graph) < 0)
return isl_stat_error;
if (add_bound_coefficient_constraints(ctx, graph) < 0)
return isl_stat_error;
if (add_all_validity_constraints(graph, use_coincidence) < 0)
return isl_stat_error;
if (add_all_proximity_constraints(graph, use_coincidence) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Analyze the conflicting constraint found by
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
* constraint of one of the edges between distinct nodes, living, moreover
* in distinct SCCs, then record the source and sink SCC as this may
* be a good place to cut between SCCs.
*/
static int check_conflict(int con, void *user)
{
int i;
struct isl_sched_graph *graph = user;
if (graph->src_scc >= 0)
return 0;
con -= graph->lp->n_eq;
if (con >= graph->lp->n_ineq)
return 0;
for (i = 0; i < graph->n_edge; ++i) {
if (!is_validity(&graph->edge[i]))
continue;
if (graph->edge[i].src == graph->edge[i].dst)
continue;
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
continue;
if (graph->edge[i].start > con)
continue;
if (graph->edge[i].end <= con)
continue;
graph->src_scc = graph->edge[i].src->scc;
graph->dst_scc = graph->edge[i].dst->scc;
}
return 0;
}
/* Check whether the next schedule row of the given node needs to be
* non-trivial. Lower-dimensional domains may have some trivial rows,
* but as soon as the number of remaining required non-trivial rows
* is as large as the number or remaining rows to be computed,
* all remaining rows need to be non-trivial.
*/
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
{
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
}
/* Construct a non-triviality region with triviality directions
* corresponding to the rows of "indep".
* The rows of "indep" are expressed in terms of the schedule coefficients c_i,
* while the triviality directions are expressed in terms of
* pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
* before c^+_i. Furthermore,
* the pairs of non-negative variables representing the coefficients
* are stored in the opposite order.
*/
static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
{
isl_ctx *ctx;
isl_mat *mat;
int i, j, n, n_var;
if (!indep)
return NULL;
ctx = isl_mat_get_ctx(indep);
n = isl_mat_rows(indep);
n_var = isl_mat_cols(indep);
mat = isl_mat_alloc(ctx, n, 2 * n_var);
if (!mat)
return NULL;
for (i = 0; i < n; ++i) {
for (j = 0; j < n_var; ++j) {
int nj = n_var - 1 - j;
isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
}
}
return mat;
}
/* Solve the ILP problem constructed in setup_lp.
* For each node such that all the remaining rows of its schedule
* need to be non-trivial, we construct a non-triviality region.
* This region imposes that the next row is independent of previous rows.
* In particular, the non-triviality region enforces that at least
* one of the linear combinations in the rows of node->indep is non-zero.
*/
static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
isl_vec *sol;
isl_basic_set *lp;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_mat *trivial;
graph->region[i].pos = node_var_coef_offset(node);
if (needs_row(graph, node))
trivial = construct_trivial(node->indep);
else
trivial = isl_mat_zero(ctx, 0, 0);
graph->region[i].trivial = trivial;
}
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
graph->region, &check_conflict, graph);
for (i = 0; i < graph->n; ++i)
isl_mat_free(graph->region[i].trivial);
return sol;
}
/* Extract the coefficients for the variables of "node" from "sol".
*
* Each schedule coefficient c_i_x is represented as the difference
* between two non-negative variables c_i_x^+ - c_i_x^-.
* The c_i_x^- appear before their c_i_x^+ counterpart.
* Furthermore, the order of these pairs is the opposite of that
* of the corresponding coefficients.
*
* Return c_i_x = c_i_x^+ - c_i_x^-
*/
static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
__isl_keep isl_vec *sol)
{
int i;
int pos;
isl_vec *csol;
if (!sol)
return NULL;
csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
if (!csol)
return NULL;
pos = 1 + node_var_coef_offset(node);
for (i = 0; i < node->nvar; ++i)
isl_int_sub(csol->el[node->nvar - 1 - i],
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
return csol;
}
/* Update the schedules of all nodes based on the given solution
* of the LP problem.
* The new row is added to the current band.
* All possibly negative coefficients are encoded as a difference
* of two non-negative variables, so we need to perform the subtraction
* here.
*
* If coincident is set, then the caller guarantees that the new
* row satisfies the coincidence constraints.
*/
static int update_schedule(struct isl_sched_graph *graph,
__isl_take isl_vec *sol, int coincident)
{
int i, j;
isl_vec *csol = NULL;
if (!sol)
goto error;
if (sol->size == 0)
isl_die(sol->ctx, isl_error_internal,
"no solution found", goto error);
if (graph->n_total_row >= graph->max_row)
isl_die(sol->ctx, isl_error_internal,
"too many schedule rows", goto error);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos;
int row = isl_mat_rows(node->sched);
isl_vec_free(csol);
csol = extract_var_coef(node, sol);
if (!csol)
goto error;
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
goto error;
pos = node_cst_coef_offset(node);
node->sched = isl_mat_set_element(node->sched,
row, 0, sol->el[1 + pos]);
pos = node_par_coef_offset(node);
for (j = 0; j < node->nparam; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + j, sol->el[1 + pos + j]);
for (j = 0; j < node->nvar; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + node->nparam + j, csol->el[j]);
node->coincident[graph->n_total_row] = coincident;
}
isl_vec_free(sol);
isl_vec_free(csol);
graph->n_row++;
graph->n_total_row++;
return 0;
error:
isl_vec_free(sol);
isl_vec_free(csol);
return -1;
}
/* Convert row "row" of node->sched into an isl_aff living in "ls"
* and return this isl_aff.
*/
static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
struct isl_sched_node *node, int row)
{
int j;
isl_int v;
isl_aff *aff;
isl_int_init(v);
aff = isl_aff_zero_on_domain(ls);
if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
goto error;
aff = isl_aff_set_constant(aff, v);
for (j = 0; j < node->nparam; ++j) {
if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
goto error;
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
}
for (j = 0; j < node->nvar; ++j) {
if (isl_mat_get_element(node->sched, row,
1 + node->nparam + j, &v) < 0)
goto error;
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
}
isl_int_clear(v);
return aff;
error:
isl_int_clear(v);
isl_aff_free(aff);
return NULL;
}
/* Convert the "n" rows starting at "first" of node->sched into a multi_aff
* and return this multi_aff.
*
* The result is defined over the uncompressed node domain.
*/
static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
struct isl_sched_node *node, int first, int n)
{
int i;
isl_space *space;
isl_local_space *ls;
isl_aff *aff;
isl_multi_aff *ma;
int nrow;
if (!node)
return NULL;
nrow = isl_mat_rows(node->sched);
if (node->compressed)
space = isl_multi_aff_get_domain_space(node->decompress);
else
space = isl_space_copy(node->space);
ls = isl_local_space_from_space(isl_space_copy(space));
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, n);
ma = isl_multi_aff_zero(space);
for (i = first; i < first + n; ++i) {
aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
ma = isl_multi_aff_set_aff(ma, i - first, aff);
}
isl_local_space_free(ls);
if (node->compressed)
ma = isl_multi_aff_pullback_multi_aff(ma,
isl_multi_aff_copy(node->compress));
return ma;
}
/* Convert node->sched into a multi_aff and return this multi_aff.
*
* The result is defined over the uncompressed node domain.
*/
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
struct isl_sched_node *node)
{
int nrow;
nrow = isl_mat_rows(node->sched);
return node_extract_partial_schedule_multi_aff(node, 0, nrow);
}
/* Convert node->sched into a map and return this map.
*
* The result is cached in node->sched_map, which needs to be released
* whenever node->sched is updated.
* It is defined over the uncompressed node domain.
*/
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
{
if (!node->sched_map) {
isl_multi_aff *ma;
ma = node_extract_schedule_multi_aff(node);
node->sched_map = isl_map_from_multi_aff(ma);
}
return isl_map_copy(node->sched_map);
}
/* Construct a map that can be used to update a dependence relation
* based on the current schedule.
* That is, construct a map expressing that source and sink
* are executed within the same iteration of the current schedule.
* This map can then be intersected with the dependence relation.
* This is not the most efficient way, but this shouldn't be a critical
* operation.
*/
static __isl_give isl_map *specializer(struct isl_sched_node *src,
struct isl_sched_node *dst)
{
isl_map *src_sched, *dst_sched;
src_sched = node_extract_schedule(src);
dst_sched = node_extract_schedule(dst);
return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
}
/* Intersect the domains of the nested relations in domain and range
* of "umap" with "map".
*/
static __isl_give isl_union_map *intersect_domains(
__isl_take isl_union_map *umap, __isl_keep isl_map *map)
{
isl_union_set *uset;
umap = isl_union_map_zip(umap);
uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
umap = isl_union_map_intersect_domain(umap, uset);
umap = isl_union_map_zip(umap);
return umap;
}
/* Update the dependence relation of the given edge based
* on the current schedule.
* If the dependence is carried completely by the current schedule, then
* it is removed from the edge_tables. It is kept in the list of edges
* as otherwise all edge_tables would have to be recomputed.
*
* If the edge is of a type that can appear multiple times
* between the same pair of nodes, then it is added to
* the edge table (again). This prevents the situation
* where none of these edges is referenced from the edge table
* because the one that was referenced turned out to be empty and
* was therefore removed from the table.
*/
static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
int empty;
isl_map *id;
id = specializer(edge->src, edge->dst);
edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
if (!edge->map)
goto error;
if (edge->tagged_condition) {
edge->tagged_condition =
intersect_domains(edge->tagged_condition, id);
if (!edge->tagged_condition)
goto error;
}
if (edge->tagged_validity) {
edge->tagged_validity =
intersect_domains(edge->tagged_validity, id);
if (!edge->tagged_validity)
goto error;
}
empty = isl_map_plain_is_empty(edge->map);
if (empty < 0)
goto error;
if (empty) {
graph_remove_edge(graph, edge);
} else if (is_multi_edge_type(edge)) {
if (graph_edge_tables_add(ctx, graph, edge) < 0)
goto error;
}
isl_map_free(id);
return isl_stat_ok;
error:
isl_map_free(id);
return isl_stat_error;
}
/* Does the domain of "umap" intersect "uset"?
*/
static int domain_intersects(__isl_keep isl_union_map *umap,
__isl_keep isl_union_set *uset)
{
int empty;
umap = isl_union_map_copy(umap);
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
empty = isl_union_map_is_empty(umap);
isl_union_map_free(umap);
return empty < 0 ? -1 : !empty;
}
/* Does the range of "umap" intersect "uset"?
*/
static int range_intersects(__isl_keep isl_union_map *umap,
__isl_keep isl_union_set *uset)
{
int empty;
umap = isl_union_map_copy(umap);
umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
empty = isl_union_map_is_empty(umap);
isl_union_map_free(umap);
return empty < 0 ? -1 : !empty;
}
/* Are the condition dependences of "edge" local with respect to
* the current schedule?
*
* That is, are domain and range of the condition dependences mapped
* to the same point?
*
* In other words, is the condition false?
*/
static int is_condition_false(struct isl_sched_edge *edge)
{
isl_union_map *umap;
isl_map *map, *sched, *test;
int empty, local;
empty = isl_union_map_is_empty(edge->tagged_condition);
if (empty < 0 || empty)
return empty;
umap = isl_union_map_copy(edge->tagged_condition);
umap = isl_union_map_zip(umap);
umap = isl_union_set_unwrap(isl_union_map_domain(umap));
map = isl_map_from_union_map(umap);
sched = node_extract_schedule(edge->src);
map = isl_map_apply_domain(map, sched);
sched = node_extract_schedule(edge->dst);
map = isl_map_apply_range(map, sched);
test = isl_map_identity(isl_map_get_space(map));
local = isl_map_is_subset(map, test);
isl_map_free(map);
isl_map_free(test);
return local;
}
/* For each conditional validity constraint that is adjacent
* to a condition with domain in condition_source or range in condition_sink,
* turn it into an unconditional validity constraint.
*/
static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
__isl_take isl_union_set *condition_source,
__isl_take isl_union_set *condition_sink)
{
int i;
condition_source = isl_union_set_coalesce(condition_source);
condition_sink = isl_union_set_coalesce(condition_sink);
for (i = 0; i < graph->n_edge; ++i) {
int adjacent;
isl_union_map *validity;
if (!is_conditional_validity(&graph->edge[i]))
continue;
if (is_validity(&graph->edge[i]))
continue;
validity = graph->edge[i].tagged_validity;
adjacent = domain_intersects(validity, condition_sink);
if (adjacent >= 0 && !adjacent)
adjacent = range_intersects(validity, condition_source);
if (adjacent < 0)
goto error;
if (!adjacent)
continue;
set_validity(&graph->edge[i]);
}
isl_union_set_free(condition_source);
isl_union_set_free(condition_sink);
return 0;
error:
isl_union_set_free(condition_source);
isl_union_set_free(condition_sink);
return -1;
}
/* Update the dependence relations of all edges based on the current schedule
* and enforce conditional validity constraints that are adjacent
* to satisfied condition constraints.
*
* First check if any of the condition constraints are satisfied
* (i.e., not local to the outer schedule) and keep track of
* their domain and range.
* Then update all dependence relations (which removes the non-local
* constraints).
* Finally, if any condition constraints turned out to be satisfied,
* then turn all adjacent conditional validity constraints into
* unconditional validity constraints.
*/
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
int any = 0;
isl_union_set *source, *sink;
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
for (i = 0; i < graph->n_edge; ++i) {
int local;
isl_union_set *uset;
isl_union_map *umap;
if (!is_condition(&graph->edge[i]))
continue;
if (is_local(&graph->edge[i]))
continue;
local = is_condition_false(&graph->edge[i]);
if (local < 0)
goto error;
if (local)
continue;
any = 1;
umap = isl_union_map_copy(graph->edge[i].tagged_condition);
uset = isl_union_map_domain(umap);
source = isl_union_set_union(source, uset);
umap = isl_union_map_copy(graph->edge[i].tagged_condition);
uset = isl_union_map_range(umap);
sink = isl_union_set_union(sink, uset);
}
for (i = 0; i < graph->n_edge; ++i) {
if (update_edge(ctx, graph, &graph->edge[i]) < 0)
goto error;
}
if (any)
return unconditionalize_adjacent_validity(graph, source, sink);
isl_union_set_free(source);
isl_union_set_free(sink);
return 0;
error:
isl_union_set_free(source);
isl_union_set_free(sink);
return -1;
}
static void next_band(struct isl_sched_graph *graph)
{
graph->band_start = graph->n_total_row;
}
/* Return the union of the universe domains of the nodes in "graph"
* that satisfy "pred".
*/
static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
struct isl_sched_graph *graph,
int (*pred)(struct isl_sched_node *node, int data), int data)
{
int i;
isl_set *set;
isl_union_set *dom;
for (i = 0; i < graph->n; ++i)
if (pred(&graph->node[i], data))
break;
if (i >= graph->n)
isl_die(ctx, isl_error_internal,
"empty component", return NULL);
set = isl_set_universe(isl_space_copy(graph->node[i].space));
dom = isl_union_set_from_set(set);
for (i = i + 1; i < graph->n; ++i) {
if (!pred(&graph->node[i], data))
continue;
set = isl_set_universe(isl_space_copy(graph->node[i].space));
dom = isl_union_set_union(dom, isl_union_set_from_set(set));
}
return dom;
}
/* Return a list of unions of universe domains, where each element
* in the list corresponds to an SCC (or WCC) indexed by node->scc.
*/
static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i;
isl_union_set_list *filters;
filters = isl_union_set_list_alloc(ctx, graph->scc);
for (i = 0; i < graph->scc; ++i) {
isl_union_set *dom;
dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
filters = isl_union_set_list_add(filters, dom);
}
return filters;
}
/* Return a list of two unions of universe domains, one for the SCCs up
* to and including graph->src_scc and another for the other SCCs.
*/
static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
isl_union_set *dom;
isl_union_set_list *filters;
filters = isl_union_set_list_alloc(ctx, 2);
dom = isl_sched_graph_domain(ctx, graph,
&node_scc_at_most, graph->src_scc);
filters = isl_union_set_list_add(filters, dom);
dom = isl_sched_graph_domain(ctx, graph,
&node_scc_at_least, graph->src_scc + 1);
filters = isl_union_set_list_add(filters, dom);
return filters;
}
/* Copy nodes that satisfy node_pred from the src dependence graph
* to the dst dependence graph.
*/
static isl_stat copy_nodes(struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
int i;
dst->n = 0;
for (i = 0; i < src->n; ++i) {
int j;
if (!node_pred(&src->node[i], data))
continue;
j = dst->n;
dst->node[j].space = isl_space_copy(src->node[i].space);
dst->node[j].compressed = src->node[i].compressed;
dst->node[j].hull = isl_set_copy(src->node[i].hull);
dst->node[j].compress =
isl_multi_aff_copy(src->node[i].compress);
dst->node[j].decompress =
isl_multi_aff_copy(src->node[i].decompress);
dst->node[j].nvar = src->node[i].nvar;
dst->node[j].nparam = src->node[i].nparam;
dst->node[j].sched = isl_mat_copy(src->node[i].sched);
dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
dst->node[j].coincident = src->node[i].coincident;
dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
dst->node[j].max = isl_vec_copy(src->node[i].max);
dst->n++;
if (!dst->node[j].space || !dst->node[j].sched)
return isl_stat_error;
if (dst->node[j].compressed &&
(!dst->node[j].hull || !dst->node[j].compress ||
!dst->node[j].decompress))
return isl_stat_error;
}
return isl_stat_ok;
}
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
* to the dst dependence graph.
* If the source or destination node of the edge is not in the destination
* graph, then it must be a backward proximity edge and it should simply
* be ignored.
*/
static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
{
int i;
dst->n_edge = 0;
for (i = 0; i < src->n_edge; ++i) {
struct isl_sched_edge *edge = &src->edge[i];
isl_map *map;
isl_union_map *tagged_condition;
isl_union_map *tagged_validity;
struct isl_sched_node *dst_src, *dst_dst;
if (!edge_pred(edge, data))
continue;
if (isl_map_plain_is_empty(edge->map))
continue;
dst_src = graph_find_node(ctx, dst, edge->src->space);
dst_dst = graph_find_node(ctx, dst, edge->dst->space);
if (!dst_src || !dst_dst)
return isl_stat_error;
if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
if (is_validity(edge) || is_conditional_validity(edge))
isl_die(ctx, isl_error_internal,
"backward (conditional) validity edge",
return isl_stat_error);
continue;
}
map = isl_map_copy(edge->map);
tagged_condition = isl_union_map_copy(edge->tagged_condition);
tagged_validity = isl_union_map_copy(edge->tagged_validity);
dst->edge[dst->n_edge].src = dst_src;
dst->edge[dst->n_edge].dst = dst_dst;
dst->edge[dst->n_edge].map = map;
dst->edge[dst->n_edge].tagged_condition = tagged_condition;
dst->edge[dst->n_edge].tagged_validity = tagged_validity;
dst->edge[dst->n_edge].types = edge->types;
dst->n_edge++;
if (edge->tagged_condition && !tagged_condition)
return isl_stat_error;
if (edge->tagged_validity && !tagged_validity)
return isl_stat_error;
if (graph_edge_tables_add(ctx, dst,
&dst->edge[dst->n_edge - 1]) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Compute the maximal number of variables over all nodes.
* This is the maximal number of linearly independent schedule
* rows that we need to compute.
* Just in case we end up in a part of the dependence graph
* with only lower-dimensional domains, we make sure we will
* compute the required amount of extra linearly independent rows.
*/
static int compute_maxvar(struct isl_sched_graph *graph)
{
int i;
graph->maxvar = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int nvar;
if (node_update_vmap(node) < 0)
return -1;
nvar = node->nvar + graph->n_row - node->rank;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
}
return 0;
}
/* Extract the subgraph of "graph" that consists of the nodes satisfying
* "node_pred" and the edges satisfying "edge_pred" and store
* the result in "sub".
*/
static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
int (*node_pred)(struct isl_sched_node *node, int data),
int (*edge_pred)(struct isl_sched_edge *edge, int data),
int data, struct isl_sched_graph *sub)
{
int i, n = 0, n_edge = 0;
int t;
for (i = 0; i < graph->n; ++i)
if (node_pred(&graph->node[i], data))
++n;
for (i = 0; i < graph->n_edge; ++i)
if (edge_pred(&graph->edge[i], data))
++n_edge;
if (graph_alloc(ctx, sub, n, n_edge) < 0)
return isl_stat_error;
sub->root = graph->root;
if (copy_nodes(sub, graph, node_pred, data) < 0)
return isl_stat_error;
if (graph_init_table(ctx, sub) < 0)
return isl_stat_error;
for (t = 0; t <= isl_edge_last; ++t)
sub->max_edge[t] = graph->max_edge[t];
if (graph_init_edge_tables(ctx, sub) < 0)
return isl_stat_error;
if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
return isl_stat_error;
sub->n_row = graph->n_row;
sub->max_row = graph->max_row;
sub->n_total_row = graph->n_total_row;
sub->band_start = graph->band_start;
return isl_stat_ok;
}
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
struct isl_sched_graph *graph);
static __isl_give isl_schedule_node *compute_schedule_wcc(
isl_schedule_node *node, struct isl_sched_graph *graph);
/* Compute a schedule for a subgraph of "graph". In particular, for
* the graph composed of nodes that satisfy node_pred and edges that
* that satisfy edge_pred.
* If the subgraph is known to consist of a single component, then wcc should
* be set and then we call compute_schedule_wcc on the constructed subgraph.
* Otherwise, we call compute_schedule, which will check whether the subgraph
* is connected.
*
* The schedule is inserted at "node" and the updated schedule node
* is returned.
*/
static __isl_give isl_schedule_node *compute_sub_schedule(
__isl_take isl_schedule_node *node, isl_ctx *ctx,
struct isl_sched_graph *graph,
int (*node_pred)(struct isl_sched_node *node, int data),
int (*edge_pred)(struct isl_sched_edge *edge, int data),
int data, int wcc)
{
struct isl_sched_graph split = { 0 };
if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
&split) < 0)
goto error;
if (wcc)
node = compute_schedule_wcc(node, &split);
else
node = compute_schedule(node, &split);
graph_free(ctx, &split);
return node;
error:
graph_free(ctx, &split);
return isl_schedule_node_free(node);
}
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc == scc && edge->dst->scc == scc;
}
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
{
return edge->dst->scc <= scc;
}
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc >= scc;
}
/* Reset the current band by dropping all its schedule rows.
*/
static isl_stat reset_band(struct isl_sched_graph *graph)
{
int i;
int drop;
drop = graph->n_total_row - graph->band_start;
graph->n_total_row -= drop;
graph->n_row -= drop;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_drop_rows(node->sched,
graph->band_start, drop);
if (!node->sched)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Split the current graph into two parts and compute a schedule for each
* part individually. In particular, one part consists of all SCCs up
* to and including graph->src_scc, while the other part contains the other
* SCCs. The split is enforced by a sequence node inserted at position "node"
* in the schedule tree. Return the updated schedule node.
* If either of these two parts consists of a sequence, then it is spliced
* into the sequence containing the two parts.
*
* The current band is reset. It would be possible to reuse
* the previously computed rows as the first rows in the next
* band, but recomputing them may result in better rows as we are looking
* at a smaller part of the dependence graph.
*/
static __isl_give isl_schedule_node *compute_split_schedule(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
int is_seq;
isl_ctx *ctx;
isl_union_set_list *filters;
if (!node)
return NULL;
if (reset_band(graph) < 0)
return isl_schedule_node_free(node);
next_band(graph);
ctx = isl_schedule_node_get_ctx(node);
filters = extract_split(ctx, graph);
node = isl_schedule_node_insert_sequence(node, filters);
node = isl_schedule_node_child(node, 1);
node = isl_schedule_node_child(node, 0);
node = compute_sub_schedule(node, ctx, graph,
&node_scc_at_least, &edge_src_scc_at_least,
graph->src_scc + 1, 0);
is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
if (is_seq)
node = isl_schedule_node_sequence_splice_child(node, 1);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
node = compute_sub_schedule(node, ctx, graph,
&node_scc_at_most, &edge_dst_scc_at_most,
graph->src_scc, 0);
is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
if (is_seq)
node = isl_schedule_node_sequence_splice_child(node, 0);
return node;
}
/* Insert a band node at position "node" in the schedule tree corresponding
* to the current band in "graph". Mark the band node permutable
* if "permutable" is set.
* The partial schedules and the coincidence property are extracted
* from the graph nodes.
* Return the updated schedule node.
*/
static __isl_give isl_schedule_node *insert_current_band(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int permutable)
{
int i;
int start, end, n;
isl_multi_aff *ma;
isl_multi_pw_aff *mpa;
isl_multi_union_pw_aff *mupa;
if (!node)
return NULL;
if (graph->n < 1)
isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
"graph should have at least one node",
return isl_schedule_node_free(node));
start = graph->band_start;
end = graph->n_total_row;
n = end - start;
ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
mpa = isl_multi_pw_aff_from_multi_aff(ma);
mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
for (i = 1; i < graph->n; ++i) {
isl_multi_union_pw_aff *mupa_i;
ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
start, n);
mpa = isl_multi_pw_aff_from_multi_aff(ma);
mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
}
node = isl_schedule_node_insert_partial_schedule(node, mupa);
for (i = 0; i < n; ++i)
node = isl_schedule_node_band_member_set_coincident(node, i,
graph->node[0].coincident[start + i]);
node = isl_schedule_node_band_set_permutable(node, permutable);
return node;
}
/* Update the dependence relations based on the current schedule,
* add the current band to "node" and then continue with the computation
* of the next band.
* Return the updated schedule node.
*/
static __isl_give isl_schedule_node *compute_next_band(
__isl_take isl_schedule_node *node,
struct isl_sched_graph *graph, int permutable)
{
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (update_edges(ctx, graph) < 0)
return isl_schedule_node_free(node);
node = insert_current_band(node, graph, permutable);
next_band(graph);
node = isl_schedule_node_child(node, 0);
node = compute_schedule(node, graph);
node = isl_schedule_node_parent(node);
return node;
}
/* Add the constraints "coef" derived from an edge from "node" to itself
* to graph->lp in order to respect the dependences and to try and carry them.
* "pos" is the sequence number of the edge that needs to be carried.
* "coef" represents general constraints on coefficients (c_0, c_x)
* of valid constraints for (y - x) with x and y instances of the node.
*
* The constraints added to graph->lp need to enforce
*
* (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
* = c_j_x (y - x) >= e_i
*
* for each (x,y) in the dependence relation of the edge.
* That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
* taking into account that each coefficient in c_j_x is represented
* as a pair of non-negative coefficients.
*/
static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
{
int offset;
isl_ctx *ctx;
isl_dim_map *dim_map;
if (!coef)
return isl_stat_error;
ctx = isl_basic_set_get_ctx(coef);
offset = coef_var_offset(coef);
dim_map = intra_dim_map(ctx, graph, node, offset, 1);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
return isl_stat_ok;
}
/* Add the constraints "coef" derived from an edge from "src" to "dst"
* to graph->lp in order to respect the dependences and to try and carry them.
* "pos" is the sequence number of the edge that needs to be carried or
* -1 if no attempt should be made to carry the dependences.
* "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for (x, y) with x and y instances of "src" and "dst".
*
* The constraints added to graph->lp need to enforce
*
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
*
* for each (x,y) in the dependence relation of the edge or
*
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
*
* if pos is -1.
* That is,
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
* or
* (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
* needs to be plugged in for (c_0, c_n, c_x, c_y),
* taking into account that each coefficient in c_j_x and c_k_x is represented
* as a pair of non-negative coefficients.
*/
static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst,
__isl_take isl_basic_set *coef, int pos)
{
int offset;
isl_ctx *ctx;
isl_dim_map *dim_map;
if (!coef)
return isl_stat_error;
ctx = isl_basic_set_get_ctx(coef);
offset = coef_var_offset(coef);
dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
if (pos >= 0)
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
return isl_stat_ok;
}
/* Data structure for keeping track of the data needed
* to exploit non-trivial lineality spaces.
*
* "any_non_trivial" is true if there are any non-trivial lineality spaces.
* If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
* "equivalent" connects instances to other instances on the same line(s).
* "mask" contains the domain spaces of "equivalent".
* Any instance set not in "mask" does not have a non-trivial lineality space.
*/
struct isl_exploit_lineality_data {
isl_bool any_non_trivial;
isl_union_map *equivalent;
isl_union_set *mask;
};
/* Data structure collecting information used during the construction
* of an LP for carrying dependences.
*
* "intra" is a sequence of coefficient constraints for intra-node edges.
* "inter" is a sequence of coefficient constraints for inter-node edges.
* "lineality" contains data used to exploit non-trivial lineality spaces.
*/
struct isl_carry {
isl_basic_set_list *intra;
isl_basic_set_list *inter;
struct isl_exploit_lineality_data lineality;
};
/* Free all the data stored in "carry".
*/
static void isl_carry_clear(struct isl_carry *carry)
{
isl_basic_set_list_free(carry->intra);
isl_basic_set_list_free(carry->inter);
isl_union_map_free(carry->lineality.equivalent);
isl_union_set_free(carry->lineality.mask);
}
/* Return a pointer to the node in "graph" that lives in "space".
* If the requested node has been compressed, then "space"
* corresponds to the compressed space.
* The graph is assumed to have such a node.
* Return NULL in case of error.
*
* First try and see if "space" is the space of an uncompressed node.
* If so, return that node.
* Otherwise, "space" was constructed by construct_compressed_id and
* contains a user pointer pointing to the node in the tuple id.
* However, this node belongs to the original dependence graph.
* If "graph" is a subgraph of this original dependence graph,
* then the node with the same space still needs to be looked up
* in the current graph.
*/
static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_space *space)
{
isl_id *id;
struct isl_sched_node *node;
if (!space)
return NULL;
node = graph_find_node(ctx, graph, space);
if (!node)
return NULL;
if (is_node(graph, node))
return node;
id = isl_space_get_tuple_id(space, isl_dim_set);
node = isl_id_get_user(id);
isl_id_free(id);
if (!node)
return NULL;
if (!is_node(graph->root, node))
isl_die(ctx, isl_error_internal,
"space points to invalid node", return NULL);
if (graph != graph->root)
node = graph_find_node(ctx, graph, node->space);
if (!is_node(graph, node))
isl_die(ctx, isl_error_internal,
"unable to find node", return NULL);
return node;
}
/* Internal data structure for add_all_constraints.
*
* "graph" is the schedule constraint graph for which an LP problem
* is being constructed.
* "carry_inter" indicates whether inter-node edges should be carried.
* "pos" is the position of the next edge that needs to be carried.
*/
struct isl_add_all_constraints_data {
isl_ctx *ctx;
struct isl_sched_graph *graph;
int carry_inter;
int pos;
};
/* Add the constraints "coef" derived from an edge from a node to itself
* to data->graph->lp in order to respect the dependences and
* to try and carry them.
*
* The space of "coef" is of the form
*
* coefficients[[c_cst] -> S[c_x]]
*
* with S[c_x] the (compressed) space of the node.
* Extract the node from the space and call add_intra_constraints.
*/
static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
{
struct isl_add_all_constraints_data *data = user;
isl_space *space;
struct isl_sched_node *node;
space = isl_basic_set_get_space(coef);
space = isl_space_range(isl_space_unwrap(space));
node = graph_find_compressed_node(data->ctx, data->graph, space);
isl_space_free(space);
return add_intra_constraints(data->graph, node, coef, data->pos++);
}
/* Add the constraints "coef" derived from an edge from a node j
* to a node k to data->graph->lp in order to respect the dependences and
* to try and carry them (provided data->carry_inter is set).
*
* The space of "coef" is of the form
*
* coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
*
* with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
* Extract the nodes from the space and call add_inter_constraints.
*/
static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
{
struct isl_add_all_constraints_data *data = user;
isl_space *space, *dom;
struct isl_sched_node *src, *dst;
int pos;
space = isl_basic_set_get_space(coef);
space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
dom = isl_space_domain(isl_space_copy(space));
src = graph_find_compressed_node(data->ctx, data->graph, dom);
isl_space_free(dom);
space = isl_space_range(space);
dst = graph_find_compressed_node(data->ctx, data->graph, space);
isl_space_free(space);
pos = data->carry_inter ? data->pos++ : -1;
return add_inter_constraints(data->graph, src, dst, coef, pos);
}
/* Add constraints to graph->lp that force all (conditional) validity
* dependences to be respected and attempt to carry them.
* "intra" is the sequence of coefficient constraints for intra-node edges.
* "inter" is the sequence of coefficient constraints for inter-node edges.
* "carry_inter" indicates whether inter-node edges should be carried or
* only respected.
*/
static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
__isl_keep isl_basic_set_list *intra,
__isl_keep isl_basic_set_list *inter, int carry_inter)
{
struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
data.pos = 0;
if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
return isl_stat_error;
if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* Internal data structure for count_all_constraints
* for keeping track of the number of equality and inequality constraints.
*/
struct isl_sched_count {
int n_eq;
int n_ineq;
};
/* Add the number of equality and inequality constraints of "bset"
* to data->n_eq and data->n_ineq.
*/
static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
{
struct isl_sched_count *data = user;
return update_count(bset, 1, &data->n_eq, &data->n_ineq);
}
/* Count the number of equality and inequality constraints
* that will be added to the carry_lp problem.
* We count each edge exactly once.
* "intra" is the sequence of coefficient constraints for intra-node edges.
* "inter" is the sequence of coefficient constraints for inter-node edges.
*/
static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
__isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
{
struct isl_sched_count data;
data.n_eq = data.n_ineq = 0;
if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
return isl_stat_error;
if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
return isl_stat_error;
*n_eq = data.n_eq;
*n_ineq = data.n_ineq;
return isl_stat_ok;
}
/* Construct an LP problem for finding schedule coefficients
* such that the schedule carries as many validity dependences as possible.
* In particular, for each dependence i, we bound the dependence distance
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
* of all e_i's. Dependences with e_i = 0 in the solution are simply
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
* "intra" is the sequence of coefficient constraints for intra-node edges.
* "inter" is the sequence of coefficient constraints for inter-node edges.
* "n_edge" is the total number of edges.
* "carry_inter" indicates whether inter-node edges should be carried or
* only respected. That is, if "carry_inter" is not set, then
* no e_i variables are introduced for the inter-node edges.
*
* All variables of the LP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of (1 - e_i) over all edges
* - sum of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - for each edge
* - e_i
* - for each node
* - positive and negative parts of c_i_x, in opposite order
* - c_i_n (if parametric)
* - c_i_0
*
* The constraints are those from the (validity) edges plus three equalities
* to express the sums and n_edge inequalities to express e_i <= 1.
*/
static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
int n_edge, __isl_keep isl_basic_set_list *intra,
__isl_keep isl_basic_set_list *inter, int carry_inter)
{
int i;
int k;
isl_space *dim;
unsigned total;
int n_eq, n_ineq;
total = 3 + n_edge;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
node->start = total;
total += 1 + node->nparam + 2 * node->nvar;
}
if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
return isl_stat_error;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 3;
n_ineq += n_edge;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
graph->lp = isl_basic_set_set_rational(graph->lp);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return isl_stat_error;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
isl_int_set_si(graph->lp->eq[k][1], 1);
for (i = 0; i < n_edge; ++i)
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
if (add_param_sum_constraint(graph, 1) < 0)
return isl_stat_error;
if (add_var_sum_constraint(graph, 2) < 0)
return isl_stat_error;
for (i = 0; i < n_edge; ++i) {
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return isl_stat_error;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
isl_int_set_si(graph->lp->ineq[k][0], 1);
}
if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
return isl_stat_error;
return isl_stat_ok;
}
static __isl_give isl_schedule_node *compute_component_schedule(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int wcc);
/* If the schedule_split_scaled option is set and if the linear
* parts of the scheduling rows for all nodes in the graphs have
* a non-trivial common divisor, then remove this
* common divisor from the linear part.
* Otherwise, insert a band node directly and continue with
* the construction of the schedule.
*
* If a non-trivial common divisor is found, then
* the linear part is reduced and the remainder is ignored.
* The pieces of the graph that are assigned different remainders
* form (groups of) strongly connected components within
* the scaled down band. If needed, they can therefore
* be ordered along this remainder in a sequence node.
* However, this ordering is not enforced here in order to allow
* the scheduler to combine some of the strongly connected components.
*/
static __isl_give isl_schedule_node *split_scaled(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
int i;
int row;
isl_ctx *ctx;
isl_int gcd, gcd_i;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (!ctx->opt->schedule_split_scaled)
return compute_next_band(node, graph, 0);
if (graph->n <= 1)
return compute_next_band(node, graph, 0);
isl_int_init(gcd);
isl_int_init(gcd_i);
isl_int_set_si(gcd, 0);
row = isl_mat_rows(graph->node[0].sched) - 1;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int cols = isl_mat_cols(node->sched);
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
isl_int_gcd(gcd, gcd, gcd_i);
}
isl_int_clear(gcd_i);
if (isl_int_cmp_si(gcd, 1) <= 0) {
isl_int_clear(gcd);
return compute_next_band(node, graph, 0);
}
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_int_fdiv_q(node->sched->row[row][0],
node->sched->row[row][0], gcd);
isl_int_mul(node->sched->row[row][0],
node->sched->row[row][0], gcd);
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
if (!node->sched)
goto error;
}
isl_int_clear(gcd);
return compute_next_band(node, graph, 0);
error:
isl_int_clear(gcd);
return isl_schedule_node_free(node);
}
/* Is the schedule row "sol" trivial on node "node"?
* That is, is the solution zero on the dimensions linearly independent of
* the previously found solutions?
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
*
* Each coefficient is represented as the difference between
* two non-negative values in "sol".
* We construct the schedule row s and check if it is linearly
* independent of previously computed schedule rows
* by computing T s, with T the linear combinations that are zero
* on linearly dependent schedule rows.
* If the result consists of all zeros, then the solution is trivial.
*/
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
{
int trivial;
isl_vec *node_sol;
if (!sol)
return -1;
if (node->nvar == node->rank)
return 0;
node_sol = extract_var_coef(node, sol);
node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
if (!node_sol)
return -1;
trivial = isl_seq_first_non_zero(node_sol->el,
node->nvar - node->rank) == -1;
isl_vec_free(node_sol);
return trivial;
}
/* Is the schedule row "sol" trivial on any node where it should
* not be trivial?
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
*/
static int is_any_trivial(struct isl_sched_graph *graph,
__isl_keep isl_vec *sol)
{
int i;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int trivial;
if (!needs_row(graph, node))
continue;
trivial = is_trivial(node, sol);
if (trivial < 0 || trivial)
return trivial;
}
return 0;
}
/* Does the schedule represented by "sol" perform loop coalescing on "node"?
* If so, return the position of the coalesced dimension.
* Otherwise, return node->nvar or -1 on error.
*
* In particular, look for pairs of coefficients c_i and c_j such that
* |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
* If any such pair is found, then return i.
* If size_i is infinity, then no check on c_i needs to be performed.
*/
static int find_node_coalescing(struct isl_sched_node *node,
__isl_keep isl_vec *sol)
{
int i, j;
isl_int max;
isl_vec *csol;
if (node->nvar <= 1)
return node->nvar;
csol = extract_var_coef(node, sol);
if (!csol)
return -1;
isl_int_init(max);
for (i = 0; i < node->nvar; ++i) {
isl_val *v;
if (isl_int_is_zero(csol->el[i]))
continue;
v = isl_multi_val_get_val(node->sizes, i);
if (!v)
goto error;
if (!isl_val_is_int(v)) {
isl_val_free(v);
continue;
}
v = isl_val_div_ui(v, 2);
v = isl_val_ceil(v);
if (!v)
goto error;
isl_int_mul(max, v->n, csol->el[i]);
isl_val_free(v);
for (j = 0; j < node->nvar; ++j) {
if (j == i)
continue;
if (isl_int_abs_gt(csol->el[j], max))
break;
}
if (j < node->nvar)
break;
}
isl_int_clear(max);
isl_vec_free(csol);
return i;
error:
isl_int_clear(max);
isl_vec_free(csol);
return -1;
}
/* Force the schedule coefficient at position "pos" of "node" to be zero
* in "tl".
* The coefficient is encoded as the difference between two non-negative
* variables. Force these two variables to have the same value.
*/
static __isl_give isl_tab_lexmin *zero_out_node_coef(
__isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
{
int dim;
isl_ctx *ctx;
isl_vec *eq;
ctx = isl_space_get_ctx(node->space);
dim = isl_tab_lexmin_dim(tl);
if (dim < 0)
return isl_tab_lexmin_free(tl);
eq = isl_vec_alloc(ctx, 1 + dim);
eq = isl_vec_clr(eq);
if (!eq)
return isl_tab_lexmin_free(tl);
pos = 1 + node_var_coef_pos(node, pos);
isl_int_set_si(eq->el[pos], 1);
isl_int_set_si(eq->el[pos + 1], -1);
tl = isl_tab_lexmin_add_eq(tl, eq->el);
isl_vec_free(eq);
return tl;
}
/* Return the lexicographically smallest rational point in the basic set
* from which "tl" was constructed, double checking that this input set
* was not empty.
*/
static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
{
isl_vec *sol;
sol = isl_tab_lexmin_get_solution(tl);
if (!sol)
return NULL;
if (sol->size == 0)
isl_die(isl_vec_get_ctx(sol), isl_error_internal,
"error in schedule construction",
return isl_vec_free(sol));
return sol;
}
/* Does the solution "sol" of the LP problem constructed by setup_carry_lp
* carry any of the "n_edge" groups of dependences?
* The value in the first position is the sum of (1 - e_i) over all "n_edge"
* edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
* by the edge are carried by the solution.
* If the sum of the (1 - e_i) is smaller than "n_edge" then at least
* one of those is carried.
*
* Note that despite the fact that the problem is solved using a rational
* solver, the solution is guaranteed to be integral.
* Specifically, the dependence distance lower bounds e_i (and therefore
* also their sum) are integers. See Lemma 5 of [1].
*
* Any potential denominator of the sum is cleared by this function.
* The denominator is not relevant for any of the other elements
* in the solution.
*
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
* Problem, Part II: Multi-Dimensional Time.
* In Intl. Journal of Parallel Programming, 1992.
*/
static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
{
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
isl_int_set_si(sol->el[0], 1);
return isl_int_cmp_si(sol->el[1], n_edge) < 0;
}
/* Return the lexicographically smallest rational point in "lp",
* assuming that all variables are non-negative and performing some
* additional sanity checks.
* If "want_integral" is set, then compute the lexicographically smallest
* integer point instead.
* In particular, "lp" should not be empty by construction.
* Double check that this is the case.
* If dependences are not carried for any of the "n_edge" edges,
* then return an empty vector.
*
* If the schedule_treat_coalescing option is set and
* if the computed schedule performs loop coalescing on a given node,
* i.e., if it is of the form
*
* c_i i + c_j j + ...
*
* with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
* to cut out this solution. Repeat this process until no more loop
* coalescing occurs or until no more dependences can be carried.
* In the latter case, revert to the previously computed solution.
*
* If the caller requests an integral solution and if coalescing should
* be treated, then perform the coalescing treatment first as
* an integral solution computed before coalescing treatment
* would carry the same number of edges and would therefore probably
* also be coalescing.
*
* To allow the coalescing treatment to be performed first,
* the initial solution is allowed to be rational and it is only
* cut out (if needed) in the next iteration, if no coalescing measures
* were taken.
*/
static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
__isl_take isl_basic_set *lp, int n_edge, int want_integral)
{
int i, pos, cut;
isl_ctx *ctx;
isl_tab_lexmin *tl;
isl_vec *sol = NULL, *prev;
int treat_coalescing;
int try_again;
if (!lp)
return NULL;
ctx = isl_basic_set_get_ctx(lp);
treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
tl = isl_tab_lexmin_from_basic_set(lp);
cut = 0;
do {
int integral;
try_again = 0;
if (cut)
tl = isl_tab_lexmin_cut_to_integer(tl);
prev = sol;
sol = non_empty_solution(tl);
if (!sol)
goto error;
integral = isl_int_is_one(sol->el[0]);
if (!carries_dependences(sol, n_edge)) {
if (!prev)
prev = isl_vec_alloc(ctx, 0);
isl_vec_free(sol);
sol = prev;
break;
}
prev = isl_vec_free(prev);
cut = want_integral && !integral;
if (cut)
try_again = 1;
if (!treat_coalescing)
continue;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
pos = find_node_coalescing(node, sol);
if (pos < 0)
goto error;
if (pos < node->nvar)
break;
}
if (i < graph->n) {
try_again = 1;
tl = zero_out_node_coef(tl, &graph->node[i], pos);
cut = 0;
}
} while (try_again);
isl_tab_lexmin_free(tl);
return sol;
error:
isl_tab_lexmin_free(tl);
isl_vec_free(prev);
isl_vec_free(sol);
return NULL;
}
/* If "edge" is an edge from a node to itself, then add the corresponding
* dependence relation to "umap".
* If "node" has been compressed, then the dependence relation
* is also compressed first.
*/
static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
struct isl_sched_edge *edge)
{
isl_map *map;
struct isl_sched_node *node = edge->src;
if (edge->src != edge->dst)
return umap;
map = isl_map_copy(edge->map);
if (node->compressed) {
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(node->decompress));
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(node->decompress));
}
umap = isl_union_map_add_map(umap, map);
return umap;
}
/* If "edge" is an edge from a node to another node, then add the corresponding
* dependence relation to "umap".
* If the source or destination nodes of "edge" have been compressed,
* then the dependence relation is also compressed first.
*/
static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
struct isl_sched_edge *edge)
{
isl_map *map;
if (edge->src == edge->dst)
return umap;
map = isl_map_copy(edge->map);
if (edge->src->compressed)
map = isl_map_preimage_domain_multi_aff(map,
isl_multi_aff_copy(edge->src->decompress));
if (edge->dst->compressed)
map = isl_map_preimage_range_multi_aff(map,
isl_multi_aff_copy(edge->dst->decompress));
umap = isl_union_map_add_map(umap, map);
return umap;
}
/* Internal data structure used by union_drop_coalescing_constraints
* to collect bounds on all relevant statements.
*
* "graph" is the schedule constraint graph for which an LP problem
* is being constructed.
* "bounds" collects the bounds.
*/
struct isl_collect_bounds_data {
isl_ctx *ctx;
struct isl_sched_graph *graph;
isl_union_set *bounds;
};
/* Add the size bounds for the node with instance deltas in "set"
* to data->bounds.
*/
static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
{
struct isl_collect_bounds_data *data = user;
struct isl_sched_node *node;
isl_space *space;
isl_set *bounds;
space = isl_set_get_space(set);
isl_set_free(set);
node = graph_find_compressed_node(data->ctx, data->graph, space);
isl_space_free(space);
bounds = isl_set_from_basic_set(get_size_bounds(node));
data->bounds = isl_union_set_add_set(data->bounds, bounds);
return isl_stat_ok;
}
/* Drop some constraints from "delta" that could be exploited
* to construct loop coalescing schedules.
* In particular, drop those constraint that bound the difference
* to the size of the domain.
* Do this for each set/node in "delta" separately.
* The parameters are assumed to have been projected out by the caller.
*/
static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
{
struct isl_collect_bounds_data data = { ctx, graph };
data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
data.bounds = isl_union_set_free(data.bounds);
delta = isl_union_set_plain_gist(delta, data.bounds);
return delta;
}
/* Given a non-trivial lineality space "lineality", add the corresponding
* universe set to data->mask and add a map from elements to
* other elements along the lines in "lineality" to data->equivalent.
* If this is the first time this function gets called
* (data->any_non_trivial is still false), then set data->any_non_trivial and
* initialize data->mask and data->equivalent.
*
* In particular, if the lineality space is defined by equality constraints
*
* E x = 0
*
* then construct an affine mapping
*
* f : x -> E x
*
* and compute the equivalence relation of having the same image under f:
*
* { x -> x' : E x = E x' }
*/
static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
struct isl_exploit_lineality_data *data)
{
isl_mat *eq;
isl_space *space;
isl_set *univ;
isl_multi_aff *ma;
isl_multi_pw_aff *mpa;
isl_map *map;
int n;
if (!lineality)
return isl_stat_error;
if (isl_basic_set_dim(lineality, isl_dim_div) != 0)
isl_die(isl_basic_set_get_ctx(lineality), isl_error_internal,
"local variables not allowed", goto error);
space = isl_basic_set_get_space(lineality);
if (!data->any_non_trivial) {
data->equivalent = isl_union_map_empty(isl_space_copy(space));
data->mask = isl_union_set_empty(isl_space_copy(space));
}
data->any_non_trivial = isl_bool_true;
univ = isl_set_universe(isl_space_copy(space));
data->mask = isl_union_set_add_set(data->mask, univ);
eq = isl_basic_set_extract_equalities(lineality);
n = isl_mat_rows(eq);
eq = isl_mat_insert_zero_rows(eq, 0, 1);
eq = isl_mat_set_element_si(eq, 0, 0, 1);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, n);
ma = isl_multi_aff_from_aff_mat(space, eq);
mpa = isl_multi_pw_aff_from_multi_aff(ma);
map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
data->equivalent = isl_union_map_add_map(data->equivalent, map);
isl_basic_set_free(lineality);
return isl_stat_ok;
error:
isl_basic_set_free(lineality);
return isl_stat_error;
}
/* Check if the lineality space "set" is non-trivial (i.e., is not just
* the origin or, in other words, satisfies a number of equality constraints
* that is smaller than the dimension of the set).
* If so, extend data->mask and data->equivalent accordingly.
*
* The input should not have any local variables already, but
* isl_set_remove_divs is called to make sure it does not.
*/
static isl_stat add_lineality(__isl_take isl_set *set, void *user)
{
struct isl_exploit_lineality_data *data = user;
isl_basic_set *hull;
int dim, n_eq;
set = isl_set_remove_divs(set);
hull = isl_set_unshifted_simple_hull(set);
dim = isl_basic_set_dim(hull, isl_dim_set);
n_eq = isl_basic_set_n_equality(hull);
if (!hull)
return isl_stat_error;
if (dim != n_eq)
return add_non_trivial_lineality(hull, data);
isl_basic_set_free(hull);
return isl_stat_ok;
}
/* Check if the difference set on intra-node schedule constraints "intra"
* has any non-trivial lineality space.
* If so, then extend the difference set to a difference set
* on equivalent elements. That is, if "intra" is
*
* { y - x : (x,y) \in V }
*
* and elements are equivalent if they have the same image under f,
* then return
*
* { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
*
* or, since f is linear,
*
* { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
*
* The results of the search for non-trivial lineality spaces is stored
* in "data".
*/
static __isl_give isl_union_set *exploit_intra_lineality(
__isl_take isl_union_set *intra,
struct isl_exploit_lineality_data *data)
{
isl_union_set *lineality;
isl_union_set *uset;
data->any_non_trivial = isl_bool_false;
lineality = isl_union_set_copy(intra);
lineality = isl_union_set_combined_lineality_space(lineality);
if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
data->any_non_trivial = isl_bool_error;
isl_union_set_free(lineality);
if (data->any_non_trivial < 0)
return isl_union_set_free(intra);
if (!data->any_non_trivial)
return intra;
uset = isl_union_set_copy(intra);
intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
intra = isl_union_set_union(intra, uset);
intra = isl_union_set_remove_divs(intra);
return intra;
}
/* If the difference set on intra-node schedule constraints was found to have
* any non-trivial lineality space by exploit_intra_lineality,
* as recorded in "data", then extend the inter-node
* schedule constraints "inter" to schedule constraints on equivalent elements.
* That is, if "inter" is V and
* elements are equivalent if they have the same image under f, then return
*
* { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
*/
static __isl_give isl_union_map *exploit_inter_lineality(
__isl_take isl_union_map *inter,
struct isl_exploit_lineality_data *data)
{
isl_union_map *umap;
if (data->any_non_trivial < 0)
return isl_union_map_free(inter);
if (!data->any_non_trivial)
return inter;
umap = isl_union_map_copy(inter);
inter = isl_union_map_subtract_range(inter,
isl_union_set_copy(data->mask));
umap = isl_union_map_apply_range(umap,
isl_union_map_copy(data->equivalent));
inter = isl_union_map_union(inter, umap);
umap = isl_union_map_copy(inter);
inter = isl_union_map_subtract_domain(inter,
isl_union_set_copy(data->mask));
umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
umap);
inter = isl_union_map_union(inter, umap);
inter = isl_union_map_remove_divs(inter);
return inter;
}
/* For each (conditional) validity edge in "graph",
* add the corresponding dependence relation using "add"
* to a collection of dependence relations and return the result.
* If "coincidence" is set, then coincidence edges are considered as well.
*/
static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
__isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
struct isl_sched_edge *edge), int coincidence)
{
int i;
isl_space *space;
isl_union_map *umap;
space = isl_space_copy(graph->node[0].space);
umap = isl_union_map_empty(space);
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
if (!is_any_validity(edge) &&
(!coincidence || !is_coincidence(edge)))
continue;
umap = add(umap, edge);
}
return umap;
}
/* Project out all parameters from "uset" and return the result.
*/
static __isl_give isl_union_set *union_set_drop_parameters(
__isl_take isl_union_set *uset)
{
unsigned nparam;
nparam = isl_union_set_dim(uset, isl_dim_param);
return isl_union_set_project_out(uset, isl_dim_param, 0, nparam);
}
/* For each dependence relation on a (conditional) validity edge
* from a node to itself,
* construct the set of coefficients of valid constraints for elements
* in that dependence relation and collect the results.
* If "coincidence" is set, then coincidence edges are considered as well.
*
* In particular, for each dependence relation R, constraints
* on coefficients (c_0, c_x) are constructed such that
*
* c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
*
* If the schedule_treat_coalescing option is set, then some constraints
* that could be exploited to construct coalescing schedules
* are removed before the dual is computed, but after the parameters
* have been projected out.
* The entire computation is essentially the same as that performed
* by intra_coefficients, except that it operates on multiple
* edges together and that the parameters are always projected out.
*
* Additionally, exploit any non-trivial lineality space
* in the difference set after removing coalescing constraints and
* store the results of the non-trivial lineality space detection in "data".
* The procedure is currently run unconditionally, but it is unlikely
* to find any non-trivial lineality spaces if no coalescing constraints
* have been removed.
*
* Note that if a dependence relation is a union of basic maps,
* then each basic map needs to be treated individually as it may only
* be possible to carry the dependences expressed by some of those
* basic maps and not all of them.
* The collected validity constraints are therefore not coalesced and
* it is assumed that they are not coalesced automatically.
* Duplicate basic maps can be removed, however.
* In particular, if the same basic map appears as a disjunct
* in multiple edges, then it only needs to be carried once.
*/
static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
struct isl_sched_graph *graph, int coincidence,
struct isl_exploit_lineality_data *data)
{
isl_union_map *intra;
isl_union_set *delta;
isl_basic_set_list *list;
intra = collect_validity(graph, &add_intra, coincidence);
delta = isl_union_map_deltas(intra);
delta = union_set_drop_parameters(delta);
delta = isl_union_set_remove_divs(delta);
if (isl_options_get_schedule_treat_coalescing(ctx))
delta = union_drop_coalescing_constraints(ctx, graph, delta);
delta = exploit_intra_lineality(delta, data);
list = isl_union_set_get_basic_set_list(delta);
isl_union_set_free(delta);
return isl_basic_set_list_coefficients(list);
}
/* For each dependence relation on a (conditional) validity edge
* from a node to some other node,
* construct the set of coefficients of valid constraints for elements
* in that dependence relation and collect the results.
* If "coincidence" is set, then coincidence edges are considered as well.
*
* In particular, for each dependence relation R, constraints
* on coefficients (c_0, c_n, c_x, c_y) are constructed such that
*
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
*
* This computation is essentially the same as that performed
* by inter_coefficients, except that it operates on multiple
* edges together.
*
* Additionally, exploit any non-trivial lineality space
* that may have been discovered by collect_intra_validity
* (as stored in "data").
*
* Note that if a dependence relation is a union of basic maps,
* then each basic map needs to be treated individually as it may only
* be possible to carry the dependences expressed by some of those
* basic maps and not all of them.
* The collected validity constraints are therefore not coalesced and
* it is assumed that they are not coalesced automatically.
* Duplicate basic maps can be removed, however.
* In particular, if the same basic map appears as a disjunct
* in multiple edges, then it only needs to be carried once.
*/
static __isl_give isl_basic_set_list *collect_inter_validity(
struct isl_sched_graph *graph, int coincidence,
struct isl_exploit_lineality_data *data)
{
isl_union_map *inter;
isl_union_set *wrap;
isl_basic_set_list *list;
inter = collect_validity(graph, &add_inter, coincidence);
inter = exploit_inter_lineality(inter, data);
inter = isl_union_map_remove_divs(inter);
wrap = isl_union_map_wrap(inter);
list = isl_union_set_get_basic_set_list(wrap);
isl_union_set_free(wrap);
return isl_basic_set_list_coefficients(list);
}
/* Construct an LP problem for finding schedule coefficients
* such that the schedule carries as many of the "n_edge" groups of
* dependences as possible based on the corresponding coefficient
* constraints and return the lexicographically smallest non-trivial solution.
* "intra" is the sequence of coefficient constraints for intra-node edges.
* "inter" is the sequence of coefficient constraints for inter-node edges.
* If "want_integral" is set, then compute an integral solution
* for the coefficients rather than using the numerators
* of a rational solution.
* "carry_inter" indicates whether inter-node edges should be carried or
* only respected.
*
* If none of the "n_edge" groups can be carried
* then return an empty vector.
*/
static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
struct isl_sched_graph *graph, int n_edge,
__isl_keep isl_basic_set_list *intra,
__isl_keep isl_basic_set_list *inter, int want_integral,
int carry_inter)
{
isl_basic_set *lp;
if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
return NULL;
lp = isl_basic_set_copy(graph->lp);
return non_neg_lexmin(graph, lp, n_edge, want_integral);
}
/* Construct an LP problem for finding schedule coefficients
* such that the schedule carries as many of the validity dependences
* as possible and
* return the lexicographically smallest non-trivial solution.
* If "fallback" is set, then the carrying is performed as a fallback
* for the Pluto-like scheduler.
* If "coincidence" is set, then try and carry coincidence edges as well.
*
* The variable "n_edge" stores the number of groups that should be carried.
* If none of the "n_edge" groups can be carried
* then return an empty vector.
* If, moreover, "n_edge" is zero, then the LP problem does not even
* need to be constructed.
*
* If a fallback solution is being computed, then compute an integral solution
* for the coefficients rather than using the numerators
* of a rational solution.
*
* If a fallback solution is being computed, if there are any intra-node
* dependences, and if requested by the user, then first try
* to only carry those intra-node dependences.
* If this fails to carry any dependences, then try again
* with the inter-node dependences included.
*/
static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
struct isl_sched_graph *graph, int fallback, int coincidence)
{
int n_intra, n_inter;
int n_edge;
struct isl_carry carry = { 0 };
isl_vec *sol;
carry.intra = collect_intra_validity(ctx, graph, coincidence,
&carry.lineality);
carry.inter = collect_inter_validity(graph, coincidence,
&carry.lineality);
if (!carry.intra || !carry.inter)
goto error;
n_intra = isl_basic_set_list_n_basic_set(carry.intra);
n_inter = isl_basic_set_list_n_basic_set(carry.inter);
if (fallback && n_intra > 0 &&
isl_options_get_schedule_carry_self_first(ctx)) {
sol = compute_carrying_sol_coef(ctx, graph, n_intra,
carry.intra, carry.inter, fallback, 0);
if (!sol || sol->size != 0 || n_inter == 0) {
isl_carry_clear(&carry);
return sol;
}
isl_vec_free(sol);
}
n_edge = n_intra + n_inter;
if (n_edge == 0) {
isl_carry_clear(&carry);
return isl_vec_alloc(ctx, 0);
}
sol = compute_carrying_sol_coef(ctx, graph, n_edge,
carry.intra, carry.inter, fallback, 1);
isl_carry_clear(&carry);
return sol;
error:
isl_carry_clear(&carry);
return NULL;
}
/* Construct a schedule row for each node such that as many validity dependences
* as possible are carried and then continue with the next band.
* If "fallback" is set, then the carrying is performed as a fallback
* for the Pluto-like scheduler.
* If "coincidence" is set, then try and carry coincidence edges as well.
*
* If there are no validity dependences, then no dependence can be carried and
* the procedure is guaranteed to fail. If there is more than one component,
* then try computing a schedule on each component separately
* to prevent or at least postpone this failure.
*
* If a schedule row is computed, then check that dependences are carried
* for at least one of the edges.
*
* If the computed schedule row turns out to be trivial on one or
* more nodes where it should not be trivial, then we throw it away
* and try again on each component separately.
*
* If there is only one component, then we accept the schedule row anyway,
* but we do not consider it as a complete row and therefore do not
* increment graph->n_row. Note that the ranks of the nodes that
* do get a non-trivial schedule part will get updated regardless and
* graph->maxvar is computed based on these ranks. The test for
* whether more schedule rows are required in compute_schedule_wcc
* is therefore not affected.
*
* Insert a band corresponding to the schedule row at position "node"
* of the schedule tree and continue with the construction of the schedule.
* This insertion and the continued construction is performed by split_scaled
* after optionally checking for non-trivial common divisors.
*/
static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
struct isl_sched_graph *graph, int fallback, int coincidence)
{
int trivial;
isl_ctx *ctx;
isl_vec *sol;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
if (!sol)
return isl_schedule_node_free(node);
if (sol->size == 0) {
isl_vec_free(sol);
if (graph->scc > 1)
return compute_component_schedule(node, graph, 1);
isl_die(ctx, isl_error_unknown, "unable to carry dependences",
return isl_schedule_node_free(node));
}
trivial = is_any_trivial(graph, sol);
if (trivial < 0) {
sol = isl_vec_free(sol);
} else if (trivial && graph->scc > 1) {
isl_vec_free(sol);
return compute_component_schedule(node, graph, 1);
}
if (update_schedule(graph, sol, 0) < 0)
return isl_schedule_node_free(node);
if (trivial)
graph->n_row--;
return split_scaled(node, graph);
}
/* Construct a schedule row for each node such that as many validity dependences
* as possible are carried and then continue with the next band.
* Do so as a fallback for the Pluto-like scheduler.
* If "coincidence" is set, then try and carry coincidence edges as well.
*/
static __isl_give isl_schedule_node *carry_fallback(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int coincidence)
{
return carry(node, graph, 1, coincidence);
}
/* Construct a schedule row for each node such that as many validity dependences
* as possible are carried and then continue with the next band.
* Do so for the case where the Feautrier scheduler was selected
* by the user.
*/
static __isl_give isl_schedule_node *carry_feautrier(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
return carry(node, graph, 0, 0);
}
/* Construct a schedule row for each node such that as many validity dependences
* as possible are carried and then continue with the next band.
* Do so as a fallback for the Pluto-like scheduler.
*/
static __isl_give isl_schedule_node *carry_dependences(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
return carry_fallback(node, graph, 0);
}
/* Construct a schedule row for each node such that as many validity or
* coincidence dependences as possible are carried and
* then continue with the next band.
* Do so as a fallback for the Pluto-like scheduler.
*/
static __isl_give isl_schedule_node *carry_coincidence(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
return carry_fallback(node, graph, 1);
}
/* Topologically sort statements mapped to the same schedule iteration
* and add insert a sequence node in front of "node"
* corresponding to this order.
* If "initialized" is set, then it may be assumed that compute_maxvar
* has been called on the current band. Otherwise, call
* compute_maxvar if and before carry_dependences gets called.
*
* If it turns out to be impossible to sort the statements apart,
* because different dependences impose different orderings
* on the statements, then we extend the schedule such that
* it carries at least one more dependence.
*/
static __isl_give isl_schedule_node *sort_statements(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int initialized)
{
isl_ctx *ctx;
isl_union_set_list *filters;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (graph->n < 1)
isl_die(ctx, isl_error_internal,
"graph should have at least one node",
return isl_schedule_node_free(node));
if (graph->n == 1)
return node;
if (update_edges(ctx, graph) < 0)
return isl_schedule_node_free(node);
if (graph->n_edge == 0)
return node;
if (detect_sccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
next_band(graph);
if (graph->scc < graph->n) {
if (!initialized && compute_maxvar(graph) < 0)
return isl_schedule_node_free(node);
return carry_dependences(node, graph);
}
filters = extract_sccs(ctx, graph);
node = isl_schedule_node_insert_sequence(node, filters);
return node;
}
/* Are there any (non-empty) (conditional) validity edges in the graph?
*/
static int has_validity_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
int empty;
empty = isl_map_plain_is_empty(graph->edge[i].map);
if (empty < 0)
return -1;
if (empty)
continue;
if (is_any_validity(&graph->edge[i]))
return 1;
}
return 0;
}
/* Should we apply a Feautrier step?
* That is, did the user request the Feautrier algorithm and are
* there any validity dependences (left)?
*/
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
return 0;
return has_validity_edges(graph);
}
/* Compute a schedule for a connected dependence graph using Feautrier's
* multi-dimensional scheduling algorithm and return the updated schedule node.
*
* The original algorithm is described in [1].
* The main idea is to minimize the number of scheduling dimensions, by
* trying to satisfy as many dependences as possible per scheduling dimension.
*
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
* Problem, Part II: Multi-Dimensional Time.
* In Intl. Journal of Parallel Programming, 1992.
*/
static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
isl_schedule_node *node, struct isl_sched_graph *graph)
{
return carry_feautrier(node, graph);
}
/* Turn off the "local" bit on all (condition) edges.
*/
static void clear_local_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i)
if (is_condition(&graph->edge[i]))
clear_local(&graph->edge[i]);
}
/* Does "graph" have both condition and conditional validity edges?
*/
static int need_condition_check(struct isl_sched_graph *graph)
{
int i;
int any_condition = 0;
int any_conditional_validity = 0;
for (i = 0; i < graph->n_edge; ++i) {
if (is_condition(&graph->edge[i]))
any_condition = 1;
if (is_conditional_validity(&graph->edge[i]))
any_conditional_validity = 1;
}
return any_condition && any_conditional_validity;
}
/* Does "graph" contain any coincidence edge?
*/
static int has_any_coincidence(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i)
if (is_coincidence(&graph->edge[i]))
return 1;
return 0;
}
/* Extract the final schedule row as a map with the iteration domain
* of "node" as domain.
*/
static __isl_give isl_map *final_row(struct isl_sched_node *node)
{
isl_multi_aff *ma;
int row;
row = isl_mat_rows(node->sched) - 1;
ma = node_extract_partial_schedule_multi_aff(node, row, 1);
return isl_map_from_multi_aff(ma);
}
/* Is the conditional validity dependence in the edge with index "edge_index"
* violated by the latest (i.e., final) row of the schedule?
* That is, is i scheduled after j
* for any conditional validity dependence i -> j?
*/
static int is_violated(struct isl_sched_graph *graph, int edge_index)
{
isl_map *src_sched, *dst_sched, *map;
struct isl_sched_edge *edge = &graph->edge[edge_index];
int empty;
src_sched = final_row(edge->src);
dst_sched = final_row(edge->dst);
map = isl_map_copy(edge->map);
map = isl_map_apply_domain(map, src_sched);
map = isl_map_apply_range(map, dst_sched);
map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
empty = isl_map_is_empty(map);
isl_map_free(map);
if (empty < 0)
return -1;
return !empty;
}
/* Does "graph" have any satisfied condition edges that
* are adjacent to the conditional validity constraint with
* domain "conditional_source" and range "conditional_sink"?
*
* A satisfied condition is one that is not local.
* If a condition was forced to be local already (i.e., marked as local)
* then there is no need to check if it is in fact local.
*
* Additionally, mark all adjacent condition edges found as local.
*/
static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
__isl_keep isl_union_set *conditional_source,
__isl_keep isl_union_set *conditional_sink)
{
int i;
int any = 0;
for (i = 0; i < graph->n_edge; ++i) {
int adjacent, local;
isl_union_map *condition;
if (!is_condition(&graph->edge[i]))
continue;
if (is_local(&graph->edge[i]))
continue;
condition = graph->edge[i].tagged_condition;
adjacent = domain_intersects(condition, conditional_sink);
if (adjacent >= 0 && !adjacent)
adjacent = range_intersects(condition,
conditional_source);
if (adjacent < 0)
return -1;
if (!adjacent)
continue;
set_local(&graph->edge[i]);
local = is_condition_false(&graph->edge[i]);
if (local < 0)
return -1;
if (!local)
any = 1;
}
return any;
}
/* Are there any violated conditional validity dependences with
* adjacent condition dependences that are not local with respect
* to the current schedule?
* That is, is the conditional validity constraint violated?
*
* Additionally, mark all those adjacent condition dependences as local.
* We also mark those adjacent condition dependences that were not marked
* as local before, but just happened to be local already. This ensures
* that they remain local if the schedule is recomputed.
*
* We first collect domain and range of all violated conditional validity
* dependences and then check if there are any adjacent non-local
* condition dependences.
*/
static int has_violated_conditional_constraint(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i;
int any = 0;
isl_union_set *source, *sink;
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
for (i = 0; i < graph->n_edge; ++i) {
isl_union_set *uset;
isl_union_map *umap;
int violated;
if (!is_conditional_validity(&graph->edge[i]))
continue;
violated = is_violated(graph, i);
if (violated < 0)
goto error;
if (!violated)
continue;
any = 1;
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
uset = isl_union_map_domain(umap);
source = isl_union_set_union(source, uset);
source = isl_union_set_coalesce(source);
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
uset = isl_union_map_range(umap);
sink = isl_union_set_union(sink, uset);
sink = isl_union_set_coalesce(sink);
}
if (any)
any = has_adjacent_true_conditions(graph, source, sink);
isl_union_set_free(source);
isl_union_set_free(sink);
return any;
error:
isl_union_set_free(source);
isl_union_set_free(sink);
return -1;
}
/* Examine the current band (the rows between graph->band_start and
* graph->n_total_row), deciding whether to drop it or add it to "node"
* and then continue with the computation of the next band, if any.
* If "initialized" is set, then it may be assumed that compute_maxvar
* has been called on the current band. Otherwise, call
* compute_maxvar if and before carry_dependences gets called.
*
* The caller keeps looking for a new row as long as
* graph->n_row < graph->maxvar. If the latest attempt to find
* such a row failed (i.e., we still have graph->n_row < graph->maxvar),
* then we either
* - split between SCCs and start over (assuming we found an interesting
* pair of SCCs between which to split)
* - continue with the next band (assuming the current band has at least
* one row)
* - if there is more than one SCC left, then split along all SCCs
* - if outer coincidence needs to be enforced, then try to carry as many
* validity or coincidence dependences as possible and
* continue with the next band
* - try to carry as many validity dependences as possible and
* continue with the next band
* In each case, we first insert a band node in the schedule tree
* if any rows have been computed.
*
* If the caller managed to complete the schedule and the current band
* is empty, then finish off by topologically
* sorting the statements based on the remaining dependences.
* If, on the other hand, the current band has at least one row,
* then continue with the next band. Note that this next band
* will necessarily be empty, but the graph may still be split up
* into weakly connected components before arriving back here.
*/
static __isl_give isl_schedule_node *compute_schedule_finish_band(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int initialized)
{
int empty;
if (!node)
return NULL;
empty = graph->n_total_row == graph->band_start;
if (graph->n_row < graph->maxvar) {
isl_ctx *ctx;
ctx = isl_schedule_node_get_ctx(node);
if (!ctx->opt->schedule_maximize_band_depth && !empty)
return compute_next_band(node, graph, 1);
if (graph->src_scc >= 0)
return compute_split_schedule(node, graph);
if (!empty)
return compute_next_band(node, graph, 1);
if (graph->scc > 1)
return compute_component_schedule(node, graph, 1);
if (!initialized && compute_maxvar(graph) < 0)
return isl_schedule_node_free(node);
if (isl_options_get_schedule_outer_coincidence(ctx))
return carry_coincidence(node, graph);
return carry_dependences(node, graph);
}
if (!empty)
return compute_next_band(node, graph, 1);
return sort_statements(node, graph, initialized);
}
/* Construct a band of schedule rows for a connected dependence graph.
* The caller is responsible for determining the strongly connected
* components and calling compute_maxvar first.
*
* We try to find a sequence of as many schedule rows as possible that result
* in non-negative dependence distances (independent of the previous rows
* in the sequence, i.e., such that the sequence is tilable), with as
* many of the initial rows as possible satisfying the coincidence constraints.
* The computation stops if we can't find any more rows or if we have found
* all the rows we wanted to find.
*
* If ctx->opt->schedule_outer_coincidence is set, then we force the
* outermost dimension to satisfy the coincidence constraints. If this
* turns out to be impossible, we fall back on the general scheme above
* and try to carry as many dependences as possible.
*
* If "graph" contains both condition and conditional validity dependences,
* then we need to check that that the conditional schedule constraint
* is satisfied, i.e., there are no violated conditional validity dependences
* that are adjacent to any non-local condition dependences.
* If there are, then we mark all those adjacent condition dependences
* as local and recompute the current band. Those dependences that
* are marked local will then be forced to be local.
* The initial computation is performed with no dependences marked as local.
* If we are lucky, then there will be no violated conditional validity
* dependences adjacent to any non-local condition dependences.
* Otherwise, we mark some additional condition dependences as local and
* recompute. We continue this process until there are no violations left or
* until we are no longer able to compute a schedule.
* Since there are only a finite number of dependences,
* there will only be a finite number of iterations.
*/
static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int has_coincidence;
int use_coincidence;
int force_coincidence = 0;
int check_conditional;
if (sort_sccs(graph) < 0)
return isl_stat_error;
clear_local_edges(graph);
check_conditional = need_condition_check(graph);
has_coincidence = has_any_coincidence(graph);
if (ctx->opt->schedule_outer_coincidence)
force_coincidence = 1;
use_coincidence = has_coincidence;
while (graph->n_row < graph->maxvar) {
isl_vec *sol;
int violated;
int coincident;
graph->src_scc = -1;
graph->dst_scc = -1;
if (setup_lp(ctx, graph, use_coincidence) < 0)
return isl_stat_error;
sol = solve_lp(ctx, graph);
if (!sol)
return isl_stat_error;
if (sol->size == 0) {
int empty = graph->n_total_row == graph->band_start;
isl_vec_free(sol);
if (use_coincidence && (!force_coincidence || !empty)) {
use_coincidence = 0;
continue;
}
return isl_stat_ok;
}
coincident = !has_coincidence || use_coincidence;
if (update_schedule(graph, sol, coincident) < 0)
return isl_stat_error;
if (!check_conditional)
continue;
violated = has_violated_conditional_constraint(ctx, graph);
if (violated < 0)
return isl_stat_error;
if (!violated)
continue;
if (reset_band(graph) < 0)
return isl_stat_error;
use_coincidence = has_coincidence;
}
return isl_stat_ok;
}
/* Compute a schedule for a connected dependence graph by considering
* the graph as a whole and return the updated schedule node.
*
* The actual schedule rows of the current band are computed by
* compute_schedule_wcc_band. compute_schedule_finish_band takes
* care of integrating the band into "node" and continuing
* the computation.
*/
static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (compute_schedule_wcc_band(ctx, graph) < 0)
return isl_schedule_node_free(node);
return compute_schedule_finish_band(node, graph, 1);
}
/* Clustering information used by compute_schedule_wcc_clustering.
*
* "n" is the number of SCCs in the original dependence graph
* "scc" is an array of "n" elements, each representing an SCC
* of the original dependence graph. All entries in the same cluster
* have the same number of schedule rows.
* "scc_cluster" maps each SCC index to the cluster to which it belongs,
* where each cluster is represented by the index of the first SCC
* in the cluster. Initially, each SCC belongs to a cluster containing
* only that SCC.
*
* "scc_in_merge" is used by merge_clusters_along_edge to keep
* track of which SCCs need to be merged.
*
* "cluster" contains the merged clusters of SCCs after the clustering
* has completed.
*
* "scc_node" is a temporary data structure used inside copy_partial.
* For each SCC, it keeps track of the number of nodes in the SCC
* that have already been copied.
*/
struct isl_clustering {
int n;
struct isl_sched_graph *scc;
struct isl_sched_graph *cluster;
int *scc_cluster;
int *scc_node;
int *scc_in_merge;
};
/* Initialize the clustering data structure "c" from "graph".
*
* In particular, allocate memory, extract the SCCs from "graph"
* into c->scc, initialize scc_cluster and construct
* a band of schedule rows for each SCC.
* Within each SCC, there is only one SCC by definition.
* Each SCC initially belongs to a cluster containing only that SCC.
*/
static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
struct isl_sched_graph *graph)
{
int i;
c->n = graph->scc;
c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
c->scc_cluster = isl_calloc_array(ctx, int, c->n);
c->scc_node = isl_calloc_array(ctx, int, c->n);
c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
if (!c->scc || !c->cluster ||
!c->scc_cluster || !c->scc_node || !c->scc_in_merge)
return isl_stat_error;
for (i = 0; i < c->n; ++i) {
if (extract_sub_graph(ctx, graph, &node_scc_exactly,
&edge_scc_exactly, i, &c->scc[i]) < 0)
return isl_stat_error;
c->scc[i].scc = 1;
if (compute_maxvar(&c->scc[i]) < 0)
return isl_stat_error;
if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
return isl_stat_error;
c->scc_cluster[i] = i;
}
return isl_stat_ok;
}
/* Free all memory allocated for "c".
*/
static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
{
int i;
if (c->scc)
for (i = 0; i < c->n; ++i)
graph_free(ctx, &c->scc[i]);
free(c->scc);
if (c->cluster)
for (i = 0; i < c->n; ++i)
graph_free(ctx, &c->cluster[i]);
free(c->cluster);
free(c->scc_cluster);
free(c->scc_node);
free(c->scc_in_merge);
}
/* Should we refrain from merging the cluster in "graph" with
* any other cluster?
* In particular, is its current schedule band empty and incomplete.
*/
static int bad_cluster(struct isl_sched_graph *graph)
{
return graph->n_row < graph->maxvar &&
graph->n_total_row == graph->band_start;
}
/* Is "edge" a proximity edge with a non-empty dependence relation?
*/
static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
{
if (!is_proximity(edge))
return isl_bool_false;
return isl_bool_not(isl_map_plain_is_empty(edge->map));
}
/* Return the index of an edge in "graph" that can be used to merge
* two clusters in "c".
* Return graph->n_edge if no such edge can be found.
* Return -1 on error.
*
* In particular, return a proximity edge between two clusters
* that is not marked "no_merge" and such that neither of the
* two clusters has an incomplete, empty band.
*
* If there are multiple such edges, then try and find the most
* appropriate edge to use for merging. In particular, pick the edge
* with the greatest weight. If there are multiple of those,
* then pick one with the shortest distance between
* the two cluster representatives.
*/
static int find_proximity(struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i, best = graph->n_edge, best_dist, best_weight;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int dist, weight;
isl_bool prox;
prox = is_non_empty_proximity(edge);
if (prox < 0)
return -1;
if (!prox)
continue;
if (edge->no_merge)
continue;
if (bad_cluster(&c->scc[edge->src->scc]) ||
bad_cluster(&c->scc[edge->dst->scc]))
continue;
dist = c->scc_cluster[edge->dst->scc] -
c->scc_cluster[edge->src->scc];
if (dist == 0)
continue;
weight = edge->weight;
if (best < graph->n_edge) {
if (best_weight > weight)
continue;
if (best_weight == weight && best_dist <= dist)
continue;
}
best = i;
best_dist = dist;
best_weight = weight;
}
return best;
}
/* Internal data structure used in mark_merge_sccs.
*
* "graph" is the dependence graph in which a strongly connected
* component is constructed.
* "scc_cluster" maps each SCC index to the cluster to which it belongs.
* "src" and "dst" are the indices of the nodes that are being merged.
*/
struct isl_mark_merge_sccs_data {
struct isl_sched_graph *graph;
int *scc_cluster;
int src;
int dst;
};
/* Check whether the cluster containing node "i" depends on the cluster
* containing node "j". If "i" and "j" belong to the same cluster,
* then they are taken to depend on each other to ensure that
* the resulting strongly connected component consists of complete
* clusters. Furthermore, if "i" and "j" are the two nodes that
* are being merged, then they are taken to depend on each other as well.
* Otherwise, check if there is a (conditional) validity dependence
* from node[j] to node[i], forcing node[i] to follow node[j].
*/
static isl_bool cluster_follows(int i, int j, void *user)
{
struct isl_mark_merge_sccs_data *data = user;
struct isl_sched_graph *graph = data->graph;
int *scc_cluster = data->scc_cluster;
if (data->src == i && data->dst == j)
return isl_bool_true;
if (data->src == j && data->dst == i)
return isl_bool_true;
if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
return isl_bool_true;
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}
/* Mark all SCCs that belong to either of the two clusters in "c"
* connected by the edge in "graph" with index "edge", or to any
* of the intermediate clusters.
* The marking is recorded in c->scc_in_merge.
*
* The given edge has been selected for merging two clusters,
* meaning that there is at least a proximity edge between the two nodes.
* However, there may also be (indirect) validity dependences
* between the two nodes. When merging the two clusters, all clusters
* containing one or more of the intermediate nodes along the
* indirect validity dependences need to be merged in as well.
*
* First collect all such nodes by computing the strongly connected
* component (SCC) containing the two nodes connected by the edge, where
* the two nodes are considered to depend on each other to make
* sure they end up in the same SCC. Similarly, each node is considered
* to depend on every other node in the same cluster to ensure
* that the SCC consists of complete clusters.
*
* Then the original SCCs that contain any of these nodes are marked
* in c->scc_in_merge.
*/
static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
int edge, struct isl_clustering *c)
{
struct isl_mark_merge_sccs_data data;
struct isl_tarjan_graph *g;
int i;
for (i = 0; i < c->n; ++i)
c->scc_in_merge[i] = 0;
data.graph = graph;
data.scc_cluster = c->scc_cluster;
data.src = graph->edge[edge].src - graph->node;
data.dst = graph->edge[edge].dst - graph->node;
g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
&cluster_follows, &data);
if (!g)
goto error;
i = g->op;
if (i < 3)
isl_die(ctx, isl_error_internal,
"expecting at least two nodes in component",
goto error);
if (g->order[--i] != -1)
isl_die(ctx, isl_error_internal,
"expecting end of component marker", goto error);
for (--i; i >= 0 && g->order[i] != -1; --i) {
int scc = graph->node[g->order[i]].scc;
c->scc_in_merge[scc] = 1;
}
isl_tarjan_graph_free(g);
return isl_stat_ok;
error:
isl_tarjan_graph_free(g);
return isl_stat_error;
}
/* Construct the identifier "cluster_i".
*/
static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
{
char name[40];
snprintf(name, sizeof(name), "cluster_%d", i);
return isl_id_alloc(ctx, name, NULL);
}
/* Construct the space of the cluster with index "i" containing
* the strongly connected component "scc".
*
* In particular, construct a space called cluster_i with dimension equal
* to the number of schedule rows in the current band of "scc".
*/
static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
{
int nvar;
isl_space *space;
isl_id *id;
nvar = scc->n_total_row - scc->band_start;
space = isl_space_copy(scc->node[0].space);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, nvar);
id = cluster_id(isl_space_get_ctx(space), i);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
return space;
}
/* Collect the domain of the graph for merging clusters.
*
* In particular, for each cluster with first SCC "i", construct
* a set in the space called cluster_i with dimension equal
* to the number of schedule rows in the current band of the cluster.
*/
static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_clustering *c)
{
int i;
isl_space *space;
isl_union_set *domain;
space = isl_space_params_alloc(ctx, 0);
domain = isl_union_set_empty(space);
for (i = 0; i < graph->scc; ++i) {
isl_space *space;
if (!c->scc_in_merge[i])
continue;
if (c->scc_cluster[i] != i)
continue;
space = cluster_space(&c->scc[i], i);
domain = isl_union_set_add_set(domain, isl_set_universe(space));
}
return domain;
}
/* Construct a map from the original instances to the corresponding
* cluster instance in the current bands of the clusters in "c".
*/
static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_clustering *c)
{
int i, j;
isl_space *space;
isl_union_map *cluster_map;
space = isl_space_params_alloc(ctx, 0);
cluster_map = isl_union_map_empty(space);
for (i = 0; i < graph->scc; ++i) {
int start, n;
isl_id *id;
if (!c->scc_in_merge[i])
continue;
id = cluster_id(ctx, c->scc_cluster[i]);
start = c->scc[i].band_start;
n = c->scc[i].n_total_row - start;
for (j = 0; j < c->scc[i].n; ++j) {
isl_multi_aff *ma;
isl_map *map;
struct isl_sched_node *node = &c->scc[i].node[j];
ma = node_extract_partial_schedule_multi_aff(node,
start, n);
ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
isl_id_copy(id));
map = isl_map_from_multi_aff(ma);
cluster_map = isl_union_map_add_map(cluster_map, map);
}
isl_id_free(id);
}
return cluster_map;
}
/* Add "umap" to the schedule constraints "sc" of all types of "edge"
* that are not isl_edge_condition or isl_edge_conditional_validity.
*/
static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
__isl_take isl_schedule_constraints *sc)
{
enum isl_edge_type t;
if (!sc)
return NULL;
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
if (t == isl_edge_condition ||
t == isl_edge_conditional_validity)
continue;
if (!is_type(edge, t))
continue;
sc = isl_schedule_constraints_add(sc, t,
isl_union_map_copy(umap));
}
return sc;
}
/* Add schedule constraints of types isl_edge_condition and
* isl_edge_conditional_validity to "sc" by applying "umap" to
* the domains of the wrapped relations in domain and range
* of the corresponding tagged constraints of "edge".
*/
static __isl_give isl_schedule_constraints *add_conditional_constraints(
struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
__isl_take isl_schedule_constraints *sc)
{
enum isl_edge_type t;
isl_union_map *tagged;
for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
if (!is_type(edge, t))
continue;
if (t == isl_edge_condition)
tagged = isl_union_map_copy(edge->tagged_condition);
else
tagged = isl_union_map_copy(edge->tagged_validity);
tagged = isl_union_map_zip(tagged);
tagged = isl_union_map_apply_domain(tagged,
isl_union_map_copy(umap));
tagged = isl_union_map_zip(tagged);
sc = isl_schedule_constraints_add(sc, t, tagged);
if (!sc)
return NULL;
}
return sc;
}
/* Given a mapping "cluster_map" from the original instances to
* the cluster instances, add schedule constraints on the clusters
* to "sc" corresponding to the original constraints represented by "edge".
*
* For non-tagged dependence constraints, the cluster constraints
* are obtained by applying "cluster_map" to the edge->map.
*
* For tagged dependence constraints, "cluster_map" needs to be applied
* to the domains of the wrapped relations in domain and range
* of the tagged dependence constraints. Pick out the mappings
* from these domains from "cluster_map" and construct their product.
* This mapping can then be applied to the pair of domains.
*/
static __isl_give isl_schedule_constraints *collect_edge_constraints(
struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
__isl_take isl_schedule_constraints *sc)
{
isl_union_map *umap;
isl_space *space;
isl_union_set *uset;
isl_union_map *umap1, *umap2;
if (!sc)
return NULL;
umap = isl_union_map_from_map(isl_map_copy(edge->map));
umap = isl_union_map_apply_domain(umap,
isl_union_map_copy(cluster_map));
umap = isl_union_map_apply_range(umap,
isl_union_map_copy(cluster_map));
sc = add_non_conditional_constraints(edge, umap, sc);
isl_union_map_free(umap);
if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
return sc;
space = isl_space_domain(isl_map_get_space(edge->map));
uset = isl_union_set_from_set(isl_set_universe(space));
umap1 = isl_union_map_copy(cluster_map);
umap1 = isl_union_map_intersect_domain(umap1, uset);
space = isl_space_range(isl_map_get_space(edge->map));
uset = isl_union_set_from_set(isl_set_universe(space));
umap2 = isl_union_map_copy(cluster_map);
umap2 = isl_union_map_intersect_domain(umap2, uset);
umap = isl_union_map_product(umap1, umap2);
sc = add_conditional_constraints(edge, umap, sc);
isl_union_map_free(umap);
return sc;
}
/* Given a mapping "cluster_map" from the original instances to
* the cluster instances, add schedule constraints on the clusters
* to "sc" corresponding to all edges in "graph" between nodes that
* belong to SCCs that are marked for merging in "scc_in_merge".
*/
static __isl_give isl_schedule_constraints *collect_constraints(
struct isl_sched_graph *graph, int *scc_in_merge,
__isl_keep isl_union_map *cluster_map,
__isl_take isl_schedule_constraints *sc)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
if (!scc_in_merge[edge->src->scc])
continue;
if (!scc_in_merge[edge->dst->scc])
continue;
sc = collect_edge_constraints(edge, cluster_map, sc);
}
return sc;
}
/* Construct a dependence graph for scheduling clusters with respect
* to each other and store the result in "merge_graph".
* In particular, the nodes of the graph correspond to the schedule
* dimensions of the current bands of those clusters that have been
* marked for merging in "c".
*
* First construct an isl_schedule_constraints object for this domain
* by transforming the edges in "graph" to the domain.
* Then initialize a dependence graph for scheduling from these
* constraints.
*/
static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c, struct isl_sched_graph *merge_graph)
{
isl_union_set *domain;
isl_union_map *cluster_map;
isl_schedule_constraints *sc;
isl_stat r;
domain = collect_domain(ctx, graph, c);
sc = isl_schedule_constraints_on_domain(domain);
if (!sc)
return isl_stat_error;
cluster_map = collect_cluster_map(ctx, graph, c);
sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
isl_union_map_free(cluster_map);
r = graph_init(merge_graph, sc);
isl_schedule_constraints_free(sc);
return r;
}
/* Compute the maximal number of remaining schedule rows that still need
* to be computed for the nodes that belong to clusters with the maximal
* dimension for the current band (i.e., the band that is to be merged).
* Only clusters that are about to be merged are considered.
* "maxvar" is the maximal dimension for the current band.
* "c" contains information about the clusters.
*
* Return the maximal number of remaining schedule rows or -1 on error.
*/
static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
{
int i, j;
int max_slack;
max_slack = 0;
for (i = 0; i < c->n; ++i) {
int nvar;
struct isl_sched_graph *scc;
if (!c->scc_in_merge[i])
continue;
scc = &c->scc[i];
nvar = scc->n_total_row - scc->band_start;
if (nvar != maxvar)
continue;
for (j = 0; j < scc->n; ++j) {
struct isl_sched_node *node = &scc->node[j];
int slack;
if (node_update_vmap(node) < 0)
return -1;
slack = node->nvar - node->rank;
if (slack > max_slack)
max_slack = slack;
}
}
return max_slack;
}
/* If there are any clusters where the dimension of the current band
* (i.e., the band that is to be merged) is smaller than "maxvar" and
* if there are any nodes in such a cluster where the number
* of remaining schedule rows that still need to be computed
* is greater than "max_slack", then return the smallest current band
* dimension of all these clusters. Otherwise return the original value
* of "maxvar". Return -1 in case of any error.
* Only clusters that are about to be merged are considered.
* "c" contains information about the clusters.
*/
static int limit_maxvar_to_slack(int maxvar, int max_slack,
struct isl_clustering *c)
{
int i, j;
for (i = 0; i < c->n; ++i) {
int nvar;
struct isl_sched_graph *scc;
if (!c->scc_in_merge[i])
continue;
scc = &c->scc[i];
nvar = scc->n_total_row - scc->band_start;
if (nvar >= maxvar)
continue;
for (j = 0; j < scc->n; ++j) {
struct isl_sched_node *node = &scc->node[j];
int slack;
if (node_update_vmap(node) < 0)
return -1;
slack = node->nvar - node->rank;
if (slack > max_slack) {
maxvar = nvar;
break;
}
}
}
return maxvar;
}
/* Adjust merge_graph->maxvar based on the number of remaining schedule rows
* that still need to be computed. In particular, if there is a node
* in a cluster where the dimension of the current band is smaller
* than merge_graph->maxvar, but the number of remaining schedule rows
* is greater than that of any node in a cluster with the maximal
* dimension for the current band (i.e., merge_graph->maxvar),
* then adjust merge_graph->maxvar to the (smallest) current band dimension
* of those clusters. Without this adjustment, the total number of
* schedule dimensions would be increased, resulting in a skewed view
* of the number of coincident dimensions.
* "c" contains information about the clusters.
*
* If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
* then there is no point in attempting any merge since it will be rejected
* anyway. Set merge_graph->maxvar to zero in such cases.
*/
static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
struct isl_sched_graph *merge_graph, struct isl_clustering *c)
{
int max_slack, maxvar;
max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
if (max_slack < 0)
return isl_stat_error;
maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
if (maxvar < 0)
return isl_stat_error;
if (maxvar < merge_graph->maxvar) {
if (isl_options_get_schedule_maximize_band_depth(ctx))
merge_graph->maxvar = 0;
else
merge_graph->maxvar = maxvar;
}
return isl_stat_ok;
}
/* Return the number of coincident dimensions in the current band of "graph",
* where the nodes of "graph" are assumed to be scheduled by a single band.
*/
static int get_n_coincident(struct isl_sched_graph *graph)
{
int i;
for (i = graph->band_start; i < graph->n_total_row; ++i)
if (!graph->node[0].coincident[i])
break;
return i - graph->band_start;
}
/* Should the clusters be merged based on the cluster schedule
* in the current (and only) band of "merge_graph", given that
* coincidence should be maximized?
*
* If the number of coincident schedule dimensions in the merged band
* would be less than the maximal number of coincident schedule dimensions
* in any of the merged clusters, then the clusters should not be merged.
*/
static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i;
int n_coincident;
int max_coincident;
max_coincident = 0;
for (i = 0; i < c->n; ++i) {
if (!c->scc_in_merge[i])
continue;
n_coincident = get_n_coincident(&c->scc[i]);
if (n_coincident > max_coincident)
max_coincident = n_coincident;
}
n_coincident = get_n_coincident(merge_graph);
return n_coincident >= max_coincident;
}
/* Return the transformation on "node" expressed by the current (and only)
* band of "merge_graph" applied to the clusters in "c".
*
* First find the representation of "node" in its SCC in "c" and
* extract the transformation expressed by the current band.
* Then extract the transformation applied by "merge_graph"
* to the cluster to which this SCC belongs.
* Combine the two to obtain the complete transformation on the node.
*
* Note that the range of the first transformation is an anonymous space,
* while the domain of the second is named "cluster_X". The range
* of the former therefore needs to be adjusted before the two
* can be combined.
*/
static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
struct isl_sched_node *node, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
struct isl_sched_node *scc_node, *cluster_node;
int start, n;
isl_id *id;
isl_space *space;
isl_multi_aff *ma, *ma2;
scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
if (scc_node && !is_node(&c->scc[node->scc], scc_node))
isl_die(ctx, isl_error_internal, "unable to find node",
return NULL);
start = c->scc[node->scc].band_start;
n = c->scc[node->scc].n_total_row - start;
ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
cluster_node = graph_find_node(ctx, merge_graph, space);
if (cluster_node && !is_node(merge_graph, cluster_node))
isl_die(ctx, isl_error_internal, "unable to find cluster",
space = isl_space_free(space));
id = isl_space_get_tuple_id(space, isl_dim_set);
ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
isl_space_free(space);
n = merge_graph->n_total_row;
ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
return isl_map_from_multi_aff(ma);
}
/* Give a set of distances "set", are they bounded by a small constant
* in direction "pos"?
* In practice, check if they are bounded by 2 by checking that there
* are no elements with a value greater than or equal to 3 or
* smaller than or equal to -3.
*/
static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
{
isl_bool bounded;
isl_set *test;
if (!set)
return isl_bool_error;
test = isl_set_copy(set);
test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
bounded = isl_set_is_empty(test);
isl_set_free(test);
if (bounded < 0 || !bounded)
return bounded;
test = isl_set_copy(set);
test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
bounded = isl_set_is_empty(test);
isl_set_free(test);
return bounded;
}
/* Does the set "set" have a fixed (but possible parametric) value
* at dimension "pos"?
*/
static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
{
int n;
isl_bool single;
if (!set)
return isl_bool_error;
set = isl_set_copy(set);
n = isl_set_dim(set, isl_dim_set);
set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
set = isl_set_project_out(set, isl_dim_set, 0, pos);
single = isl_set_is_singleton(set);
isl_set_free(set);
return single;
}
/* Does "map" have a fixed (but possible parametric) value
* at dimension "pos" of either its domain or its range?
*/
static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
{
isl_set *set;
isl_bool single;
set = isl_map_domain(isl_map_copy(map));
single = has_single_value(set, pos);
isl_set_free(set);
if (single < 0 || single)
return single;
set = isl_map_range(isl_map_copy(map));
single = has_single_value(set, pos);
isl_set_free(set);
return single;
}
/* Does the edge "edge" from "graph" have bounded dependence distances
* in the merged graph "merge_graph" of a selection of clusters in "c"?
*
* Extract the complete transformations of the source and destination
* nodes of the edge, apply them to the edge constraints and
* compute the differences. Finally, check if these differences are bounded
* in each direction.
*
* If the dimension of the band is greater than the number of
* dimensions that can be expected to be optimized by the edge
* (based on its weight), then also allow the differences to be unbounded
* in the remaining dimensions, but only if either the source or
* the destination has a fixed value in that direction.
* This allows a statement that produces values that are used by
* several instances of another statement to be merged with that
* other statement.
* However, merging such clusters will introduce an inherently
* large proximity distance inside the merged cluster, meaning
* that proximity distances will no longer be optimized in
* subsequent merges. These merges are therefore only allowed
* after all other possible merges have been tried.
* The first time such a merge is encountered, the weight of the edge
* is replaced by a negative weight. The second time (i.e., after
* all merges over edges with a non-negative weight have been tried),
* the merge is allowed.
*/
static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
struct isl_sched_graph *graph, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i, n, n_slack;
isl_bool bounded;
isl_map *map, *t;
isl_set *dist;
map = isl_map_copy(edge->map);
t = extract_node_transformation(ctx, edge->src, c, merge_graph);
map = isl_map_apply_domain(map, t);
t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
map = isl_map_apply_range(map, t);
dist = isl_map_deltas(isl_map_copy(map));
bounded = isl_bool_true;
n = isl_set_dim(dist, isl_dim_set);
n_slack = n - edge->weight;
if (edge->weight < 0)
n_slack -= graph->max_weight + 1;
for (i = 0; i < n; ++i) {
isl_bool bounded_i, singular_i;
bounded_i = distance_is_bounded(dist, i);
if (bounded_i < 0)
goto error;
if (bounded_i)
continue;
if (edge->weight >= 0)
bounded = isl_bool_false;
n_slack--;
if (n_slack < 0)
break;
singular_i = has_singular_src_or_dst(map, i);
if (singular_i < 0)
goto error;
if (singular_i)
continue;
bounded = isl_bool_false;
break;
}
if (!bounded && i >= n && edge->weight >= 0)
edge->weight -= graph->max_weight + 1;
isl_map_free(map);
isl_set_free(dist);
return bounded;
error:
isl_map_free(map);
isl_set_free(dist);
return isl_bool_error;
}
/* Should the clusters be merged based on the cluster schedule
* in the current (and only) band of "merge_graph"?
* "graph" is the original dependence graph, while "c" records
* which SCCs are involved in the latest merge.
*
* In particular, is there at least one proximity constraint
* that is optimized by the merge?
*
* A proximity constraint is considered to be optimized
* if the dependence distances are small.
*/
static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
isl_bool bounded;
if (!is_proximity(edge))
continue;
if (!c->scc_in_merge[edge->src->scc])
continue;
if (!c->scc_in_merge[edge->dst->scc])
continue;
if (c->scc_cluster[edge->dst->scc] ==
c->scc_cluster[edge->src->scc])
continue;
bounded = has_bounded_distances(ctx, edge, graph, c,
merge_graph);
if (bounded < 0 || bounded)
return bounded;
}
return isl_bool_false;
}
/* Should the clusters be merged based on the cluster schedule
* in the current (and only) band of "merge_graph"?
* "graph" is the original dependence graph, while "c" records
* which SCCs are involved in the latest merge.
*
* If the current band is empty, then the clusters should not be merged.
*
* If the band depth should be maximized and the merge schedule
* is incomplete (meaning that the dimension of some of the schedule
* bands in the original schedule will be reduced), then the clusters
* should not be merged.
*
* If the schedule_maximize_coincidence option is set, then check that
* the number of coincident schedule dimensions is not reduced.
*
* Finally, only allow the merge if at least one proximity
* constraint is optimized.
*/
static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c, struct isl_sched_graph *merge_graph)
{
if (merge_graph->n_total_row == merge_graph->band_start)
return isl_bool_false;
if (isl_options_get_schedule_maximize_band_depth(ctx) &&
merge_graph->n_total_row < merge_graph->maxvar)
return isl_bool_false;
if (isl_options_get_schedule_maximize_coincidence(ctx)) {
isl_bool ok;
ok = ok_to_merge_coincident(c, merge_graph);
if (ok < 0 || !ok)
return ok;
}
return ok_to_merge_proximity(ctx, graph, c, merge_graph);
}
/* Apply the schedule in "t_node" to the "n" rows starting at "first"
* of the schedule in "node" and return the result.
*
* That is, essentially compute
*
* T * N(first:first+n-1)
*
* taking into account the constant term and the parameter coefficients
* in "t_node".
*/
static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
struct isl_sched_node *t_node, struct isl_sched_node *node,
int first, int n)
{
int i, j;
isl_mat *t;
int n_row, n_col, n_param, n_var;
n_param = node->nparam;
n_var = node->nvar;
n_row = isl_mat_rows(t_node->sched);
n_col = isl_mat_cols(node->sched);
t = isl_mat_alloc(ctx, n_row, n_col);
if (!t)
return NULL;
for (i = 0; i < n_row; ++i) {
isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
isl_seq_clr(t->row[i] + 1 + n_param, n_var);
for (j = 0; j < n; ++j)
isl_seq_addmul(t->row[i],
t_node->sched->row[i][1 + n_param + j],
node->sched->row[first + j],
1 + n_param + n_var);
}
return t;
}
/* Apply the cluster schedule in "t_node" to the current band
* schedule of the nodes in "graph".
*
* In particular, replace the rows starting at band_start
* by the result of applying the cluster schedule in "t_node"
* to the original rows.
*
* The coincidence of the schedule is determined by the coincidence
* of the cluster schedule.
*/
static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_sched_node *t_node)
{
int i, j;
int n_new;
int start, n;
start = graph->band_start;
n = graph->n_total_row - start;
n_new = isl_mat_rows(t_node->sched);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_mat *t;
t = node_transformation(ctx, t_node, node, start, n);
node->sched = isl_mat_drop_rows(node->sched, start, n);
node->sched = isl_mat_concat(node->sched, t);
node->sched_map = isl_map_free(node->sched_map);
if (!node->sched)
return isl_stat_error;
for (j = 0; j < n_new; ++j)
node->coincident[start + j] = t_node->coincident[j];
}
graph->n_total_row -= n;
graph->n_row -= n;
graph->n_total_row += n_new;
graph->n_row += n_new;
return isl_stat_ok;
}
/* Merge the clusters marked for merging in "c" into a single
* cluster using the cluster schedule in the current band of "merge_graph".
* The representative SCC for the new cluster is the SCC with
* the smallest index.
*
* The current band schedule of each SCC in the new cluster is obtained
* by applying the schedule of the corresponding original cluster
* to the original band schedule.
* All SCCs in the new cluster have the same number of schedule rows.
*/
static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i;
int cluster = -1;
isl_space *space;
for (i = 0; i < c->n; ++i) {
struct isl_sched_node *node;
if (!c->scc_in_merge[i])
continue;
if (cluster < 0)
cluster = i;
space = cluster_space(&c->scc[i], c->scc_cluster[i]);
node = graph_find_node(ctx, merge_graph, space);
isl_space_free(space);
if (!node)
return isl_stat_error;
if (!is_node(merge_graph, node))
isl_die(ctx, isl_error_internal,
"unable to find cluster",
return isl_stat_error);
if (transform(ctx, &c->scc[i], node) < 0)
return isl_stat_error;
c->scc_cluster[i] = cluster;
}
return isl_stat_ok;
}
/* Try and merge the clusters of SCCs marked in c->scc_in_merge
* by scheduling the current cluster bands with respect to each other.
*
* Construct a dependence graph with a space for each cluster and
* with the coordinates of each space corresponding to the schedule
* dimensions of the current band of that cluster.
* Construct a cluster schedule in this cluster dependence graph and
* apply it to the current cluster bands if it is applicable
* according to ok_to_merge.
*
* If the number of remaining schedule dimensions in a cluster
* with a non-maximal current schedule dimension is greater than
* the number of remaining schedule dimensions in clusters
* with a maximal current schedule dimension, then restrict
* the number of rows to be computed in the cluster schedule
* to the minimal such non-maximal current schedule dimension.
* Do this by adjusting merge_graph.maxvar.
*
* Return isl_bool_true if the clusters have effectively been merged
* into a single cluster.
*
* Note that since the standard scheduling algorithm minimizes the maximal
* distance over proximity constraints, the proximity constraints between
* the merged clusters may not be optimized any further than what is
* sufficient to bring the distances within the limits of the internal
* proximity constraints inside the individual clusters.
* It may therefore make sense to perform an additional translation step
* to bring the clusters closer to each other, while maintaining
* the linear part of the merging schedule found using the standard
* scheduling algorithm.
*/
static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
struct isl_sched_graph merge_graph = { 0 };
isl_bool merged;
if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
goto error;
if (compute_maxvar(&merge_graph) < 0)
goto error;
if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
goto error;
if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
goto error;
merged = ok_to_merge(ctx, graph, c, &merge_graph);
if (merged && merge(ctx, c, &merge_graph) < 0)
goto error;
graph_free(ctx, &merge_graph);
return merged;
error:
graph_free(ctx, &merge_graph);
return isl_bool_error;
}
/* Is there any edge marked "no_merge" between two SCCs that are
* about to be merged (i.e., that are set in "scc_in_merge")?
* "merge_edge" is the proximity edge along which the clusters of SCCs
* are going to be merged.
*
* If there is any edge between two SCCs with a negative weight,
* while the weight of "merge_edge" is non-negative, then this
* means that the edge was postponed. "merge_edge" should then
* also be postponed since merging along the edge with negative weight should
* be postponed until all edges with non-negative weight have been tried.
* Replace the weight of "merge_edge" by a negative weight as well and
* tell the caller not to attempt a merge.
*/
static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
struct isl_sched_edge *merge_edge)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
if (!scc_in_merge[edge->src->scc])
continue;
if (!scc_in_merge[edge->dst->scc])
continue;
if (edge->no_merge)
return 1;
if (merge_edge->weight >= 0 && edge->weight < 0) {
merge_edge->weight -= graph->max_weight + 1;
return 1;
}
}
return 0;
}
/* Merge the two clusters in "c" connected by the edge in "graph"
* with index "edge" into a single cluster.
* If it turns out to be impossible to merge these two clusters,
* then mark the edge as "no_merge" such that it will not be
* considered again.
*
* First mark all SCCs that need to be merged. This includes the SCCs
* in the two clusters, but it may also include the SCCs
* of intermediate clusters.
* If there is already a no_merge edge between any pair of such SCCs,
* then simply mark the current edge as no_merge as well.
* Likewise, if any of those edges was postponed by has_bounded_distances,
* then postpone the current edge as well.
* Otherwise, try and merge the clusters and mark "edge" as "no_merge"
* if the clusters did not end up getting merged, unless the non-merge
* is due to the fact that the edge was postponed. This postponement
* can be recognized by a change in weight (from non-negative to negative).
*/
static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
{
isl_bool merged;
int edge_weight = graph->edge[edge].weight;
if (mark_merge_sccs(ctx, graph, edge, c) < 0)
return isl_stat_error;
if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
merged = isl_bool_false;
else
merged = try_merge(ctx, graph, c);
if (merged < 0)
return isl_stat_error;
if (!merged && edge_weight == graph->edge[edge].weight)
graph->edge[edge].no_merge = 1;
return isl_stat_ok;
}
/* Does "node" belong to the cluster identified by "cluster"?
*/
static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
{
return node->cluster == cluster;
}
/* Does "edge" connect two nodes belonging to the cluster
* identified by "cluster"?
*/
static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
{
return edge->src->cluster == cluster && edge->dst->cluster == cluster;
}
/* Swap the schedule of "node1" and "node2".
* Both nodes have been derived from the same node in a common parent graph.
* Since the "coincident" field is shared with that node
* in the parent graph, there is no need to also swap this field.
*/
static void swap_sched(struct isl_sched_node *node1,
struct isl_sched_node *node2)
{
isl_mat *sched;
isl_map *sched_map;
sched = node1->sched;
node1->sched = node2->sched;
node2->sched = sched;
sched_map = node1->sched_map;
node1->sched_map = node2->sched_map;
node2->sched_map = sched_map;
}
/* Copy the current band schedule from the SCCs that form the cluster
* with index "pos" to the actual cluster at position "pos".
* By construction, the index of the first SCC that belongs to the cluster
* is also "pos".
*
* The order of the nodes inside both the SCCs and the cluster
* is assumed to be same as the order in the original "graph".
*
* Since the SCC graphs will no longer be used after this function,
* the schedules are actually swapped rather than copied.
*/
static isl_stat copy_partial(struct isl_sched_graph *graph,
struct isl_clustering *c, int pos)
{
int i, j;
c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
c->cluster[pos].n_row = c->scc[pos].n_row;
c->cluster[pos].maxvar = c->scc[pos].maxvar;
j = 0;
for (i = 0; i < graph->n; ++i) {
int k;
int s;
if (graph->node[i].cluster != pos)
continue;
s = graph->node[i].scc;
k = c->scc_node[s]++;
swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
if (c->scc[s].maxvar > c->cluster[pos].maxvar)
c->cluster[pos].maxvar = c->scc[s].maxvar;
++j;
}
return isl_stat_ok;
}
/* Is there a (conditional) validity dependence from node[j] to node[i],
* forcing node[i] to follow node[j] or do the nodes belong to the same
* cluster?
*/
static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
{
struct isl_sched_graph *graph = user;
if (graph->node[i].cluster == graph->node[j].cluster)
return isl_bool_true;
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}
/* Extract the merged clusters of SCCs in "graph", sort them, and
* store them in c->clusters. Update c->scc_cluster accordingly.
*
* First keep track of the cluster containing the SCC to which a node
* belongs in the node itself.
* Then extract the clusters into c->clusters, copying the current
* band schedule from the SCCs that belong to the cluster.
* Do this only once per cluster.
*
* Finally, topologically sort the clusters and update c->scc_cluster
* to match the new scc numbering. While the SCCs were originally
* sorted already, some SCCs that depend on some other SCCs may
* have been merged with SCCs that appear before these other SCCs.
* A reordering may therefore be required.
*/
static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i;
for (i = 0; i < graph->n; ++i)
graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
for (i = 0; i < graph->scc; ++i) {
if (c->scc_cluster[i] != i)
continue;
if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
&edge_cluster_exactly, i, &c->cluster[i]) < 0)
return isl_stat_error;
c->cluster[i].src_scc = -1;
c->cluster[i].dst_scc = -1;
if (copy_partial(graph, c, i) < 0)
return isl_stat_error;
}
if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
return isl_stat_error;
for (i = 0; i < graph->n; ++i)
c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
return isl_stat_ok;
}
/* Compute weights on the proximity edges of "graph" that can
* be used by find_proximity to find the most appropriate
* proximity edge to use to merge two clusters in "c".
* The weights are also used by has_bounded_distances to determine
* whether the merge should be allowed.
* Store the maximum of the computed weights in graph->max_weight.
*
* The computed weight is a measure for the number of remaining schedule
* dimensions that can still be completely aligned.
* In particular, compute the number of equalities between
* input dimensions and output dimensions in the proximity constraints.
* The directions that are already handled by outer schedule bands
* are projected out prior to determining this number.
*
* Edges that will never be considered by find_proximity are ignored.
*/
static isl_stat compute_weights(struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i;
graph->max_weight = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
isl_basic_map *hull;
isl_bool prox;
int n_in, n_out;
prox = is_non_empty_proximity(edge);
if (prox < 0)
return isl_stat_error;
if (!prox)
continue;
if (bad_cluster(&c->scc[edge->src->scc]) ||
bad_cluster(&c->scc[edge->dst->scc]))
continue;
if (c->scc_cluster[edge->dst->scc] ==
c->scc_cluster[edge->src->scc])
continue;
hull = isl_map_affine_hull(isl_map_copy(edge->map));
hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
isl_mat_copy(src->vmap));
hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
isl_mat_copy(dst->vmap));
hull = isl_basic_map_project_out(hull,
isl_dim_in, 0, src->rank);
hull = isl_basic_map_project_out(hull,
isl_dim_out, 0, dst->rank);
hull = isl_basic_map_remove_divs(hull);
n_in = isl_basic_map_dim(hull, isl_dim_in);
n_out = isl_basic_map_dim(hull, isl_dim_out);
hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
isl_dim_in, 0, n_in);
hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
isl_dim_out, 0, n_out);
if (!hull)
return isl_stat_error;
edge->weight = isl_basic_map_n_equality(hull);
isl_basic_map_free(hull);
if (edge->weight > graph->max_weight)
graph->max_weight = edge->weight;
}
return isl_stat_ok;
}
/* Call compute_schedule_finish_band on each of the clusters in "c"
* in their topological order. This order is determined by the scc
* fields of the nodes in "graph".
* Combine the results in a sequence expressing the topological order.
*
* If there is only one cluster left, then there is no need to introduce
* a sequence node. Also, in this case, the cluster necessarily contains
* the SCC at position 0 in the original graph and is therefore also
* stored in the first cluster of "c".
*/
static __isl_give isl_schedule_node *finish_bands_clustering(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i;
isl_ctx *ctx;
isl_union_set_list *filters;
if (graph->scc == 1)
return compute_schedule_finish_band(node, &c->cluster[0], 0);
ctx = isl_schedule_node_get_ctx(node);
filters = extract_sccs(ctx, graph);
node = isl_schedule_node_insert_sequence(node, filters);
for (i = 0; i < graph->scc; ++i) {
int j = c->scc_cluster[i];
node = isl_schedule_node_child(node, i);
node = isl_schedule_node_child(node, 0);
node = compute_schedule_finish_band(node, &c->cluster[j], 0);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
}
return node;
}
/* Compute a schedule for a connected dependence graph by first considering
* each strongly connected component (SCC) in the graph separately and then
* incrementally combining them into clusters.
* Return the updated schedule node.
*
* Initially, each cluster consists of a single SCC, each with its
* own band schedule. The algorithm then tries to merge pairs
* of clusters along a proximity edge until no more suitable
* proximity edges can be found. During this merging, the schedule
* is maintained in the individual SCCs.
* After the merging is completed, the full resulting clusters
* are extracted and in finish_bands_clustering,
* compute_schedule_finish_band is called on each of them to integrate
* the band into "node" and to continue the computation.
*
* compute_weights initializes the weights that are used by find_proximity.
*/
static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
isl_ctx *ctx;
struct isl_clustering c;
int i;
ctx = isl_schedule_node_get_ctx(node);
if (clustering_init(ctx, &c, graph) < 0)
goto error;
if (compute_weights(graph, &c) < 0)
goto error;
for (;;) {
i = find_proximity(graph, &c);
if (i < 0)
goto error;
if (i >= graph->n_edge)
break;
if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
goto error;
}
if (extract_clusters(ctx, graph, &c) < 0)
goto error;
node = finish_bands_clustering(node, graph, &c);
clustering_free(ctx, &c);
return node;
error:
clustering_free(ctx, &c);
return isl_schedule_node_free(node);
}
/* Compute a schedule for a connected dependence graph and return
* the updated schedule node.
*
* If Feautrier's algorithm is selected, we first recursively try to satisfy
* as many validity dependences as possible. When all validity dependences
* are satisfied we extend the schedule to a full-dimensional schedule.
*
* Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
* depending on whether the user has selected the option to try and
* compute a schedule for the entire (weakly connected) component first.
* If there is only a single strongly connected component (SCC), then
* there is no point in trying to combine SCCs
* in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
* is called instead.
*/
static __isl_give isl_schedule_node *compute_schedule_wcc(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (detect_sccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
if (compute_maxvar(graph) < 0)
return isl_schedule_node_free(node);
if (need_feautrier_step(ctx, graph))
return compute_schedule_wcc_feautrier(node, graph);
if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
return compute_schedule_wcc_whole(node, graph);
else
return compute_schedule_wcc_clustering(node, graph);
}
/* Compute a schedule for each group of nodes identified by node->scc
* separately and then combine them in a sequence node (or as set node
* if graph->weak is set) inserted at position "node" of the schedule tree.
* Return the updated schedule node.
*
* If "wcc" is set then each of the groups belongs to a single
* weakly connected component in the dependence graph so that
* there is no need for compute_sub_schedule to look for weakly
* connected components.
*
* If a set node would be introduced and if the number of components
* is equal to the number of nodes, then check if the schedule
* is already complete. If so, a redundant set node would be introduced
* (without any further descendants) stating that the statements
* can be executed in arbitrary order, which is also expressed
* by the absence of any node. Refrain from inserting any nodes
* in this case and simply return.
*/
static __isl_give isl_schedule_node *compute_component_schedule(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
int wcc)
{
int component;
isl_ctx *ctx;
isl_union_set_list *filters;
if (!node)
return NULL;
if (graph->weak && graph->scc == graph->n) {
if (compute_maxvar(graph) < 0)
return isl_schedule_node_free(node);
if (graph->n_row >= graph->maxvar)
return node;
}
ctx = isl_schedule_node_get_ctx(node);
filters = extract_sccs(ctx, graph);
if (graph->weak)
node = isl_schedule_node_insert_set(node, filters);
else
node = isl_schedule_node_insert_sequence(node, filters);
for (component = 0; component < graph->scc; ++component) {
node = isl_schedule_node_child(node, component);
node = isl_schedule_node_child(node, 0);
node = compute_sub_schedule(node, ctx, graph,
&node_scc_exactly,
&edge_scc_exactly, component, wcc);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
}
return node;
}
/* Compute a schedule for the given dependence graph and insert it at "node".
* Return the updated schedule node.
*
* We first check if the graph is connected (through validity and conditional
* validity dependences) and, if not, compute a schedule
* for each component separately.
* If the schedule_serialize_sccs option is set, then we check for strongly
* connected components instead and compute a separate schedule for
* each such strongly connected component.
*/
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
struct isl_sched_graph *graph)
{
isl_ctx *ctx;
if (!node)
return NULL;
ctx = isl_schedule_node_get_ctx(node);
if (isl_options_get_schedule_serialize_sccs(ctx)) {
if (detect_sccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
} else {
if (detect_wccs(ctx, graph) < 0)
return isl_schedule_node_free(node);
}
if (graph->scc > 1)
return compute_component_schedule(node, graph, 1);
return compute_schedule_wcc(node, graph);
}
/* Compute a schedule on sc->domain that respects the given schedule
* constraints.
*
* In particular, the schedule respects all the validity dependences.
* If the default isl scheduling algorithm is used, it tries to minimize
* the dependence distances over the proximity dependences.
* If Feautrier's scheduling algorithm is used, the proximity dependence
* distances are only minimized during the extension to a full-dimensional
* schedule.
*
* If there are any condition and conditional validity dependences,
* then the conditional validity dependences may be violated inside
* a tilable band, provided they have no adjacent non-local
* condition dependences.
*/
__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
__isl_take isl_schedule_constraints *sc)
{
isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
struct isl_sched_graph graph = { 0 };
isl_schedule *sched;
isl_schedule_node *node;
isl_union_set *domain;
sc = isl_schedule_constraints_align_params(sc);
domain = isl_schedule_constraints_get_domain(sc);
if (isl_union_set_n_set(domain) == 0) {
isl_schedule_constraints_free(sc);
return isl_schedule_from_domain(domain);
}
if (graph_init(&graph, sc) < 0)
domain = isl_union_set_free(domain);
node = isl_schedule_node_from_domain(domain);
node = isl_schedule_node_child(node, 0);
if (graph.n > 0)
node = compute_schedule(node, &graph);
sched = isl_schedule_node_get_schedule(node);
isl_schedule_node_free(node);
graph_free(ctx, &graph);
isl_schedule_constraints_free(sc);
return sched;
}
/* Compute a schedule for the given union of domains that respects
* all the validity dependences and minimizes
* the dependence distances over the proximity dependences.
*
* This function is kept for backward compatibility.
*/
__isl_give isl_schedule *isl_union_set_compute_schedule(
__isl_take isl_union_set *domain,
__isl_take isl_union_map *validity,
__isl_take isl_union_map *proximity)
{
isl_schedule_constraints *sc;
sc = isl_schedule_constraints_on_domain(domain);
sc = isl_schedule_constraints_set_validity(sc, validity);
sc = isl_schedule_constraints_set_proximity(sc, proximity);
return isl_schedule_constraints_compute_schedule(sc);
}
|