1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
| //===------ DeLICM.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Undo the effect of Loop Invariant Code Motion (LICM) and
// GVN Partial Redundancy Elimination (PRE) on SCoP-level.
//
// Namely, remove register/scalar dependencies by mapping them back to array
// elements.
//
//===----------------------------------------------------------------------===//
#include "polly/DeLICM.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/ZoneAlgo.h"
#include "llvm/ADT/Statistic.h"
#define DEBUG_TYPE "polly-delicm"
using namespace polly;
using namespace llvm;
namespace {
cl::opt<int>
DelicmMaxOps("polly-delicm-max-ops",
cl::desc("Maximum number of isl operations to invest for "
"lifetime analysis; 0=no limit"),
cl::init(1000000), cl::cat(PollyCategory));
cl::opt<bool> DelicmOverapproximateWrites(
"polly-delicm-overapproximate-writes",
cl::desc(
"Do more PHI writes than necessary in order to avoid partial accesses"),
cl::init(false), cl::Hidden, cl::cat(PollyCategory));
cl::opt<bool> DelicmPartialWrites("polly-delicm-partial-writes",
cl::desc("Allow partial writes"),
cl::init(true), cl::Hidden,
cl::cat(PollyCategory));
cl::opt<bool>
DelicmComputeKnown("polly-delicm-compute-known",
cl::desc("Compute known content of array elements"),
cl::init(true), cl::Hidden, cl::cat(PollyCategory));
STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs");
STATISTIC(DeLICMOutOfQuota,
"Analyses aborted because max_operations was reached");
STATISTIC(MappedValueScalars, "Number of mapped Value scalars");
STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars");
STATISTIC(TargetsMapped, "Number of stores used for at least one mapping");
STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized");
STATISTIC(NumValueWrites, "Number of scalar value writes after DeLICM");
STATISTIC(NumValueWritesInLoops,
"Number of scalar value writes nested in affine loops after DeLICM");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after DeLICM");
STATISTIC(NumPHIWritesInLoops,
"Number of scalar phi writes nested in affine loops after DeLICM");
STATISTIC(NumSingletonWrites, "Number of singleton writes after DeLICM");
STATISTIC(NumSingletonWritesInLoops,
"Number of singleton writes nested in affine loops after DeLICM");
isl::union_map computeReachingOverwrite(isl::union_map Schedule,
isl::union_map Writes,
bool InclPrevWrite,
bool InclOverwrite) {
return computeReachingWrite(Schedule, Writes, true, InclPrevWrite,
InclOverwrite);
}
/// Compute the next overwrite for a scalar.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// Schedule of (at least) all writes. Instances not in @p
/// Writes are ignored.
/// @param Writes { DomainWrite[] }
/// The element instances that write to the scalar.
/// @param InclPrevWrite Whether to extend the timepoints to include
/// the timepoint where the previous write happens.
/// @param InclOverwrite Whether the reaching overwrite includes the timepoint
/// of the overwrite itself.
///
/// @return { Scatter[] -> DomainDef[] }
isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule,
isl::union_set Writes,
bool InclPrevWrite,
bool InclOverwrite) {
// { DomainWrite[] }
auto WritesMap = isl::union_map::from_domain(Writes);
// { [Element[] -> Scatter[]] -> DomainWrite[] }
auto Result = computeReachingOverwrite(
std::move(Schedule), std::move(WritesMap), InclPrevWrite, InclOverwrite);
return Result.domain_factor_range();
}
/// Overload of computeScalarReachingOverwrite, with only one writing statement.
/// Consequently, the result consists of only one map space.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclPrevWrite Include the previous write to result.
/// @param InclOverwrite Include the overwrite to the result.
///
/// @return { Scatter[] -> DomainWrite[] }
isl::map computeScalarReachingOverwrite(isl::union_map Schedule,
isl::set Writes, bool InclPrevWrite,
bool InclOverwrite) {
isl::space ScatterSpace = getScatterSpace(Schedule);
isl::space DomSpace = Writes.get_space();
isl::union_map ReachOverwrite = computeScalarReachingOverwrite(
Schedule, isl::union_set(Writes), InclPrevWrite, InclOverwrite);
isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomSpace);
return singleton(std::move(ReachOverwrite), ResultSpace);
}
/// Try to find a 'natural' extension of a mapped to elements outside its
/// domain.
///
/// @param Relevant The map with mapping that may not be modified.
/// @param Universe The domain to which @p Relevant needs to be extended.
///
/// @return A map with that associates the domain elements of @p Relevant to the
/// same elements and in addition the elements of @p Universe to some
/// undefined elements. The function prefers to return simple maps.
isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) {
Relevant = Relevant.coalesce();
isl::union_set RelevantDomain = Relevant.domain();
isl::union_map Simplified = Relevant.gist_domain(RelevantDomain);
Simplified = Simplified.coalesce();
return Simplified.intersect_domain(Universe);
}
/// Represent the knowledge of the contents of any array elements in any zone or
/// the knowledge we would add when mapping a scalar to an array element.
///
/// Every array element at every zone unit has one of two states:
///
/// - Unused: Not occupied by any value so a transformation can change it to
/// other values.
///
/// - Occupied: The element contains a value that is still needed.
///
/// The union of Unused and Unknown zones forms the universe, the set of all
/// elements at every timepoint. The universe can easily be derived from the
/// array elements that are accessed someway. Arrays that are never accessed
/// also never play a role in any computation and can hence be ignored. With a
/// given universe, only one of the sets needs to stored implicitly. Computing
/// the complement is also an expensive operation, hence this class has been
/// designed that only one of sets is needed while the other is assumed to be
/// implicit. It can still be given, but is mostly ignored.
///
/// There are two use cases for the Knowledge class:
///
/// 1) To represent the knowledge of the current state of ScopInfo. The unused
/// state means that an element is currently unused: there is no read of it
/// before the next overwrite. Also called 'Existing'.
///
/// 2) To represent the requirements for mapping a scalar to array elements. The
/// unused state means that there is no change/requirement. Also called
/// 'Proposed'.
///
/// In addition to these states at unit zones, Knowledge needs to know when
/// values are written. This is because written values may have no lifetime (one
/// reason is that the value is never read). Such writes would therefore never
/// conflict, but overwrite values that might still be required. Another source
/// of problems are multiple writes to the same element at the same timepoint,
/// because their order is undefined.
class Knowledge {
private:
/// { [Element[] -> Zone[]] }
/// Set of array elements and when they are alive.
/// Can contain a nullptr; in this case the set is implicitly defined as the
/// complement of #Unused.
///
/// The set of alive array elements is represented as zone, as the set of live
/// values can differ depending on how the elements are interpreted.
/// Assuming a value X is written at timestep [0] and read at timestep [1]
/// without being used at any later point, then the value is alive in the
/// interval ]0,1[. This interval cannot be represented by an integer set, as
/// it does not contain any integer point. Zones allow us to represent this
/// interval and can be converted to sets of timepoints when needed (e.g., in
/// isConflicting when comparing to the write sets).
/// @see convertZoneToTimepoints and this file's comment for more details.
isl::union_set Occupied;
/// { [Element[] -> Zone[]] }
/// Set of array elements when they are not alive, i.e. their memory can be
/// used for other purposed. Can contain a nullptr; in this case the set is
/// implicitly defined as the complement of #Occupied.
isl::union_set Unused;
/// { [Element[] -> Zone[]] -> ValInst[] }
/// Maps to the known content for each array element at any interval.
///
/// Any element/interval can map to multiple known elements. This is due to
/// multiple llvm::Value referring to the same content. Examples are
///
/// - A value stored and loaded again. The LoadInst represents the same value
/// as the StoreInst's value operand.
///
/// - A PHINode is equal to any one of the incoming values. In case of
/// LCSSA-form, it is always equal to its single incoming value.
///
/// Two Knowledges are considered not conflicting if at least one of the known
/// values match. Not known values are not stored as an unnamed tuple (as
/// #Written does), but maps to nothing.
///
/// Known values are usually just defined for #Occupied elements. Knowing
/// #Unused contents has no advantage as it can be overwritten.
isl::union_map Known;
/// { [Element[] -> Scatter[]] -> ValInst[] }
/// The write actions currently in the scop or that would be added when
/// mapping a scalar. Maps to the value that is written.
///
/// Written values that cannot be identified are represented by an unknown
/// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself.
isl::union_map Written;
/// Check whether this Knowledge object is well-formed.
void checkConsistency() const {
#ifndef NDEBUG
// Default-initialized object
if (!Occupied && !Unused && !Known && !Written)
return;
assert(Occupied || Unused);
assert(Known);
assert(Written);
// If not all fields are defined, we cannot derived the universe.
if (!Occupied || !Unused)
return;
assert(Occupied.is_disjoint(Unused));
auto Universe = Occupied.unite(Unused);
assert(!Known.domain().is_subset(Universe).is_false());
assert(!Written.domain().is_subset(Universe).is_false());
#endif
}
public:
/// Initialize a nullptr-Knowledge. This is only provided for convenience; do
/// not use such an object.
Knowledge() {}
/// Create a new object with the given members.
Knowledge(isl::union_set Occupied, isl::union_set Unused,
isl::union_map Known, isl::union_map Written)
: Occupied(std::move(Occupied)), Unused(std::move(Unused)),
Known(std::move(Known)), Written(std::move(Written)) {
checkConsistency();
}
/// Return whether this object was not default-constructed.
bool isUsable() const { return (Occupied || Unused) && Known && Written; }
/// Print the content of this object to @p OS.
void print(llvm::raw_ostream &OS, unsigned Indent = 0) const {
if (isUsable()) {
if (Occupied)
OS.indent(Indent) << "Occupied: " << Occupied << "\n";
else
OS.indent(Indent) << "Occupied: <Everything else not in Unused>\n";
if (Unused)
OS.indent(Indent) << "Unused: " << Unused << "\n";
else
OS.indent(Indent) << "Unused: <Everything else not in Occupied>\n";
OS.indent(Indent) << "Known: " << Known << "\n";
OS.indent(Indent) << "Written : " << Written << '\n';
} else {
OS.indent(Indent) << "Invalid knowledge\n";
}
}
/// Combine two knowledges, this and @p That.
void learnFrom(Knowledge That) {
assert(!isConflicting(*this, That));
assert(Unused && That.Occupied);
assert(
!That.Unused &&
"This function is only prepared to learn occupied elements from That");
assert(!Occupied && "This function does not implement "
"`this->Occupied = "
"this->Occupied.unite(That.Occupied);`");
Unused = Unused.subtract(That.Occupied);
Known = Known.unite(That.Known);
Written = Written.unite(That.Written);
checkConsistency();
}
/// Determine whether two Knowledges conflict with each other.
///
/// In theory @p Existing and @p Proposed are symmetric, but the
/// implementation is constrained by the implicit interpretation. That is, @p
/// Existing must have #Unused defined (use case 1) and @p Proposed must have
/// #Occupied defined (use case 1).
///
/// A conflict is defined as non-preserved semantics when they are merged. For
/// instance, when for the same array and zone they assume different
/// llvm::Values.
///
/// @param Existing One of the knowledges with #Unused defined.
/// @param Proposed One of the knowledges with #Occupied defined.
/// @param OS Dump the conflict reason to this output stream; use
/// nullptr to not output anything.
/// @param Indent Indention for the conflict reason.
///
/// @return True, iff the two knowledges are conflicting.
static bool isConflicting(const Knowledge &Existing,
const Knowledge &Proposed,
llvm::raw_ostream *OS = nullptr,
unsigned Indent = 0) {
assert(Existing.Unused);
assert(Proposed.Occupied);
#ifndef NDEBUG
if (Existing.Occupied && Proposed.Unused) {
auto ExistingUniverse = Existing.Occupied.unite(Existing.Unused);
auto ProposedUniverse = Proposed.Occupied.unite(Proposed.Unused);
assert(ExistingUniverse.is_equal(ProposedUniverse) &&
"Both inputs' Knowledges must be over the same universe");
}
#endif
// Do the Existing and Proposed lifetimes conflict?
//
// Lifetimes are described as the cross-product of array elements and zone
// intervals in which they are alive (the space { [Element[] -> Zone[]] }).
// In the following we call this "element/lifetime interval".
//
// In order to not conflict, one of the following conditions must apply for
// each element/lifetime interval:
//
// 1. If occupied in one of the knowledges, it is unused in the other.
//
// - or -
//
// 2. Both contain the same value.
//
// Instead of partitioning the element/lifetime intervals into a part that
// both Knowledges occupy (which requires an expensive subtraction) and for
// these to check whether they are known to be the same value, we check only
// the second condition and ensure that it also applies when then first
// condition is true. This is done by adding a wildcard value to
// Proposed.Known and Existing.Unused such that they match as a common known
// value. We use the "unknown ValInst" for this purpose. Every
// Existing.Unused may match with an unknown Proposed.Occupied because these
// never are in conflict with each other.
auto ProposedOccupiedAnyVal = makeUnknownForDomain(Proposed.Occupied);
auto ProposedValues = Proposed.Known.unite(ProposedOccupiedAnyVal);
auto ExistingUnusedAnyVal = makeUnknownForDomain(Existing.Unused);
auto ExistingValues = Existing.Known.unite(ExistingUnusedAnyVal);
auto MatchingVals = ExistingValues.intersect(ProposedValues);
auto Matches = MatchingVals.domain();
// Any Proposed.Occupied must either have a match between the known values
// of Existing and Occupied, or be in Existing.Unused. In the latter case,
// the previously added "AnyVal" will match each other.
if (!Proposed.Occupied.is_subset(Matches)) {
if (OS) {
auto Conflicting = Proposed.Occupied.subtract(Matches);
auto ExistingConflictingKnown =
Existing.Known.intersect_domain(Conflicting);
auto ProposedConflictingKnown =
Proposed.Known.intersect_domain(Conflicting);
OS->indent(Indent) << "Proposed lifetime conflicting with Existing's\n";
OS->indent(Indent) << "Conflicting occupied: " << Conflicting << "\n";
if (!ExistingConflictingKnown.is_empty())
OS->indent(Indent)
<< "Existing Known: " << ExistingConflictingKnown << "\n";
if (!ProposedConflictingKnown.is_empty())
OS->indent(Indent)
<< "Proposed Known: " << ProposedConflictingKnown << "\n";
}
return true;
}
// Do the writes in Existing conflict with occupied values in Proposed?
//
// In order to not conflict, it must either write to unused lifetime or
// write the same value. To check, we remove the writes that write into
// Proposed.Unused (they never conflict) and then see whether the written
// value is already in Proposed.Known. If there are multiple known values
// and a written value is known under different names, it is enough when one
// of the written values (assuming that they are the same value under
// different names, e.g. a PHINode and one of the incoming values) matches
// one of the known names.
//
// We convert here the set of lifetimes to actual timepoints. A lifetime is
// in conflict with a set of write timepoints, if either a live timepoint is
// clearly within the lifetime or if a write happens at the beginning of the
// lifetime (where it would conflict with the value that actually writes the
// value alive). There is no conflict at the end of a lifetime, as the alive
// value will always be read, before it is overwritten again. The last
// property holds in Polly for all scalar values and we expect all users of
// Knowledge to check this property also for accesses to MemoryKind::Array.
auto ProposedFixedDefs =
convertZoneToTimepoints(Proposed.Occupied, true, false);
auto ProposedFixedKnown =
convertZoneToTimepoints(Proposed.Known, isl::dim::in, true, false);
auto ExistingConflictingWrites =
Existing.Written.intersect_domain(ProposedFixedDefs);
auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain();
auto CommonWrittenVal =
ProposedFixedKnown.intersect(ExistingConflictingWrites);
auto CommonWrittenValDomain = CommonWrittenVal.domain();
if (!ExistingConflictingWritesDomain.is_subset(CommonWrittenValDomain)) {
if (OS) {
auto ExistingConflictingWritten =
ExistingConflictingWrites.subtract_domain(CommonWrittenValDomain);
auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain(
ExistingConflictingWritten.domain());
OS->indent(Indent)
<< "Proposed a lifetime where there is an Existing write into it\n";
OS->indent(Indent) << "Existing conflicting writes: "
<< ExistingConflictingWritten << "\n";
if (!ProposedConflictingKnown.is_empty())
OS->indent(Indent)
<< "Proposed conflicting known: " << ProposedConflictingKnown
<< "\n";
}
return true;
}
// Do the writes in Proposed conflict with occupied values in Existing?
auto ExistingAvailableDefs =
convertZoneToTimepoints(Existing.Unused, true, false);
auto ExistingKnownDefs =
convertZoneToTimepoints(Existing.Known, isl::dim::in, true, false);
auto ProposedWrittenDomain = Proposed.Written.domain();
auto KnownIdentical = ExistingKnownDefs.intersect(Proposed.Written);
auto IdenticalOrUnused =
ExistingAvailableDefs.unite(KnownIdentical.domain());
if (!ProposedWrittenDomain.is_subset(IdenticalOrUnused)) {
if (OS) {
auto Conflicting = ProposedWrittenDomain.subtract(IdenticalOrUnused);
auto ExistingConflictingKnown =
ExistingKnownDefs.intersect_domain(Conflicting);
auto ProposedConflictingWritten =
Proposed.Written.intersect_domain(Conflicting);
OS->indent(Indent) << "Proposed writes into range used by Existing\n";
OS->indent(Indent) << "Proposed conflicting writes: "
<< ProposedConflictingWritten << "\n";
if (!ExistingConflictingKnown.is_empty())
OS->indent(Indent)
<< "Existing conflicting known: " << ExistingConflictingKnown
<< "\n";
}
return true;
}
// Does Proposed write at the same time as Existing already does (order of
// writes is undefined)? Writing the same value is permitted.
auto ExistingWrittenDomain = Existing.Written.domain();
auto BothWritten =
Existing.Written.domain().intersect(Proposed.Written.domain());
auto ExistingKnownWritten = filterKnownValInst(Existing.Written);
auto ProposedKnownWritten = filterKnownValInst(Proposed.Written);
auto CommonWritten =
ExistingKnownWritten.intersect(ProposedKnownWritten).domain();
if (!BothWritten.is_subset(CommonWritten)) {
if (OS) {
auto Conflicting = BothWritten.subtract(CommonWritten);
auto ExistingConflictingWritten =
Existing.Written.intersect_domain(Conflicting);
auto ProposedConflictingWritten =
Proposed.Written.intersect_domain(Conflicting);
OS->indent(Indent) << "Proposed writes at the same time as an already "
"Existing write\n";
OS->indent(Indent) << "Conflicting writes: " << Conflicting << "\n";
if (!ExistingConflictingWritten.is_empty())
OS->indent(Indent)
<< "Exiting write: " << ExistingConflictingWritten << "\n";
if (!ProposedConflictingWritten.is_empty())
OS->indent(Indent)
<< "Proposed write: " << ProposedConflictingWritten << "\n";
}
return true;
}
return false;
}
};
/// Implementation of the DeLICM/DePRE transformation.
class DeLICMImpl : public ZoneAlgorithm {
private:
/// Knowledge before any transformation took place.
Knowledge OriginalZone;
/// Current knowledge of the SCoP including all already applied
/// transformations.
Knowledge Zone;
/// Number of StoreInsts something can be mapped to.
int NumberOfCompatibleTargets = 0;
/// The number of StoreInsts to which at least one value or PHI has been
/// mapped to.
int NumberOfTargetsMapped = 0;
/// The number of llvm::Value mapped to some array element.
int NumberOfMappedValueScalars = 0;
/// The number of PHIs mapped to some array element.
int NumberOfMappedPHIScalars = 0;
/// Determine whether two knowledges are conflicting with each other.
///
/// @see Knowledge::isConflicting
bool isConflicting(const Knowledge &Proposed) {
raw_ostream *OS = nullptr;
LLVM_DEBUG(OS = &llvm::dbgs());
return Knowledge::isConflicting(Zone, Proposed, OS, 4);
}
/// Determine whether @p SAI is a scalar that can be mapped to an array
/// element.
bool isMappable(const ScopArrayInfo *SAI) {
assert(SAI);
if (SAI->isValueKind()) {
auto *MA = S->getValueDef(SAI);
if (!MA) {
LLVM_DEBUG(
dbgs()
<< " Reject because value is read-only within the scop\n");
return false;
}
// Mapping if value is used after scop is not supported. The code
// generator would need to reload the scalar after the scop, but it
// does not have the information to where it is mapped to. Only the
// MemoryAccesses have that information, not the ScopArrayInfo.
auto Inst = MA->getAccessInstruction();
for (auto User : Inst->users()) {
if (!isa<Instruction>(User))
return false;
auto UserInst = cast<Instruction>(User);
if (!S->contains(UserInst)) {
LLVM_DEBUG(dbgs() << " Reject because value is escaping\n");
return false;
}
}
return true;
}
if (SAI->isPHIKind()) {
auto *MA = S->getPHIRead(SAI);
assert(MA);
// Mapping of an incoming block from before the SCoP is not supported by
// the code generator.
auto PHI = cast<PHINode>(MA->getAccessInstruction());
for (auto Incoming : PHI->blocks()) {
if (!S->contains(Incoming)) {
LLVM_DEBUG(dbgs()
<< " Reject because at least one incoming block is "
"not in the scop region\n");
return false;
}
}
return true;
}
LLVM_DEBUG(dbgs() << " Reject ExitPHI or other non-value\n");
return false;
}
/// Compute the uses of a MemoryKind::Value and its lifetime (from its
/// definition to the last use).
///
/// @param SAI The ScopArrayInfo representing the value's storage.
///
/// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] }
/// First element is the set of uses for each definition.
/// The second is the lifetime of each definition.
std::tuple<isl::union_map, isl::map>
computeValueUses(const ScopArrayInfo *SAI) {
assert(SAI->isValueKind());
// { DomainRead[] }
auto Reads = makeEmptyUnionSet();
// Find all uses.
for (auto *MA : S->getValueUses(SAI))
Reads = Reads.add_set(getDomainFor(MA));
// { DomainRead[] -> Scatter[] }
auto ReadSchedule = getScatterFor(Reads);
auto *DefMA = S->getValueDef(SAI);
assert(DefMA);
// { DomainDef[] }
auto Writes = getDomainFor(DefMA);
// { DomainDef[] -> Scatter[] }
auto WriteScatter = getScatterFor(Writes);
// { Scatter[] -> DomainDef[] }
auto ReachDef = getScalarReachingDefinition(DefMA->getStatement());
// { [DomainDef[] -> Scatter[]] -> DomainUse[] }
auto Uses = isl::union_map(ReachDef.reverse().range_map())
.apply_range(ReadSchedule.reverse());
// { DomainDef[] -> Scatter[] }
auto UseScatter =
singleton(Uses.domain().unwrap(),
Writes.get_space().map_from_domain_and_range(ScatterSpace));
// { DomainDef[] -> Zone[] }
auto Lifetime = betweenScatter(WriteScatter, UseScatter, false, true);
// { DomainDef[] -> DomainRead[] }
auto DefUses = Uses.domain_factor_domain();
return std::make_pair(DefUses, Lifetime);
}
/// Try to map a MemoryKind::Value to a given array element.
///
/// @param SAI Representation of the scalar's memory to map.
/// @param TargetElt { Scatter[] -> Element[] }
/// Suggestion where to map a scalar to when at a timepoint.
///
/// @return true if the scalar was successfully mapped.
bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) {
assert(SAI->isValueKind());
auto *DefMA = S->getValueDef(SAI);
assert(DefMA->isValueKind());
assert(DefMA->isMustWrite());
auto *V = DefMA->getAccessValue();
auto *DefInst = DefMA->getAccessInstruction();
// Stop if the scalar has already been mapped.
if (!DefMA->getLatestScopArrayInfo()->isValueKind())
return false;
// { DomainDef[] -> Scatter[] }
auto DefSched = getScatterFor(DefMA);
// Where each write is mapped to, according to the suggestion.
// { DomainDef[] -> Element[] }
auto DefTarget = TargetElt.apply_domain(DefSched.reverse());
simplify(DefTarget);
LLVM_DEBUG(dbgs() << " Def Mapping: " << DefTarget << '\n');
auto OrigDomain = getDomainFor(DefMA);
auto MappedDomain = DefTarget.domain();
if (!OrigDomain.is_subset(MappedDomain)) {
LLVM_DEBUG(
dbgs()
<< " Reject because mapping does not encompass all instances\n");
return false;
}
// { DomainDef[] -> Zone[] }
isl::map Lifetime;
// { DomainDef[] -> DomainUse[] }
isl::union_map DefUses;
std::tie(DefUses, Lifetime) = computeValueUses(SAI);
LLVM_DEBUG(dbgs() << " Lifetime: " << Lifetime << '\n');
/// { [Element[] -> Zone[]] }
auto EltZone = Lifetime.apply_domain(DefTarget).wrap();
simplify(EltZone);
// When known knowledge is disabled, just return the unknown value. It will
// either get filtered out or conflict with itself.
// { DomainDef[] -> ValInst[] }
isl::map ValInst;
if (DelicmComputeKnown)
ValInst = makeValInst(V, DefMA->getStatement(),
LI->getLoopFor(DefInst->getParent()));
else
ValInst = makeUnknownForDomain(DefMA->getStatement());
// { DomainDef[] -> [Element[] -> Zone[]] }
auto EltKnownTranslator = DefTarget.range_product(Lifetime);
// { [Element[] -> Zone[]] -> ValInst[] }
auto EltKnown = ValInst.apply_domain(EltKnownTranslator);
simplify(EltKnown);
// { DomainDef[] -> [Element[] -> Scatter[]] }
auto WrittenTranslator = DefTarget.range_product(DefSched);
// { [Element[] -> Scatter[]] -> ValInst[] }
auto DefEltSched = ValInst.apply_domain(WrittenTranslator);
simplify(DefEltSched);
Knowledge Proposed(EltZone, nullptr, filterKnownValInst(EltKnown),
DefEltSched);
if (isConflicting(Proposed))
return false;
// { DomainUse[] -> Element[] }
auto UseTarget = DefUses.reverse().apply_range(DefTarget);
mapValue(SAI, std::move(DefTarget), std::move(UseTarget),
std::move(Lifetime), std::move(Proposed));
return true;
}
/// After a scalar has been mapped, update the global knowledge.
void applyLifetime(Knowledge Proposed) {
Zone.learnFrom(std::move(Proposed));
}
/// Map a MemoryKind::Value scalar to an array element.
///
/// Callers must have ensured that the mapping is valid and not conflicting.
///
/// @param SAI The ScopArrayInfo representing the scalar's memory to
/// map.
/// @param DefTarget { DomainDef[] -> Element[] }
/// The array element to map the scalar to.
/// @param UseTarget { DomainUse[] -> Element[] }
/// The array elements the uses are mapped to.
/// @param Lifetime { DomainDef[] -> Zone[] }
/// The lifetime of each llvm::Value definition for
/// reporting.
/// @param Proposed Mapping constraints for reporting.
void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget,
isl::union_map UseTarget, isl::map Lifetime,
Knowledge Proposed) {
// Redirect the read accesses.
for (auto *MA : S->getValueUses(SAI)) {
// { DomainUse[] }
auto Domain = getDomainFor(MA);
// { DomainUse[] -> Element[] }
auto NewAccRel = UseTarget.intersect_domain(Domain);
simplify(NewAccRel);
assert(isl_union_map_n_map(NewAccRel.get()) == 1);
MA->setNewAccessRelation(isl::map::from_union_map(NewAccRel));
}
auto *WA = S->getValueDef(SAI);
WA->setNewAccessRelation(DefTarget);
applyLifetime(Proposed);
MappedValueScalars++;
NumberOfMappedValueScalars += 1;
}
isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
bool IsCertain = true) {
// When known knowledge is disabled, just return the unknown value. It will
// either get filtered out or conflict with itself.
if (!DelicmComputeKnown)
return makeUnknownForDomain(UserStmt);
return ZoneAlgorithm::makeValInst(Val, UserStmt, Scope, IsCertain);
}
/// Express the incoming values of a PHI for each incoming statement in an
/// isl::union_map.
///
/// @param SAI The PHI scalar represented by a ScopArrayInfo.
///
/// @return { PHIWriteDomain[] -> ValInst[] }
isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) {
auto Result = makeEmptyUnionMap();
// Collect the incoming values.
for (auto *MA : S->getPHIIncomings(SAI)) {
// { DomainWrite[] -> ValInst[] }
isl::union_map ValInst;
auto *WriteStmt = MA->getStatement();
auto Incoming = MA->getIncoming();
assert(!Incoming.empty());
if (Incoming.size() == 1) {
ValInst = makeValInst(Incoming[0].second, WriteStmt,
LI->getLoopFor(Incoming[0].first));
} else {
// If the PHI is in a subregion's exit node it can have multiple
// incoming values (+ maybe another incoming edge from an unrelated
// block). We cannot directly represent it as a single llvm::Value.
// We currently model it as unknown value, but modeling as the PHIInst
// itself could be OK, too.
ValInst = makeUnknownForDomain(WriteStmt);
}
Result = Result.unite(ValInst);
}
assert(Result.is_single_valued() &&
"Cannot have multiple incoming values for same incoming statement");
return Result;
}
/// Try to map a MemoryKind::PHI scalar to a given array element.
///
/// @param SAI Representation of the scalar's memory to map.
/// @param TargetElt { Scatter[] -> Element[] }
/// Suggestion where to map the scalar to when at a
/// timepoint.
///
/// @return true if the PHI scalar has been mapped.
bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) {
auto *PHIRead = S->getPHIRead(SAI);
assert(PHIRead->isPHIKind());
assert(PHIRead->isRead());
// Skip if already been mapped.
if (!PHIRead->getLatestScopArrayInfo()->isPHIKind())
return false;
// { DomainRead[] -> Scatter[] }
auto PHISched = getScatterFor(PHIRead);
// { DomainRead[] -> Element[] }
auto PHITarget = PHISched.apply_range(TargetElt);
simplify(PHITarget);
LLVM_DEBUG(dbgs() << " Mapping: " << PHITarget << '\n');
auto OrigDomain = getDomainFor(PHIRead);
auto MappedDomain = PHITarget.domain();
if (!OrigDomain.is_subset(MappedDomain)) {
LLVM_DEBUG(
dbgs()
<< " Reject because mapping does not encompass all instances\n");
return false;
}
// { DomainRead[] -> DomainWrite[] }
auto PerPHIWrites = computePerPHI(SAI);
// { DomainWrite[] -> Element[] }
auto WritesTarget = PerPHIWrites.apply_domain(PHITarget).reverse();
simplify(WritesTarget);
// { DomainWrite[] }
auto UniverseWritesDom = isl::union_set::empty(ParamSpace);
for (auto *MA : S->getPHIIncomings(SAI))
UniverseWritesDom = UniverseWritesDom.add_set(getDomainFor(MA));
auto RelevantWritesTarget = WritesTarget;
if (DelicmOverapproximateWrites)
WritesTarget = expandMapping(WritesTarget, UniverseWritesDom);
auto ExpandedWritesDom = WritesTarget.domain();
if (!DelicmPartialWrites &&
!UniverseWritesDom.is_subset(ExpandedWritesDom)) {
LLVM_DEBUG(
dbgs() << " Reject because did not find PHI write mapping for "
"all instances\n");
if (DelicmOverapproximateWrites)
LLVM_DEBUG(dbgs() << " Relevant Mapping: "
<< RelevantWritesTarget << '\n');
LLVM_DEBUG(dbgs() << " Deduced Mapping: " << WritesTarget
<< '\n');
LLVM_DEBUG(dbgs() << " Missing instances: "
<< UniverseWritesDom.subtract(ExpandedWritesDom)
<< '\n');
return false;
}
// { DomainRead[] -> Scatter[] }
isl::union_map PerPHIWriteScatterUmap = PerPHIWrites.apply_range(Schedule);
isl::map PerPHIWriteScatter =
singleton(PerPHIWriteScatterUmap, PHISched.get_space());
// { DomainRead[] -> Zone[] }
auto Lifetime = betweenScatter(PerPHIWriteScatter, PHISched, false, true);
simplify(Lifetime);
LLVM_DEBUG(dbgs() << " Lifetime: " << Lifetime << "\n");
// { DomainWrite[] -> Zone[] }
auto WriteLifetime = isl::union_map(Lifetime).apply_domain(PerPHIWrites);
// { DomainWrite[] -> ValInst[] }
auto WrittenValue = determinePHIWrittenValues(SAI);
// { DomainWrite[] -> [Element[] -> Scatter[]] }
auto WrittenTranslator = WritesTarget.range_product(Schedule);
// { [Element[] -> Scatter[]] -> ValInst[] }
auto Written = WrittenValue.apply_domain(WrittenTranslator);
simplify(Written);
// { DomainWrite[] -> [Element[] -> Zone[]] }
auto LifetimeTranslator = WritesTarget.range_product(WriteLifetime);
// { DomainWrite[] -> ValInst[] }
auto WrittenKnownValue = filterKnownValInst(WrittenValue);
// { [Element[] -> Zone[]] -> ValInst[] }
auto EltLifetimeInst = WrittenKnownValue.apply_domain(LifetimeTranslator);
simplify(EltLifetimeInst);
// { [Element[] -> Zone[] }
auto Occupied = LifetimeTranslator.range();
simplify(Occupied);
Knowledge Proposed(Occupied, nullptr, EltLifetimeInst, Written);
if (isConflicting(Proposed))
return false;
mapPHI(SAI, std::move(PHITarget), std::move(WritesTarget),
std::move(Lifetime), std::move(Proposed));
return true;
}
/// Map a MemoryKind::PHI scalar to an array element.
///
/// Callers must have ensured that the mapping is valid and not conflicting
/// with the common knowledge.
///
/// @param SAI The ScopArrayInfo representing the scalar's memory to
/// map.
/// @param ReadTarget { DomainRead[] -> Element[] }
/// The array element to map the scalar to.
/// @param WriteTarget { DomainWrite[] -> Element[] }
/// New access target for each PHI incoming write.
/// @param Lifetime { DomainRead[] -> Zone[] }
/// The lifetime of each PHI for reporting.
/// @param Proposed Mapping constraints for reporting.
void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget,
isl::union_map WriteTarget, isl::map Lifetime,
Knowledge Proposed) {
// { Element[] }
isl::space ElementSpace = ReadTarget.get_space().range();
// Redirect the PHI incoming writes.
for (auto *MA : S->getPHIIncomings(SAI)) {
// { DomainWrite[] }
auto Domain = getDomainFor(MA);
// { DomainWrite[] -> Element[] }
auto NewAccRel = WriteTarget.intersect_domain(Domain);
simplify(NewAccRel);
isl::space NewAccRelSpace =
Domain.get_space().map_from_domain_and_range(ElementSpace);
isl::map NewAccRelMap = singleton(NewAccRel, NewAccRelSpace);
MA->setNewAccessRelation(NewAccRelMap);
}
// Redirect the PHI read.
auto *PHIRead = S->getPHIRead(SAI);
PHIRead->setNewAccessRelation(ReadTarget);
applyLifetime(Proposed);
MappedPHIScalars++;
NumberOfMappedPHIScalars++;
}
/// Search and map scalars to memory overwritten by @p TargetStoreMA.
///
/// Start trying to map scalars that are used in the same statement as the
/// store. For every successful mapping, try to also map scalars of the
/// statements where those are written. Repeat, until no more mapping
/// opportunity is found.
///
/// There is currently no preference in which order scalars are tried.
/// Ideally, we would direct it towards a load instruction of the same array
/// element.
bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) {
assert(TargetStoreMA->isLatestArrayKind());
assert(TargetStoreMA->isMustWrite());
auto TargetStmt = TargetStoreMA->getStatement();
// { DomTarget[] }
auto TargetDom = getDomainFor(TargetStmt);
// { DomTarget[] -> Element[] }
auto TargetAccRel = getAccessRelationFor(TargetStoreMA);
// { Zone[] -> DomTarget[] }
// For each point in time, find the next target store instance.
auto Target =
computeScalarReachingOverwrite(Schedule, TargetDom, false, true);
// { Zone[] -> Element[] }
// Use the target store's write location as a suggestion to map scalars to.
auto EltTarget = Target.apply_range(TargetAccRel);
simplify(EltTarget);
LLVM_DEBUG(dbgs() << " Target mapping is " << EltTarget << '\n');
// Stack of elements not yet processed.
SmallVector<MemoryAccess *, 16> Worklist;
// Set of scalars already tested.
SmallPtrSet<const ScopArrayInfo *, 16> Closed;
// Lambda to add all scalar reads to the work list.
auto ProcessAllIncoming = [&](ScopStmt *Stmt) {
for (auto *MA : *Stmt) {
if (!MA->isLatestScalarKind())
continue;
if (!MA->isRead())
continue;
Worklist.push_back(MA);
}
};
auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(0);
if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(WrittenVal))
Worklist.push_back(WrittenValInputMA);
else
ProcessAllIncoming(TargetStmt);
auto AnyMapped = false;
auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout();
auto StoreSize =
DL.getTypeAllocSize(TargetStoreMA->getAccessValue()->getType());
while (!Worklist.empty()) {
auto *MA = Worklist.pop_back_val();
auto *SAI = MA->getScopArrayInfo();
if (Closed.count(SAI))
continue;
Closed.insert(SAI);
LLVM_DEBUG(dbgs() << "\n Trying to map " << MA << " (SAI: " << SAI
<< ")\n");
// Skip non-mappable scalars.
if (!isMappable(SAI))
continue;
auto MASize = DL.getTypeAllocSize(MA->getAccessValue()->getType());
if (MASize > StoreSize) {
LLVM_DEBUG(
dbgs() << " Reject because storage size is insufficient\n");
continue;
}
// Try to map MemoryKind::Value scalars.
if (SAI->isValueKind()) {
if (!tryMapValue(SAI, EltTarget))
continue;
auto *DefAcc = S->getValueDef(SAI);
ProcessAllIncoming(DefAcc->getStatement());
AnyMapped = true;
continue;
}
// Try to map MemoryKind::PHI scalars.
if (SAI->isPHIKind()) {
if (!tryMapPHI(SAI, EltTarget))
continue;
// Add inputs of all incoming statements to the worklist. Prefer the
// input accesses of the incoming blocks.
for (auto *PHIWrite : S->getPHIIncomings(SAI)) {
auto *PHIWriteStmt = PHIWrite->getStatement();
bool FoundAny = false;
for (auto Incoming : PHIWrite->getIncoming()) {
auto *IncomingInputMA =
PHIWriteStmt->lookupInputAccessOf(Incoming.second);
if (!IncomingInputMA)
continue;
Worklist.push_back(IncomingInputMA);
FoundAny = true;
}
if (!FoundAny)
ProcessAllIncoming(PHIWrite->getStatement());
}
AnyMapped = true;
continue;
}
}
if (AnyMapped) {
TargetsMapped++;
NumberOfTargetsMapped++;
}
return AnyMapped;
}
/// Compute when an array element is unused.
///
/// @return { [Element[] -> Zone[]] }
isl::union_set computeLifetime() const {
// { Element[] -> Zone[] }
auto ArrayUnused = computeArrayUnused(Schedule, AllMustWrites, AllReads,
false, false, true);
auto Result = ArrayUnused.wrap();
simplify(Result);
return Result;
}
/// Determine when an array element is written to, and which value instance is
/// written.
///
/// @return { [Element[] -> Scatter[]] -> ValInst[] }
isl::union_map computeWritten() const {
// { [Element[] -> Scatter[]] -> ValInst[] }
auto EltWritten = applyDomainRange(AllWriteValInst, Schedule);
simplify(EltWritten);
return EltWritten;
}
/// Determine whether an access touches at most one element.
///
/// The accessed element could be a scalar or accessing an array with constant
/// subscript, such that all instances access only that element.
///
/// @param MA The access to test.
///
/// @return True, if zero or one elements are accessed; False if at least two
/// different elements are accessed.
bool isScalarAccess(MemoryAccess *MA) {
auto Map = getAccessRelationFor(MA);
auto Set = Map.range();
return Set.is_singleton();
}
/// Print mapping statistics to @p OS.
void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const {
OS.indent(Indent) << "Statistics {\n";
OS.indent(Indent + 4) << "Compatible overwrites: "
<< NumberOfCompatibleTargets << "\n";
OS.indent(Indent + 4) << "Overwrites mapped to: " << NumberOfTargetsMapped
<< '\n';
OS.indent(Indent + 4) << "Value scalars mapped: "
<< NumberOfMappedValueScalars << '\n';
OS.indent(Indent + 4) << "PHI scalars mapped: "
<< NumberOfMappedPHIScalars << '\n';
OS.indent(Indent) << "}\n";
}
/// Return whether at least one transformation been applied.
bool isModified() const { return NumberOfTargetsMapped > 0; }
public:
DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm("polly-delicm", S, LI) {}
/// Calculate the lifetime (definition to last use) of every array element.
///
/// @return True if the computed lifetimes (#Zone) is usable.
bool computeZone() {
// Check that nothing strange occurs.
collectCompatibleElts();
isl::union_set EltUnused;
isl::union_map EltKnown, EltWritten;
{
IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps);
computeCommon();
EltUnused = computeLifetime();
EltKnown = computeKnown(true, false);
EltWritten = computeWritten();
}
DeLICMAnalyzed++;
if (!EltUnused || !EltKnown || !EltWritten) {
assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota &&
"The only reason that these things have not been computed should "
"be if the max-operations limit hit");
DeLICMOutOfQuota++;
LLVM_DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n");
DebugLoc Begin, End;
getDebugLocations(getBBPairForRegion(&S->getRegion()), Begin, End);
OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota", Begin,
S->getEntry());
R << "maximal number of operations exceeded during zone analysis";
S->getFunction().getContext().diagnose(R);
return false;
}
Zone = OriginalZone = Knowledge(nullptr, EltUnused, EltKnown, EltWritten);
LLVM_DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone.print(dbgs(), 4));
assert(Zone.isUsable() && OriginalZone.isUsable());
return true;
}
/// Try to map as many scalars to unused array elements as possible.
///
/// Multiple scalars might be mappable to intersecting unused array element
/// zones, but we can only chose one. This is a greedy algorithm, therefore
/// the first processed element claims it.
void greedyCollapse() {
bool Modified = false;
for (auto &Stmt : *S) {
for (auto *MA : Stmt) {
if (!MA->isLatestArrayKind())
continue;
if (!MA->isWrite())
continue;
if (MA->isMayWrite()) {
LLVM_DEBUG(dbgs() << "Access " << MA
<< " pruned because it is a MAY_WRITE\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite",
MA->getAccessInstruction());
R << "Skipped possible mapping target because it is not an "
"unconditional overwrite";
S->getFunction().getContext().diagnose(R);
continue;
}
if (Stmt.getNumIterators() == 0) {
LLVM_DEBUG(dbgs() << "Access " << MA
<< " pruned because it is not in a loop\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop",
MA->getAccessInstruction());
R << "skipped possible mapping target because it is not in a loop";
S->getFunction().getContext().diagnose(R);
continue;
}
if (isScalarAccess(MA)) {
LLVM_DEBUG(dbgs()
<< "Access " << MA
<< " pruned because it writes only a single element\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite",
MA->getAccessInstruction());
R << "skipped possible mapping target because the memory location "
"written to does not depend on its outer loop";
S->getFunction().getContext().diagnose(R);
continue;
}
if (!isa<StoreInst>(MA->getAccessInstruction())) {
LLVM_DEBUG(dbgs() << "Access " << MA
<< " pruned because it is not a StoreInst\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "NotAStore",
MA->getAccessInstruction());
R << "skipped possible mapping target because non-store instructions "
"are not supported";
S->getFunction().getContext().diagnose(R);
continue;
}
// Check for more than one element acces per statement instance.
// Currently we expect write accesses to be functional, eg. disallow
//
// { Stmt[0] -> [i] : 0 <= i < 2 }
//
// This may occur when some accesses to the element write/read only
// parts of the element, eg. a single byte. Polly then divides each
// element into subelements of the smallest access length, normal access
// then touch multiple of such subelements. It is very common when the
// array is accesses with memset, memcpy or memmove which take i8*
// arguments.
isl::union_map AccRel = MA->getLatestAccessRelation();
if (!AccRel.is_single_valued().is_true()) {
LLVM_DEBUG(dbgs() << "Access " << MA
<< " is incompatible because it writes multiple "
"elements per instance\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "NonFunctionalAccRel",
MA->getAccessInstruction());
R << "skipped possible mapping target because it writes more than "
"one element";
S->getFunction().getContext().diagnose(R);
continue;
}
isl::union_set TouchedElts = AccRel.range();
if (!TouchedElts.is_subset(CompatibleElts)) {
LLVM_DEBUG(
dbgs()
<< "Access " << MA
<< " is incompatible because it touches incompatible elements\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "IncompatibleElts",
MA->getAccessInstruction());
R << "skipped possible mapping target because a target location "
"cannot be reliably analyzed";
S->getFunction().getContext().diagnose(R);
continue;
}
assert(isCompatibleAccess(MA));
NumberOfCompatibleTargets++;
LLVM_DEBUG(dbgs() << "Analyzing target access " << MA << "\n");
if (collapseScalarsToStore(MA))
Modified = true;
}
}
if (Modified)
DeLICMScopsModified++;
}
/// Dump the internal information about a performed DeLICM to @p OS.
void print(llvm::raw_ostream &OS, int Indent = 0) {
if (!Zone.isUsable()) {
OS.indent(Indent) << "Zone not computed\n";
return;
}
printStatistics(OS, Indent);
if (!isModified()) {
OS.indent(Indent) << "No modification has been made\n";
return;
}
printAccesses(OS, Indent);
}
};
class DeLICM : public ScopPass {
private:
DeLICM(const DeLICM &) = delete;
const DeLICM &operator=(const DeLICM &) = delete;
/// The pass implementation, also holding per-scop data.
std::unique_ptr<DeLICMImpl> Impl;
void collapseToUnused(Scop &S) {
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Impl = std::make_unique<DeLICMImpl>(&S, &LI);
if (!Impl->computeZone()) {
LLVM_DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n");
return;
}
LLVM_DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n");
Impl->greedyCollapse();
LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
LLVM_DEBUG(dbgs() << S);
}
public:
static char ID;
explicit DeLICM() : ScopPass(ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredTransitive<ScopInfoRegionPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.setPreservesAll();
}
virtual bool runOnScop(Scop &S) override {
// Free resources for previous scop's computation, if not yet done.
releaseMemory();
collapseToUnused(S);
auto ScopStats = S.getStatistics();
NumValueWrites += ScopStats.NumValueWrites;
NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
NumPHIWrites += ScopStats.NumPHIWrites;
NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
NumSingletonWrites += ScopStats.NumSingletonWrites;
NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
return false;
}
virtual void printScop(raw_ostream &OS, Scop &S) const override {
if (!Impl)
return;
assert(Impl->getScop() == &S);
OS << "DeLICM result:\n";
Impl->print(OS);
}
virtual void releaseMemory() override { Impl.reset(); }
};
char DeLICM::ID;
} // anonymous namespace
Pass *polly::createDeLICMPass() { return new DeLICM(); }
INITIALIZE_PASS_BEGIN(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
false)
INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
false)
bool polly::isConflicting(
isl::union_set ExistingOccupied, isl::union_set ExistingUnused,
isl::union_map ExistingKnown, isl::union_map ExistingWrites,
isl::union_set ProposedOccupied, isl::union_set ProposedUnused,
isl::union_map ProposedKnown, isl::union_map ProposedWrites,
llvm::raw_ostream *OS, unsigned Indent) {
Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused),
std::move(ExistingKnown), std::move(ExistingWrites));
Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused),
std::move(ProposedKnown), std::move(ProposedWrites));
return Knowledge::isConflicting(Existing, Proposed, OS, Indent);
}
|