reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
//===------ DeLICM.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Undo the effect of Loop Invariant Code Motion (LICM) and
// GVN Partial Redundancy Elimination (PRE) on SCoP-level.
//
// Namely, remove register/scalar dependencies by mapping them back to array
// elements.
//
//===----------------------------------------------------------------------===//

#include "polly/DeLICM.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/ZoneAlgo.h"
#include "llvm/ADT/Statistic.h"

#define DEBUG_TYPE "polly-delicm"

using namespace polly;
using namespace llvm;

namespace {

cl::opt<int>
    DelicmMaxOps("polly-delicm-max-ops",
                 cl::desc("Maximum number of isl operations to invest for "
                          "lifetime analysis; 0=no limit"),
                 cl::init(1000000), cl::cat(PollyCategory));

cl::opt<bool> DelicmOverapproximateWrites(
    "polly-delicm-overapproximate-writes",
    cl::desc(
        "Do more PHI writes than necessary in order to avoid partial accesses"),
    cl::init(false), cl::Hidden, cl::cat(PollyCategory));

cl::opt<bool> DelicmPartialWrites("polly-delicm-partial-writes",
                                  cl::desc("Allow partial writes"),
                                  cl::init(true), cl::Hidden,
                                  cl::cat(PollyCategory));

cl::opt<bool>
    DelicmComputeKnown("polly-delicm-compute-known",
                       cl::desc("Compute known content of array elements"),
                       cl::init(true), cl::Hidden, cl::cat(PollyCategory));

STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs");
STATISTIC(DeLICMOutOfQuota,
          "Analyses aborted because max_operations was reached");
STATISTIC(MappedValueScalars, "Number of mapped Value scalars");
STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars");
STATISTIC(TargetsMapped, "Number of stores used for at least one mapping");
STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized");

STATISTIC(NumValueWrites, "Number of scalar value writes after DeLICM");
STATISTIC(NumValueWritesInLoops,
          "Number of scalar value writes nested in affine loops after DeLICM");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after DeLICM");
STATISTIC(NumPHIWritesInLoops,
          "Number of scalar phi writes nested in affine loops after DeLICM");
STATISTIC(NumSingletonWrites, "Number of singleton writes after DeLICM");
STATISTIC(NumSingletonWritesInLoops,
          "Number of singleton writes nested in affine loops after DeLICM");

isl::union_map computeReachingOverwrite(isl::union_map Schedule,
                                        isl::union_map Writes,
                                        bool InclPrevWrite,
                                        bool InclOverwrite) {
  return computeReachingWrite(Schedule, Writes, true, InclPrevWrite,
                              InclOverwrite);
}

/// Compute the next overwrite for a scalar.
///
/// @param Schedule      { DomainWrite[] -> Scatter[] }
///                      Schedule of (at least) all writes. Instances not in @p
///                      Writes are ignored.
/// @param Writes        { DomainWrite[] }
///                      The element instances that write to the scalar.
/// @param InclPrevWrite Whether to extend the timepoints to include
///                      the timepoint where the previous write happens.
/// @param InclOverwrite Whether the reaching overwrite includes the timepoint
///                      of the overwrite itself.
///
/// @return { Scatter[] -> DomainDef[] }
isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule,
                                              isl::union_set Writes,
                                              bool InclPrevWrite,
                                              bool InclOverwrite) {

  // { DomainWrite[] }
  auto WritesMap = isl::union_map::from_domain(Writes);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  auto Result = computeReachingOverwrite(
      std::move(Schedule), std::move(WritesMap), InclPrevWrite, InclOverwrite);

  return Result.domain_factor_range();
}

/// Overload of computeScalarReachingOverwrite, with only one writing statement.
/// Consequently, the result consists of only one map space.
///
/// @param Schedule      { DomainWrite[] -> Scatter[] }
/// @param Writes        { DomainWrite[] }
/// @param InclPrevWrite Include the previous write to result.
/// @param InclOverwrite Include the overwrite to the result.
///
/// @return { Scatter[] -> DomainWrite[] }
isl::map computeScalarReachingOverwrite(isl::union_map Schedule,
                                        isl::set Writes, bool InclPrevWrite,
                                        bool InclOverwrite) {
  isl::space ScatterSpace = getScatterSpace(Schedule);
  isl::space DomSpace = Writes.get_space();

  isl::union_map ReachOverwrite = computeScalarReachingOverwrite(
      Schedule, isl::union_set(Writes), InclPrevWrite, InclOverwrite);

  isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomSpace);
  return singleton(std::move(ReachOverwrite), ResultSpace);
}

/// Try to find a 'natural' extension of a mapped to elements outside its
/// domain.
///
/// @param Relevant The map with mapping that may not be modified.
/// @param Universe The domain to which @p Relevant needs to be extended.
///
/// @return A map with that associates the domain elements of @p Relevant to the
///         same elements and in addition the elements of @p Universe to some
///         undefined elements. The function prefers to return simple maps.
isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) {
  Relevant = Relevant.coalesce();
  isl::union_set RelevantDomain = Relevant.domain();
  isl::union_map Simplified = Relevant.gist_domain(RelevantDomain);
  Simplified = Simplified.coalesce();
  return Simplified.intersect_domain(Universe);
}

/// Represent the knowledge of the contents of any array elements in any zone or
/// the knowledge we would add when mapping a scalar to an array element.
///
/// Every array element at every zone unit has one of two states:
///
/// - Unused: Not occupied by any value so a transformation can change it to
///   other values.
///
/// - Occupied: The element contains a value that is still needed.
///
/// The union of Unused and Unknown zones forms the universe, the set of all
/// elements at every timepoint. The universe can easily be derived from the
/// array elements that are accessed someway. Arrays that are never accessed
/// also never play a role in any computation and can hence be ignored. With a
/// given universe, only one of the sets needs to stored implicitly. Computing
/// the complement is also an expensive operation, hence this class has been
/// designed that only one of sets is needed while the other is assumed to be
/// implicit. It can still be given, but is mostly ignored.
///
/// There are two use cases for the Knowledge class:
///
/// 1) To represent the knowledge of the current state of ScopInfo. The unused
///    state means that an element is currently unused: there is no read of it
///    before the next overwrite. Also called 'Existing'.
///
/// 2) To represent the requirements for mapping a scalar to array elements. The
///    unused state means that there is no change/requirement. Also called
///    'Proposed'.
///
/// In addition to these states at unit zones, Knowledge needs to know when
/// values are written. This is because written values may have no lifetime (one
/// reason is that the value is never read). Such writes would therefore never
/// conflict, but overwrite values that might still be required. Another source
/// of problems are multiple writes to the same element at the same timepoint,
/// because their order is undefined.
class Knowledge {
private:
  /// { [Element[] -> Zone[]] }
  /// Set of array elements and when they are alive.
  /// Can contain a nullptr; in this case the set is implicitly defined as the
  /// complement of #Unused.
  ///
  /// The set of alive array elements is represented as zone, as the set of live
  /// values can differ depending on how the elements are interpreted.
  /// Assuming a value X is written at timestep [0] and read at timestep [1]
  /// without being used at any later point, then the value is alive in the
  /// interval ]0,1[. This interval cannot be represented by an integer set, as
  /// it does not contain any integer point. Zones allow us to represent this
  /// interval and can be converted to sets of timepoints when needed (e.g., in
  /// isConflicting when comparing to the write sets).
  /// @see convertZoneToTimepoints and this file's comment for more details.
  isl::union_set Occupied;

  /// { [Element[] -> Zone[]] }
  /// Set of array elements when they are not alive, i.e. their memory can be
  /// used for other purposed. Can contain a nullptr; in this case the set is
  /// implicitly defined as the complement of #Occupied.
  isl::union_set Unused;

  /// { [Element[] -> Zone[]] -> ValInst[] }
  /// Maps to the known content for each array element at any interval.
  ///
  /// Any element/interval can map to multiple known elements. This is due to
  /// multiple llvm::Value referring to the same content. Examples are
  ///
  /// - A value stored and loaded again. The LoadInst represents the same value
  /// as the StoreInst's value operand.
  ///
  /// - A PHINode is equal to any one of the incoming values. In case of
  /// LCSSA-form, it is always equal to its single incoming value.
  ///
  /// Two Knowledges are considered not conflicting if at least one of the known
  /// values match. Not known values are not stored as an unnamed tuple (as
  /// #Written does), but maps to nothing.
  ///
  ///  Known values are usually just defined for #Occupied elements. Knowing
  ///  #Unused contents has no advantage as it can be overwritten.
  isl::union_map Known;

  /// { [Element[] -> Scatter[]] -> ValInst[] }
  /// The write actions currently in the scop or that would be added when
  /// mapping a scalar. Maps to the value that is written.
  ///
  /// Written values that cannot be identified are represented by an unknown
  /// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself.
  isl::union_map Written;

  /// Check whether this Knowledge object is well-formed.
  void checkConsistency() const {
#ifndef NDEBUG
    // Default-initialized object
    if (!Occupied && !Unused && !Known && !Written)
      return;

    assert(Occupied || Unused);
    assert(Known);
    assert(Written);

    // If not all fields are defined, we cannot derived the universe.
    if (!Occupied || !Unused)
      return;

    assert(Occupied.is_disjoint(Unused));
    auto Universe = Occupied.unite(Unused);

    assert(!Known.domain().is_subset(Universe).is_false());
    assert(!Written.domain().is_subset(Universe).is_false());
#endif
  }

public:
  /// Initialize a nullptr-Knowledge. This is only provided for convenience; do
  /// not use such an object.
  Knowledge() {}

  /// Create a new object with the given members.
  Knowledge(isl::union_set Occupied, isl::union_set Unused,
            isl::union_map Known, isl::union_map Written)
      : Occupied(std::move(Occupied)), Unused(std::move(Unused)),
        Known(std::move(Known)), Written(std::move(Written)) {
    checkConsistency();
  }

  /// Return whether this object was not default-constructed.
  bool isUsable() const { return (Occupied || Unused) && Known && Written; }

  /// Print the content of this object to @p OS.
  void print(llvm::raw_ostream &OS, unsigned Indent = 0) const {
    if (isUsable()) {
      if (Occupied)
        OS.indent(Indent) << "Occupied: " << Occupied << "\n";
      else
        OS.indent(Indent) << "Occupied: <Everything else not in Unused>\n";
      if (Unused)
        OS.indent(Indent) << "Unused:   " << Unused << "\n";
      else
        OS.indent(Indent) << "Unused:   <Everything else not in Occupied>\n";
      OS.indent(Indent) << "Known:    " << Known << "\n";
      OS.indent(Indent) << "Written : " << Written << '\n';
    } else {
      OS.indent(Indent) << "Invalid knowledge\n";
    }
  }

  /// Combine two knowledges, this and @p That.
  void learnFrom(Knowledge That) {
    assert(!isConflicting(*this, That));
    assert(Unused && That.Occupied);
    assert(
        !That.Unused &&
        "This function is only prepared to learn occupied elements from That");
    assert(!Occupied && "This function does not implement "
                        "`this->Occupied = "
                        "this->Occupied.unite(That.Occupied);`");

    Unused = Unused.subtract(That.Occupied);
    Known = Known.unite(That.Known);
    Written = Written.unite(That.Written);

    checkConsistency();
  }

  /// Determine whether two Knowledges conflict with each other.
  ///
  /// In theory @p Existing and @p Proposed are symmetric, but the
  /// implementation is constrained by the implicit interpretation. That is, @p
  /// Existing must have #Unused defined (use case 1) and @p Proposed must have
  /// #Occupied defined (use case 1).
  ///
  /// A conflict is defined as non-preserved semantics when they are merged. For
  /// instance, when for the same array and zone they assume different
  /// llvm::Values.
  ///
  /// @param Existing One of the knowledges with #Unused defined.
  /// @param Proposed One of the knowledges with #Occupied defined.
  /// @param OS       Dump the conflict reason to this output stream; use
  ///                 nullptr to not output anything.
  /// @param Indent   Indention for the conflict reason.
  ///
  /// @return True, iff the two knowledges are conflicting.
  static bool isConflicting(const Knowledge &Existing,
                            const Knowledge &Proposed,
                            llvm::raw_ostream *OS = nullptr,
                            unsigned Indent = 0) {
    assert(Existing.Unused);
    assert(Proposed.Occupied);

#ifndef NDEBUG
    if (Existing.Occupied && Proposed.Unused) {
      auto ExistingUniverse = Existing.Occupied.unite(Existing.Unused);
      auto ProposedUniverse = Proposed.Occupied.unite(Proposed.Unused);
      assert(ExistingUniverse.is_equal(ProposedUniverse) &&
             "Both inputs' Knowledges must be over the same universe");
    }
#endif

    // Do the Existing and Proposed lifetimes conflict?
    //
    // Lifetimes are described as the cross-product of array elements and zone
    // intervals in which they are alive (the space { [Element[] -> Zone[]] }).
    // In the following we call this "element/lifetime interval".
    //
    // In order to not conflict, one of the following conditions must apply for
    // each element/lifetime interval:
    //
    // 1. If occupied in one of the knowledges, it is unused in the other.
    //
    //   - or -
    //
    // 2. Both contain the same value.
    //
    // Instead of partitioning the element/lifetime intervals into a part that
    // both Knowledges occupy (which requires an expensive subtraction) and for
    // these to check whether they are known to be the same value, we check only
    // the second condition and ensure that it also applies when then first
    // condition is true. This is done by adding a wildcard value to
    // Proposed.Known and Existing.Unused such that they match as a common known
    // value. We use the "unknown ValInst" for this purpose. Every
    // Existing.Unused may match with an unknown Proposed.Occupied because these
    // never are in conflict with each other.
    auto ProposedOccupiedAnyVal = makeUnknownForDomain(Proposed.Occupied);
    auto ProposedValues = Proposed.Known.unite(ProposedOccupiedAnyVal);

    auto ExistingUnusedAnyVal = makeUnknownForDomain(Existing.Unused);
    auto ExistingValues = Existing.Known.unite(ExistingUnusedAnyVal);

    auto MatchingVals = ExistingValues.intersect(ProposedValues);
    auto Matches = MatchingVals.domain();

    // Any Proposed.Occupied must either have a match between the known values
    // of Existing and Occupied, or be in Existing.Unused. In the latter case,
    // the previously added "AnyVal" will match each other.
    if (!Proposed.Occupied.is_subset(Matches)) {
      if (OS) {
        auto Conflicting = Proposed.Occupied.subtract(Matches);
        auto ExistingConflictingKnown =
            Existing.Known.intersect_domain(Conflicting);
        auto ProposedConflictingKnown =
            Proposed.Known.intersect_domain(Conflicting);

        OS->indent(Indent) << "Proposed lifetime conflicting with Existing's\n";
        OS->indent(Indent) << "Conflicting occupied: " << Conflicting << "\n";
        if (!ExistingConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Existing Known:       " << ExistingConflictingKnown << "\n";
        if (!ProposedConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Proposed Known:       " << ProposedConflictingKnown << "\n";
      }
      return true;
    }

    // Do the writes in Existing conflict with occupied values in Proposed?
    //
    // In order to not conflict, it must either write to unused lifetime or
    // write the same value. To check, we remove the writes that write into
    // Proposed.Unused (they never conflict) and then see whether the written
    // value is already in Proposed.Known. If there are multiple known values
    // and a written value is known under different names, it is enough when one
    // of the written values (assuming that they are the same value under
    // different names, e.g. a PHINode and one of the incoming values) matches
    // one of the known names.
    //
    // We convert here the set of lifetimes to actual timepoints. A lifetime is
    // in conflict with a set of write timepoints, if either a live timepoint is
    // clearly within the lifetime or if a write happens at the beginning of the
    // lifetime (where it would conflict with the value that actually writes the
    // value alive). There is no conflict at the end of a lifetime, as the alive
    // value will always be read, before it is overwritten again. The last
    // property holds in Polly for all scalar values and we expect all users of
    // Knowledge to check this property also for accesses to MemoryKind::Array.
    auto ProposedFixedDefs =
        convertZoneToTimepoints(Proposed.Occupied, true, false);
    auto ProposedFixedKnown =
        convertZoneToTimepoints(Proposed.Known, isl::dim::in, true, false);

    auto ExistingConflictingWrites =
        Existing.Written.intersect_domain(ProposedFixedDefs);
    auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain();

    auto CommonWrittenVal =
        ProposedFixedKnown.intersect(ExistingConflictingWrites);
    auto CommonWrittenValDomain = CommonWrittenVal.domain();

    if (!ExistingConflictingWritesDomain.is_subset(CommonWrittenValDomain)) {
      if (OS) {
        auto ExistingConflictingWritten =
            ExistingConflictingWrites.subtract_domain(CommonWrittenValDomain);
        auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain(
            ExistingConflictingWritten.domain());

        OS->indent(Indent)
            << "Proposed a lifetime where there is an Existing write into it\n";
        OS->indent(Indent) << "Existing conflicting writes: "
                           << ExistingConflictingWritten << "\n";
        if (!ProposedConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Proposed conflicting known:  " << ProposedConflictingKnown
              << "\n";
      }
      return true;
    }

    // Do the writes in Proposed conflict with occupied values in Existing?
    auto ExistingAvailableDefs =
        convertZoneToTimepoints(Existing.Unused, true, false);
    auto ExistingKnownDefs =
        convertZoneToTimepoints(Existing.Known, isl::dim::in, true, false);

    auto ProposedWrittenDomain = Proposed.Written.domain();
    auto KnownIdentical = ExistingKnownDefs.intersect(Proposed.Written);
    auto IdenticalOrUnused =
        ExistingAvailableDefs.unite(KnownIdentical.domain());
    if (!ProposedWrittenDomain.is_subset(IdenticalOrUnused)) {
      if (OS) {
        auto Conflicting = ProposedWrittenDomain.subtract(IdenticalOrUnused);
        auto ExistingConflictingKnown =
            ExistingKnownDefs.intersect_domain(Conflicting);
        auto ProposedConflictingWritten =
            Proposed.Written.intersect_domain(Conflicting);

        OS->indent(Indent) << "Proposed writes into range used by Existing\n";
        OS->indent(Indent) << "Proposed conflicting writes: "
                           << ProposedConflictingWritten << "\n";
        if (!ExistingConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Existing conflicting known: " << ExistingConflictingKnown
              << "\n";
      }
      return true;
    }

    // Does Proposed write at the same time as Existing already does (order of
    // writes is undefined)? Writing the same value is permitted.
    auto ExistingWrittenDomain = Existing.Written.domain();
    auto BothWritten =
        Existing.Written.domain().intersect(Proposed.Written.domain());
    auto ExistingKnownWritten = filterKnownValInst(Existing.Written);
    auto ProposedKnownWritten = filterKnownValInst(Proposed.Written);
    auto CommonWritten =
        ExistingKnownWritten.intersect(ProposedKnownWritten).domain();

    if (!BothWritten.is_subset(CommonWritten)) {
      if (OS) {
        auto Conflicting = BothWritten.subtract(CommonWritten);
        auto ExistingConflictingWritten =
            Existing.Written.intersect_domain(Conflicting);
        auto ProposedConflictingWritten =
            Proposed.Written.intersect_domain(Conflicting);

        OS->indent(Indent) << "Proposed writes at the same time as an already "
                              "Existing write\n";
        OS->indent(Indent) << "Conflicting writes: " << Conflicting << "\n";
        if (!ExistingConflictingWritten.is_empty())
          OS->indent(Indent)
              << "Exiting write:      " << ExistingConflictingWritten << "\n";
        if (!ProposedConflictingWritten.is_empty())
          OS->indent(Indent)
              << "Proposed write:     " << ProposedConflictingWritten << "\n";
      }
      return true;
    }

    return false;
  }
};

/// Implementation of the DeLICM/DePRE transformation.
class DeLICMImpl : public ZoneAlgorithm {
private:
  /// Knowledge before any transformation took place.
  Knowledge OriginalZone;

  /// Current knowledge of the SCoP including all already applied
  /// transformations.
  Knowledge Zone;

  /// Number of StoreInsts something can be mapped to.
  int NumberOfCompatibleTargets = 0;

  /// The number of StoreInsts to which at least one value or PHI has been
  /// mapped to.
  int NumberOfTargetsMapped = 0;

  /// The number of llvm::Value mapped to some array element.
  int NumberOfMappedValueScalars = 0;

  /// The number of PHIs mapped to some array element.
  int NumberOfMappedPHIScalars = 0;

  /// Determine whether two knowledges are conflicting with each other.
  ///
  /// @see Knowledge::isConflicting
  bool isConflicting(const Knowledge &Proposed) {
    raw_ostream *OS = nullptr;
    LLVM_DEBUG(OS = &llvm::dbgs());
    return Knowledge::isConflicting(Zone, Proposed, OS, 4);
  }

  /// Determine whether @p SAI is a scalar that can be mapped to an array
  /// element.
  bool isMappable(const ScopArrayInfo *SAI) {
    assert(SAI);

    if (SAI->isValueKind()) {
      auto *MA = S->getValueDef(SAI);
      if (!MA) {
        LLVM_DEBUG(
            dbgs()
            << "    Reject because value is read-only within the scop\n");
        return false;
      }

      // Mapping if value is used after scop is not supported. The code
      // generator would need to reload the scalar after the scop, but it
      // does not have the information to where it is mapped to. Only the
      // MemoryAccesses have that information, not the ScopArrayInfo.
      auto Inst = MA->getAccessInstruction();
      for (auto User : Inst->users()) {
        if (!isa<Instruction>(User))
          return false;
        auto UserInst = cast<Instruction>(User);

        if (!S->contains(UserInst)) {
          LLVM_DEBUG(dbgs() << "    Reject because value is escaping\n");
          return false;
        }
      }

      return true;
    }

    if (SAI->isPHIKind()) {
      auto *MA = S->getPHIRead(SAI);
      assert(MA);

      // Mapping of an incoming block from before the SCoP is not supported by
      // the code generator.
      auto PHI = cast<PHINode>(MA->getAccessInstruction());
      for (auto Incoming : PHI->blocks()) {
        if (!S->contains(Incoming)) {
          LLVM_DEBUG(dbgs()
                     << "    Reject because at least one incoming block is "
                        "not in the scop region\n");
          return false;
        }
      }

      return true;
    }

    LLVM_DEBUG(dbgs() << "    Reject ExitPHI or other non-value\n");
    return false;
  }

  /// Compute the uses of a MemoryKind::Value and its lifetime (from its
  /// definition to the last use).
  ///
  /// @param SAI The ScopArrayInfo representing the value's storage.
  ///
  /// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] }
  ///         First element is the set of uses for each definition.
  ///         The second is the lifetime of each definition.
  std::tuple<isl::union_map, isl::map>
  computeValueUses(const ScopArrayInfo *SAI) {
    assert(SAI->isValueKind());

    // { DomainRead[] }
    auto Reads = makeEmptyUnionSet();

    // Find all uses.
    for (auto *MA : S->getValueUses(SAI))
      Reads = Reads.add_set(getDomainFor(MA));

    // { DomainRead[] -> Scatter[] }
    auto ReadSchedule = getScatterFor(Reads);

    auto *DefMA = S->getValueDef(SAI);
    assert(DefMA);

    // { DomainDef[] }
    auto Writes = getDomainFor(DefMA);

    // { DomainDef[] -> Scatter[] }
    auto WriteScatter = getScatterFor(Writes);

    // { Scatter[] -> DomainDef[] }
    auto ReachDef = getScalarReachingDefinition(DefMA->getStatement());

    // { [DomainDef[] -> Scatter[]] -> DomainUse[] }
    auto Uses = isl::union_map(ReachDef.reverse().range_map())
                    .apply_range(ReadSchedule.reverse());

    // { DomainDef[] -> Scatter[] }
    auto UseScatter =
        singleton(Uses.domain().unwrap(),
                  Writes.get_space().map_from_domain_and_range(ScatterSpace));

    // { DomainDef[] -> Zone[] }
    auto Lifetime = betweenScatter(WriteScatter, UseScatter, false, true);

    // { DomainDef[] -> DomainRead[] }
    auto DefUses = Uses.domain_factor_domain();

    return std::make_pair(DefUses, Lifetime);
  }

  /// Try to map a MemoryKind::Value to a given array element.
  ///
  /// @param SAI       Representation of the scalar's memory to map.
  /// @param TargetElt { Scatter[] -> Element[] }
  ///                  Suggestion where to map a scalar to when at a timepoint.
  ///
  /// @return true if the scalar was successfully mapped.
  bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) {
    assert(SAI->isValueKind());

    auto *DefMA = S->getValueDef(SAI);
    assert(DefMA->isValueKind());
    assert(DefMA->isMustWrite());
    auto *V = DefMA->getAccessValue();
    auto *DefInst = DefMA->getAccessInstruction();

    // Stop if the scalar has already been mapped.
    if (!DefMA->getLatestScopArrayInfo()->isValueKind())
      return false;

    // { DomainDef[] -> Scatter[] }
    auto DefSched = getScatterFor(DefMA);

    // Where each write is mapped to, according to the suggestion.
    // { DomainDef[] -> Element[] }
    auto DefTarget = TargetElt.apply_domain(DefSched.reverse());
    simplify(DefTarget);
    LLVM_DEBUG(dbgs() << "    Def Mapping: " << DefTarget << '\n');

    auto OrigDomain = getDomainFor(DefMA);
    auto MappedDomain = DefTarget.domain();
    if (!OrigDomain.is_subset(MappedDomain)) {
      LLVM_DEBUG(
          dbgs()
          << "    Reject because mapping does not encompass all instances\n");
      return false;
    }

    // { DomainDef[] -> Zone[] }
    isl::map Lifetime;

    // { DomainDef[] -> DomainUse[] }
    isl::union_map DefUses;

    std::tie(DefUses, Lifetime) = computeValueUses(SAI);
    LLVM_DEBUG(dbgs() << "    Lifetime: " << Lifetime << '\n');

    /// { [Element[] -> Zone[]] }
    auto EltZone = Lifetime.apply_domain(DefTarget).wrap();
    simplify(EltZone);

    // When known knowledge is disabled, just return the unknown value. It will
    // either get filtered out or conflict with itself.
    // { DomainDef[] -> ValInst[] }
    isl::map ValInst;
    if (DelicmComputeKnown)
      ValInst = makeValInst(V, DefMA->getStatement(),
                            LI->getLoopFor(DefInst->getParent()));
    else
      ValInst = makeUnknownForDomain(DefMA->getStatement());

    // { DomainDef[] -> [Element[] -> Zone[]] }
    auto EltKnownTranslator = DefTarget.range_product(Lifetime);

    // { [Element[] -> Zone[]] -> ValInst[] }
    auto EltKnown = ValInst.apply_domain(EltKnownTranslator);
    simplify(EltKnown);

    // { DomainDef[] -> [Element[] -> Scatter[]] }
    auto WrittenTranslator = DefTarget.range_product(DefSched);

    // { [Element[] -> Scatter[]] -> ValInst[] }
    auto DefEltSched = ValInst.apply_domain(WrittenTranslator);
    simplify(DefEltSched);

    Knowledge Proposed(EltZone, nullptr, filterKnownValInst(EltKnown),
                       DefEltSched);
    if (isConflicting(Proposed))
      return false;

    // { DomainUse[] -> Element[] }
    auto UseTarget = DefUses.reverse().apply_range(DefTarget);

    mapValue(SAI, std::move(DefTarget), std::move(UseTarget),
             std::move(Lifetime), std::move(Proposed));
    return true;
  }

  /// After a scalar has been mapped, update the global knowledge.
  void applyLifetime(Knowledge Proposed) {
    Zone.learnFrom(std::move(Proposed));
  }

  /// Map a MemoryKind::Value scalar to an array element.
  ///
  /// Callers must have ensured that the mapping is valid and not conflicting.
  ///
  /// @param SAI       The ScopArrayInfo representing the scalar's memory to
  ///                  map.
  /// @param DefTarget { DomainDef[] -> Element[] }
  ///                  The array element to map the scalar to.
  /// @param UseTarget { DomainUse[] -> Element[] }
  ///                  The array elements the uses are mapped to.
  /// @param Lifetime  { DomainDef[] -> Zone[] }
  ///                  The lifetime of each llvm::Value definition for
  ///                  reporting.
  /// @param Proposed  Mapping constraints for reporting.
  void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget,
                isl::union_map UseTarget, isl::map Lifetime,
                Knowledge Proposed) {
    // Redirect the read accesses.
    for (auto *MA : S->getValueUses(SAI)) {
      // { DomainUse[] }
      auto Domain = getDomainFor(MA);

      // { DomainUse[] -> Element[] }
      auto NewAccRel = UseTarget.intersect_domain(Domain);
      simplify(NewAccRel);

      assert(isl_union_map_n_map(NewAccRel.get()) == 1);
      MA->setNewAccessRelation(isl::map::from_union_map(NewAccRel));
    }

    auto *WA = S->getValueDef(SAI);
    WA->setNewAccessRelation(DefTarget);
    applyLifetime(Proposed);

    MappedValueScalars++;
    NumberOfMappedValueScalars += 1;
  }

  isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
                       bool IsCertain = true) {
    // When known knowledge is disabled, just return the unknown value. It will
    // either get filtered out or conflict with itself.
    if (!DelicmComputeKnown)
      return makeUnknownForDomain(UserStmt);
    return ZoneAlgorithm::makeValInst(Val, UserStmt, Scope, IsCertain);
  }

  /// Express the incoming values of a PHI for each incoming statement in an
  /// isl::union_map.
  ///
  /// @param SAI The PHI scalar represented by a ScopArrayInfo.
  ///
  /// @return { PHIWriteDomain[] -> ValInst[] }
  isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) {
    auto Result = makeEmptyUnionMap();

    // Collect the incoming values.
    for (auto *MA : S->getPHIIncomings(SAI)) {
      // { DomainWrite[] -> ValInst[] }
      isl::union_map ValInst;
      auto *WriteStmt = MA->getStatement();

      auto Incoming = MA->getIncoming();
      assert(!Incoming.empty());
      if (Incoming.size() == 1) {
        ValInst = makeValInst(Incoming[0].second, WriteStmt,
                              LI->getLoopFor(Incoming[0].first));
      } else {
        // If the PHI is in a subregion's exit node it can have multiple
        // incoming values (+ maybe another incoming edge from an unrelated
        // block). We cannot directly represent it as a single llvm::Value.
        // We currently model it as unknown value, but modeling as the PHIInst
        // itself could be OK, too.
        ValInst = makeUnknownForDomain(WriteStmt);
      }

      Result = Result.unite(ValInst);
    }

    assert(Result.is_single_valued() &&
           "Cannot have multiple incoming values for same incoming statement");
    return Result;
  }

  /// Try to map a MemoryKind::PHI scalar to a given array element.
  ///
  /// @param SAI       Representation of the scalar's memory to map.
  /// @param TargetElt { Scatter[] -> Element[] }
  ///                  Suggestion where to map the scalar to when at a
  ///                  timepoint.
  ///
  /// @return true if the PHI scalar has been mapped.
  bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) {
    auto *PHIRead = S->getPHIRead(SAI);
    assert(PHIRead->isPHIKind());
    assert(PHIRead->isRead());

    // Skip if already been mapped.
    if (!PHIRead->getLatestScopArrayInfo()->isPHIKind())
      return false;

    // { DomainRead[] -> Scatter[] }
    auto PHISched = getScatterFor(PHIRead);

    // { DomainRead[] -> Element[] }
    auto PHITarget = PHISched.apply_range(TargetElt);
    simplify(PHITarget);
    LLVM_DEBUG(dbgs() << "    Mapping: " << PHITarget << '\n');

    auto OrigDomain = getDomainFor(PHIRead);
    auto MappedDomain = PHITarget.domain();
    if (!OrigDomain.is_subset(MappedDomain)) {
      LLVM_DEBUG(
          dbgs()
          << "    Reject because mapping does not encompass all instances\n");
      return false;
    }

    // { DomainRead[] -> DomainWrite[] }
    auto PerPHIWrites = computePerPHI(SAI);

    // { DomainWrite[] -> Element[] }
    auto WritesTarget = PerPHIWrites.apply_domain(PHITarget).reverse();
    simplify(WritesTarget);

    // { DomainWrite[] }
    auto UniverseWritesDom = isl::union_set::empty(ParamSpace);

    for (auto *MA : S->getPHIIncomings(SAI))
      UniverseWritesDom = UniverseWritesDom.add_set(getDomainFor(MA));

    auto RelevantWritesTarget = WritesTarget;
    if (DelicmOverapproximateWrites)
      WritesTarget = expandMapping(WritesTarget, UniverseWritesDom);

    auto ExpandedWritesDom = WritesTarget.domain();
    if (!DelicmPartialWrites &&
        !UniverseWritesDom.is_subset(ExpandedWritesDom)) {
      LLVM_DEBUG(
          dbgs() << "    Reject because did not find PHI write mapping for "
                    "all instances\n");
      if (DelicmOverapproximateWrites)
        LLVM_DEBUG(dbgs() << "      Relevant Mapping:    "
                          << RelevantWritesTarget << '\n');
      LLVM_DEBUG(dbgs() << "      Deduced Mapping:     " << WritesTarget
                        << '\n');
      LLVM_DEBUG(dbgs() << "      Missing instances:    "
                        << UniverseWritesDom.subtract(ExpandedWritesDom)
                        << '\n');
      return false;
    }

    //  { DomainRead[] -> Scatter[] }
    isl::union_map PerPHIWriteScatterUmap = PerPHIWrites.apply_range(Schedule);
    isl::map PerPHIWriteScatter =
        singleton(PerPHIWriteScatterUmap, PHISched.get_space());

    // { DomainRead[] -> Zone[] }
    auto Lifetime = betweenScatter(PerPHIWriteScatter, PHISched, false, true);
    simplify(Lifetime);
    LLVM_DEBUG(dbgs() << "    Lifetime: " << Lifetime << "\n");

    // { DomainWrite[] -> Zone[] }
    auto WriteLifetime = isl::union_map(Lifetime).apply_domain(PerPHIWrites);

    // { DomainWrite[] -> ValInst[] }
    auto WrittenValue = determinePHIWrittenValues(SAI);

    // { DomainWrite[] -> [Element[] -> Scatter[]] }
    auto WrittenTranslator = WritesTarget.range_product(Schedule);

    // { [Element[] -> Scatter[]] -> ValInst[] }
    auto Written = WrittenValue.apply_domain(WrittenTranslator);
    simplify(Written);

    // { DomainWrite[] -> [Element[] -> Zone[]] }
    auto LifetimeTranslator = WritesTarget.range_product(WriteLifetime);

    // { DomainWrite[] -> ValInst[] }
    auto WrittenKnownValue = filterKnownValInst(WrittenValue);

    // { [Element[] -> Zone[]] -> ValInst[] }
    auto EltLifetimeInst = WrittenKnownValue.apply_domain(LifetimeTranslator);
    simplify(EltLifetimeInst);

    // { [Element[] -> Zone[] }
    auto Occupied = LifetimeTranslator.range();
    simplify(Occupied);

    Knowledge Proposed(Occupied, nullptr, EltLifetimeInst, Written);
    if (isConflicting(Proposed))
      return false;

    mapPHI(SAI, std::move(PHITarget), std::move(WritesTarget),
           std::move(Lifetime), std::move(Proposed));
    return true;
  }

  /// Map a MemoryKind::PHI scalar to an array element.
  ///
  /// Callers must have ensured that the mapping is valid and not conflicting
  /// with the common knowledge.
  ///
  /// @param SAI         The ScopArrayInfo representing the scalar's memory to
  ///                    map.
  /// @param ReadTarget  { DomainRead[] -> Element[] }
  ///                    The array element to map the scalar to.
  /// @param WriteTarget { DomainWrite[] -> Element[] }
  ///                    New access target for each PHI incoming write.
  /// @param Lifetime    { DomainRead[] -> Zone[] }
  ///                    The lifetime of each PHI for reporting.
  /// @param Proposed    Mapping constraints for reporting.
  void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget,
              isl::union_map WriteTarget, isl::map Lifetime,
              Knowledge Proposed) {
    // { Element[] }
    isl::space ElementSpace = ReadTarget.get_space().range();

    // Redirect the PHI incoming writes.
    for (auto *MA : S->getPHIIncomings(SAI)) {
      // { DomainWrite[] }
      auto Domain = getDomainFor(MA);

      // { DomainWrite[] -> Element[] }
      auto NewAccRel = WriteTarget.intersect_domain(Domain);
      simplify(NewAccRel);

      isl::space NewAccRelSpace =
          Domain.get_space().map_from_domain_and_range(ElementSpace);
      isl::map NewAccRelMap = singleton(NewAccRel, NewAccRelSpace);
      MA->setNewAccessRelation(NewAccRelMap);
    }

    // Redirect the PHI read.
    auto *PHIRead = S->getPHIRead(SAI);
    PHIRead->setNewAccessRelation(ReadTarget);
    applyLifetime(Proposed);

    MappedPHIScalars++;
    NumberOfMappedPHIScalars++;
  }

  /// Search and map scalars to memory overwritten by @p TargetStoreMA.
  ///
  /// Start trying to map scalars that are used in the same statement as the
  /// store. For every successful mapping, try to also map scalars of the
  /// statements where those are written. Repeat, until no more mapping
  /// opportunity is found.
  ///
  /// There is currently no preference in which order scalars are tried.
  /// Ideally, we would direct it towards a load instruction of the same array
  /// element.
  bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) {
    assert(TargetStoreMA->isLatestArrayKind());
    assert(TargetStoreMA->isMustWrite());

    auto TargetStmt = TargetStoreMA->getStatement();

    // { DomTarget[] }
    auto TargetDom = getDomainFor(TargetStmt);

    // { DomTarget[] -> Element[] }
    auto TargetAccRel = getAccessRelationFor(TargetStoreMA);

    // { Zone[] -> DomTarget[] }
    // For each point in time, find the next target store instance.
    auto Target =
        computeScalarReachingOverwrite(Schedule, TargetDom, false, true);

    // { Zone[] -> Element[] }
    // Use the target store's write location as a suggestion to map scalars to.
    auto EltTarget = Target.apply_range(TargetAccRel);
    simplify(EltTarget);
    LLVM_DEBUG(dbgs() << "    Target mapping is " << EltTarget << '\n');

    // Stack of elements not yet processed.
    SmallVector<MemoryAccess *, 16> Worklist;

    // Set of scalars already tested.
    SmallPtrSet<const ScopArrayInfo *, 16> Closed;

    // Lambda to add all scalar reads to the work list.
    auto ProcessAllIncoming = [&](ScopStmt *Stmt) {
      for (auto *MA : *Stmt) {
        if (!MA->isLatestScalarKind())
          continue;
        if (!MA->isRead())
          continue;

        Worklist.push_back(MA);
      }
    };

    auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(0);
    if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(WrittenVal))
      Worklist.push_back(WrittenValInputMA);
    else
      ProcessAllIncoming(TargetStmt);

    auto AnyMapped = false;
    auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout();
    auto StoreSize =
        DL.getTypeAllocSize(TargetStoreMA->getAccessValue()->getType());

    while (!Worklist.empty()) {
      auto *MA = Worklist.pop_back_val();

      auto *SAI = MA->getScopArrayInfo();
      if (Closed.count(SAI))
        continue;
      Closed.insert(SAI);
      LLVM_DEBUG(dbgs() << "\n    Trying to map " << MA << " (SAI: " << SAI
                        << ")\n");

      // Skip non-mappable scalars.
      if (!isMappable(SAI))
        continue;

      auto MASize = DL.getTypeAllocSize(MA->getAccessValue()->getType());
      if (MASize > StoreSize) {
        LLVM_DEBUG(
            dbgs() << "    Reject because storage size is insufficient\n");
        continue;
      }

      // Try to map MemoryKind::Value scalars.
      if (SAI->isValueKind()) {
        if (!tryMapValue(SAI, EltTarget))
          continue;

        auto *DefAcc = S->getValueDef(SAI);
        ProcessAllIncoming(DefAcc->getStatement());

        AnyMapped = true;
        continue;
      }

      // Try to map MemoryKind::PHI scalars.
      if (SAI->isPHIKind()) {
        if (!tryMapPHI(SAI, EltTarget))
          continue;
        // Add inputs of all incoming statements to the worklist. Prefer the
        // input accesses of the incoming blocks.
        for (auto *PHIWrite : S->getPHIIncomings(SAI)) {
          auto *PHIWriteStmt = PHIWrite->getStatement();
          bool FoundAny = false;
          for (auto Incoming : PHIWrite->getIncoming()) {
            auto *IncomingInputMA =
                PHIWriteStmt->lookupInputAccessOf(Incoming.second);
            if (!IncomingInputMA)
              continue;

            Worklist.push_back(IncomingInputMA);
            FoundAny = true;
          }

          if (!FoundAny)
            ProcessAllIncoming(PHIWrite->getStatement());
        }

        AnyMapped = true;
        continue;
      }
    }

    if (AnyMapped) {
      TargetsMapped++;
      NumberOfTargetsMapped++;
    }
    return AnyMapped;
  }

  /// Compute when an array element is unused.
  ///
  /// @return { [Element[] -> Zone[]] }
  isl::union_set computeLifetime() const {
    // { Element[] -> Zone[] }
    auto ArrayUnused = computeArrayUnused(Schedule, AllMustWrites, AllReads,
                                          false, false, true);

    auto Result = ArrayUnused.wrap();

    simplify(Result);
    return Result;
  }

  /// Determine when an array element is written to, and which value instance is
  /// written.
  ///
  /// @return { [Element[] -> Scatter[]] -> ValInst[] }
  isl::union_map computeWritten() const {
    // { [Element[] -> Scatter[]] -> ValInst[] }
    auto EltWritten = applyDomainRange(AllWriteValInst, Schedule);

    simplify(EltWritten);
    return EltWritten;
  }

  /// Determine whether an access touches at most one element.
  ///
  /// The accessed element could be a scalar or accessing an array with constant
  /// subscript, such that all instances access only that element.
  ///
  /// @param MA The access to test.
  ///
  /// @return True, if zero or one elements are accessed; False if at least two
  ///         different elements are accessed.
  bool isScalarAccess(MemoryAccess *MA) {
    auto Map = getAccessRelationFor(MA);
    auto Set = Map.range();
    return Set.is_singleton();
  }

  /// Print mapping statistics to @p OS.
  void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const {
    OS.indent(Indent) << "Statistics {\n";
    OS.indent(Indent + 4) << "Compatible overwrites: "
                          << NumberOfCompatibleTargets << "\n";
    OS.indent(Indent + 4) << "Overwrites mapped to:  " << NumberOfTargetsMapped
                          << '\n';
    OS.indent(Indent + 4) << "Value scalars mapped:  "
                          << NumberOfMappedValueScalars << '\n';
    OS.indent(Indent + 4) << "PHI scalars mapped:    "
                          << NumberOfMappedPHIScalars << '\n';
    OS.indent(Indent) << "}\n";
  }

  /// Return whether at least one transformation been applied.
  bool isModified() const { return NumberOfTargetsMapped > 0; }

public:
  DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm("polly-delicm", S, LI) {}

  /// Calculate the lifetime (definition to last use) of every array element.
  ///
  /// @return True if the computed lifetimes (#Zone) is usable.
  bool computeZone() {
    // Check that nothing strange occurs.
    collectCompatibleElts();

    isl::union_set EltUnused;
    isl::union_map EltKnown, EltWritten;

    {
      IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps);

      computeCommon();

      EltUnused = computeLifetime();
      EltKnown = computeKnown(true, false);
      EltWritten = computeWritten();
    }
    DeLICMAnalyzed++;

    if (!EltUnused || !EltKnown || !EltWritten) {
      assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota &&
             "The only reason that these things have not been computed should "
             "be if the max-operations limit hit");
      DeLICMOutOfQuota++;
      LLVM_DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n");
      DebugLoc Begin, End;
      getDebugLocations(getBBPairForRegion(&S->getRegion()), Begin, End);
      OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota", Begin,
                                   S->getEntry());
      R << "maximal number of operations exceeded during zone analysis";
      S->getFunction().getContext().diagnose(R);
      return false;
    }

    Zone = OriginalZone = Knowledge(nullptr, EltUnused, EltKnown, EltWritten);
    LLVM_DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone.print(dbgs(), 4));

    assert(Zone.isUsable() && OriginalZone.isUsable());
    return true;
  }

  /// Try to map as many scalars to unused array elements as possible.
  ///
  /// Multiple scalars might be mappable to intersecting unused array element
  /// zones, but we can only chose one. This is a greedy algorithm, therefore
  /// the first processed element claims it.
  void greedyCollapse() {
    bool Modified = false;

    for (auto &Stmt : *S) {
      for (auto *MA : Stmt) {
        if (!MA->isLatestArrayKind())
          continue;
        if (!MA->isWrite())
          continue;

        if (MA->isMayWrite()) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " pruned because it is a MAY_WRITE\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite",
                                     MA->getAccessInstruction());
          R << "Skipped possible mapping target because it is not an "
               "unconditional overwrite";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        if (Stmt.getNumIterators() == 0) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " pruned because it is not in a loop\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because it is not in a loop";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        if (isScalarAccess(MA)) {
          LLVM_DEBUG(dbgs()
                     << "Access " << MA
                     << " pruned because it writes only a single element\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because the memory location "
               "written to does not depend on its outer loop";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        if (!isa<StoreInst>(MA->getAccessInstruction())) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " pruned because it is not a StoreInst\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "NotAStore",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because non-store instructions "
               "are not supported";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        // Check for more than one element acces per statement instance.
        // Currently we expect write accesses to be functional, eg. disallow
        //
        //   { Stmt[0] -> [i] : 0 <= i < 2 }
        //
        // This may occur when some accesses to the element write/read only
        // parts of the element, eg. a single byte. Polly then divides each
        // element into subelements of the smallest access length, normal access
        // then touch multiple of such subelements. It is very common when the
        // array is accesses with memset, memcpy or memmove which take i8*
        // arguments.
        isl::union_map AccRel = MA->getLatestAccessRelation();
        if (!AccRel.is_single_valued().is_true()) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " is incompatible because it writes multiple "
                               "elements per instance\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "NonFunctionalAccRel",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because it writes more than "
               "one element";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        isl::union_set TouchedElts = AccRel.range();
        if (!TouchedElts.is_subset(CompatibleElts)) {
          LLVM_DEBUG(
              dbgs()
              << "Access " << MA
              << " is incompatible because it touches incompatible elements\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "IncompatibleElts",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because a target location "
               "cannot be reliably analyzed";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        assert(isCompatibleAccess(MA));
        NumberOfCompatibleTargets++;
        LLVM_DEBUG(dbgs() << "Analyzing target access " << MA << "\n");
        if (collapseScalarsToStore(MA))
          Modified = true;
      }
    }

    if (Modified)
      DeLICMScopsModified++;
  }

  /// Dump the internal information about a performed DeLICM to @p OS.
  void print(llvm::raw_ostream &OS, int Indent = 0) {
    if (!Zone.isUsable()) {
      OS.indent(Indent) << "Zone not computed\n";
      return;
    }

    printStatistics(OS, Indent);
    if (!isModified()) {
      OS.indent(Indent) << "No modification has been made\n";
      return;
    }
    printAccesses(OS, Indent);
  }
};

class DeLICM : public ScopPass {
private:
  DeLICM(const DeLICM &) = delete;
  const DeLICM &operator=(const DeLICM &) = delete;

  /// The pass implementation, also holding per-scop data.
  std::unique_ptr<DeLICMImpl> Impl;

  void collapseToUnused(Scop &S) {
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    Impl = std::make_unique<DeLICMImpl>(&S, &LI);

    if (!Impl->computeZone()) {
      LLVM_DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n");
      return;
    }

    LLVM_DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n");
    Impl->greedyCollapse();

    LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
    LLVM_DEBUG(dbgs() << S);
  }

public:
  static char ID;
  explicit DeLICM() : ScopPass(ID) {}

  virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredTransitive<ScopInfoRegionPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesAll();
  }

  virtual bool runOnScop(Scop &S) override {
    // Free resources for previous scop's computation, if not yet done.
    releaseMemory();

    collapseToUnused(S);

    auto ScopStats = S.getStatistics();
    NumValueWrites += ScopStats.NumValueWrites;
    NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
    NumPHIWrites += ScopStats.NumPHIWrites;
    NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
    NumSingletonWrites += ScopStats.NumSingletonWrites;
    NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;

    return false;
  }

  virtual void printScop(raw_ostream &OS, Scop &S) const override {
    if (!Impl)
      return;
    assert(Impl->getScop() == &S);

    OS << "DeLICM result:\n";
    Impl->print(OS);
  }

  virtual void releaseMemory() override { Impl.reset(); }
};

char DeLICM::ID;
} // anonymous namespace

Pass *polly::createDeLICMPass() { return new DeLICM(); }

INITIALIZE_PASS_BEGIN(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
                    false)

bool polly::isConflicting(
    isl::union_set ExistingOccupied, isl::union_set ExistingUnused,
    isl::union_map ExistingKnown, isl::union_map ExistingWrites,
    isl::union_set ProposedOccupied, isl::union_set ProposedUnused,
    isl::union_map ProposedKnown, isl::union_map ProposedWrites,
    llvm::raw_ostream *OS, unsigned Indent) {
  Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused),
                     std::move(ExistingKnown), std::move(ExistingWrites));
  Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused),
                     std::move(ProposedKnown), std::move(ProposedWrites));

  return Knowledge::isConflicting(Existing, Proposed, OS, Indent);
}