reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
//===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LiveInterval analysis pass.  Given some
/// numbering of each the machine instructions (in this implemention depth-first
/// order) an interval [i, j) is said to be a live interval for register v if
/// there is no instruction with number j' > j such that v is live at j' and
/// there is no instruction with number i' < i such that v is live at i'. In
/// this implementation intervals can have holes, i.e. an interval might look
/// like [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_LIVEINTERVALS_H
#define LLVM_CODEGEN_LIVEINTERVALS_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <utility>

namespace llvm {

extern cl::opt<bool> UseSegmentSetForPhysRegs;

class BitVector;
class LiveRangeCalc;
class MachineBlockFrequencyInfo;
class MachineDominatorTree;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class raw_ostream;
class TargetInstrInfo;
class VirtRegMap;

  class LiveIntervals : public MachineFunctionPass {
    MachineFunction* MF;
    MachineRegisterInfo* MRI;
    const TargetRegisterInfo* TRI;
    const TargetInstrInfo* TII;
    AliasAnalysis *AA;
    SlotIndexes* Indexes;
    MachineDominatorTree *DomTree = nullptr;
    LiveRangeCalc *LRCalc = nullptr;

    /// Special pool allocator for VNInfo's (LiveInterval val#).
    VNInfo::Allocator VNInfoAllocator;

    /// Live interval pointers for all the virtual registers.
    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;

    /// Sorted list of instructions with register mask operands. Always use the
    /// 'r' slot, RegMasks are normal clobbers, not early clobbers.
    SmallVector<SlotIndex, 8> RegMaskSlots;

    /// This vector is parallel to RegMaskSlots, it holds a pointer to the
    /// corresponding register mask.  This pointer can be recomputed as:
    ///
    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
    ///   unsigned OpNum = findRegMaskOperand(MI);
    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
    ///
    /// This is kept in a separate vector partly because some standard
    /// libraries don't support lower_bound() with mixed objects, partly to
    /// improve locality when searching in RegMaskSlots.
    /// Also see the comment in LiveInterval::find().
    SmallVector<const uint32_t*, 8> RegMaskBits;

    /// For each basic block number, keep (begin, size) pairs indexing into the
    /// RegMaskSlots and RegMaskBits arrays.
    /// Note that basic block numbers may not be layout contiguous, that's why
    /// we can't just keep track of the first register mask in each basic
    /// block.
    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;

    /// Keeps a live range set for each register unit to track fixed physreg
    /// interference.
    SmallVector<LiveRange*, 0> RegUnitRanges;

  public:
    static char ID;

    LiveIntervals();
    ~LiveIntervals() override;

    /// Calculate the spill weight to assign to a single instruction.
    static float getSpillWeight(bool isDef, bool isUse,
                                const MachineBlockFrequencyInfo *MBFI,
                                const MachineInstr &MI);

    /// Calculate the spill weight to assign to a single instruction.
    static float getSpillWeight(bool isDef, bool isUse,
                                const MachineBlockFrequencyInfo *MBFI,
                                const MachineBasicBlock *MBB);

    LiveInterval &getInterval(Register Reg) {
      if (hasInterval(Reg))
        return *VirtRegIntervals[Reg.id()];
      else
        return createAndComputeVirtRegInterval(Reg);
    }

    const LiveInterval &getInterval(Register Reg) const {
      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
    }

    bool hasInterval(Register Reg) const {
      return VirtRegIntervals.inBounds(Reg.id()) &&
             VirtRegIntervals[Reg.id()];
    }

    /// Interval creation.
    LiveInterval &createEmptyInterval(Register Reg) {
      assert(!hasInterval(Reg) && "Interval already exists!");
      VirtRegIntervals.grow(Reg.id());
      VirtRegIntervals[Reg.id()] = createInterval(Reg);
      return *VirtRegIntervals[Reg.id()];
    }

    LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
      LiveInterval &LI = createEmptyInterval(Reg);
      computeVirtRegInterval(LI);
      return LI;
    }

    /// Interval removal.
    void removeInterval(unsigned Reg) {
      delete VirtRegIntervals[Reg];
      VirtRegIntervals[Reg] = nullptr;
    }

    /// Given a register and an instruction, adds a live segment from that
    /// instruction to the end of its MBB.
    LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
                                                 MachineInstr &startInst);

    /// After removing some uses of a register, shrink its live range to just
    /// the remaining uses. This method does not compute reaching defs for new
    /// uses, and it doesn't remove dead defs.
    /// Dead PHIDef values are marked as unused. New dead machine instructions
    /// are added to the dead vector. Returns true if the interval may have been
    /// separated into multiple connected components.
    bool shrinkToUses(LiveInterval *li,
                      SmallVectorImpl<MachineInstr*> *dead = nullptr);

    /// Specialized version of
    /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
    /// that works on a subregister live range and only looks at uses matching
    /// the lane mask of the subregister range.
    /// This may leave the subrange empty which needs to be cleaned up with
    /// LiveInterval::removeEmptySubranges() afterwards.
    void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);

    /// Extend the live range \p LR to reach all points in \p Indices. The
    /// points in the \p Indices array must be jointly dominated by the union
    /// of the existing defs in \p LR and points in \p Undefs.
    ///
    /// PHI-defs are added as needed to maintain SSA form.
    ///
    /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
    /// will be extended to be live out of the basic block.
    /// If a SlotIndex in \p Indices is jointy dominated only by points in
    /// \p Undefs, the live range will not be extended to that point.
    ///
    /// See also LiveRangeCalc::extend().
    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
                         ArrayRef<SlotIndex> Undefs);

    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
      extendToIndices(LR, Indices, /*Undefs=*/{});
    }

    /// If \p LR has a live value at \p Kill, prune its live range by removing
    /// any liveness reachable from Kill. Add live range end points to
    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
    /// value's live range.
    ///
    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
    /// SSA form after adding defs to a virtual register.
    void pruneValue(LiveRange &LR, SlotIndex Kill,
                    SmallVectorImpl<SlotIndex> *EndPoints);

    /// This function should not be used. Its intent is to tell you that you are
    /// doing something wrong if you call pruneValue directly on a
    /// LiveInterval. Indeed, you are supposed to call pruneValue on the main
    /// LiveRange and all the LiveRanges of the subranges if any.
    LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
                                          SmallVectorImpl<SlotIndex> *) {
      llvm_unreachable(
          "Use pruneValue on the main LiveRange and on each subrange");
    }

    SlotIndexes *getSlotIndexes() const {
      return Indexes;
    }

    AliasAnalysis *getAliasAnalysis() const {
      return AA;
    }

    /// Returns true if the specified machine instr has been removed or was
    /// never entered in the map.
    bool isNotInMIMap(const MachineInstr &Instr) const {
      return !Indexes->hasIndex(Instr);
    }

    /// Returns the base index of the given instruction.
    SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
      return Indexes->getInstructionIndex(Instr);
    }

    /// Returns the instruction associated with the given index.
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
      return Indexes->getInstructionFromIndex(index);
    }

    /// Return the first index in the given basic block.
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
      return Indexes->getMBBStartIdx(mbb);
    }

    /// Return the last index in the given basic block.
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
      return Indexes->getMBBEndIdx(mbb);
    }

    bool isLiveInToMBB(const LiveRange &LR,
                       const MachineBasicBlock *mbb) const {
      return LR.liveAt(getMBBStartIdx(mbb));
    }

    bool isLiveOutOfMBB(const LiveRange &LR,
                        const MachineBasicBlock *mbb) const {
      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
    }

    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
      return Indexes->getMBBFromIndex(index);
    }

    void insertMBBInMaps(MachineBasicBlock *MBB) {
      Indexes->insertMBBInMaps(MBB);
      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
             "Blocks must be added in order.");
      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
    }

    SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
      return Indexes->insertMachineInstrInMaps(MI);
    }

    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
                                       MachineBasicBlock::iterator E) {
      for (MachineBasicBlock::iterator I = B; I != E; ++I)
        Indexes->insertMachineInstrInMaps(*I);
    }

    void RemoveMachineInstrFromMaps(MachineInstr &MI) {
      Indexes->removeMachineInstrFromMaps(MI);
    }

    SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
      return Indexes->replaceMachineInstrInMaps(MI, NewMI);
    }

    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }

    void getAnalysisUsage(AnalysisUsage &AU) const override;
    void releaseMemory() override;

    /// Pass entry point; Calculates LiveIntervals.
    bool runOnMachineFunction(MachineFunction&) override;

    /// Implement the dump method.
    void print(raw_ostream &O, const Module* = nullptr) const override;

    /// If LI is confined to a single basic block, return a pointer to that
    /// block.  If LI is live in to or out of any block, return NULL.
    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;

    /// Returns true if VNI is killed by any PHI-def values in LI.
    /// This may conservatively return true to avoid expensive computations.
    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;

    /// Add kill flags to any instruction that kills a virtual register.
    void addKillFlags(const VirtRegMap*);

    /// Call this method to notify LiveIntervals that instruction \p MI has been
    /// moved within a basic block. This will update the live intervals for all
    /// operands of \p MI. Moves between basic blocks are not supported.
    ///
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    void handleMove(MachineInstr &MI, bool UpdateFlags = false);

    /// Update intervals for operands of \p MI so that they begin/end on the
    /// SlotIndex for \p BundleStart.
    ///
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    ///
    /// Requires MI and BundleStart to have SlotIndexes, and assumes
    /// existing liveness is accurate. BundleStart should be the first
    /// instruction in the Bundle.
    void handleMoveIntoBundle(MachineInstr &MI, MachineInstr &BundleStart,
                              bool UpdateFlags = false);

    /// Update live intervals for instructions in a range of iterators. It is
    /// intended for use after target hooks that may insert or remove
    /// instructions, and is only efficient for a small number of instructions.
    ///
    /// OrigRegs is a vector of registers that were originally used by the
    /// instructions in the range between the two iterators.
    ///
    /// Currently, the only only changes that are supported are simple removal
    /// and addition of uses.
    void repairIntervalsInRange(MachineBasicBlock *MBB,
                                MachineBasicBlock::iterator Begin,
                                MachineBasicBlock::iterator End,
                                ArrayRef<unsigned> OrigRegs);

    // Register mask functions.
    //
    // Machine instructions may use a register mask operand to indicate that a
    // large number of registers are clobbered by the instruction.  This is
    // typically used for calls.
    //
    // For compile time performance reasons, these clobbers are not recorded in
    // the live intervals for individual physical registers.  Instead,
    // LiveIntervalAnalysis maintains a sorted list of instructions with
    // register mask operands.

    /// Returns a sorted array of slot indices of all instructions with
    /// register mask operands.
    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }

    /// Returns a sorted array of slot indices of all instructions with register
    /// mask operands in the basic block numbered \p MBBNum.
    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
      return getRegMaskSlots().slice(P.first, P.second);
    }

    /// Returns an array of register mask pointers corresponding to
    /// getRegMaskSlots().
    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }

    /// Returns an array of mask pointers corresponding to
    /// getRegMaskSlotsInBlock(MBBNum).
    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
      return getRegMaskBits().slice(P.first, P.second);
    }

    /// Test if \p LI is live across any register mask instructions, and
    /// compute a bit mask of physical registers that are not clobbered by any
    /// of them.
    ///
    /// Returns false if \p LI doesn't cross any register mask instructions. In
    /// that case, the bit vector is not filled in.
    bool checkRegMaskInterference(LiveInterval &LI,
                                  BitVector &UsableRegs);

    // Register unit functions.
    //
    // Fixed interference occurs when MachineInstrs use physregs directly
    // instead of virtual registers. This typically happens when passing
    // arguments to a function call, or when instructions require operands in
    // fixed registers.
    //
    // Each physreg has one or more register units, see MCRegisterInfo. We
    // track liveness per register unit to handle aliasing registers more
    // efficiently.

    /// Return the live range for register unit \p Unit. It will be computed if
    /// it doesn't exist.
    LiveRange &getRegUnit(unsigned Unit) {
      LiveRange *LR = RegUnitRanges[Unit];
      if (!LR) {
        // Compute missing ranges on demand.
        // Use segment set to speed-up initial computation of the live range.
        RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
        computeRegUnitRange(*LR, Unit);
      }
      return *LR;
    }

    /// Return the live range for register unit \p Unit if it has already been
    /// computed, or nullptr if it hasn't been computed yet.
    LiveRange *getCachedRegUnit(unsigned Unit) {
      return RegUnitRanges[Unit];
    }

    const LiveRange *getCachedRegUnit(unsigned Unit) const {
      return RegUnitRanges[Unit];
    }

    /// Remove computed live range for register unit \p Unit. Subsequent uses
    /// should rely on on-demand recomputation.
    void removeRegUnit(unsigned Unit) {
      delete RegUnitRanges[Unit];
      RegUnitRanges[Unit] = nullptr;
    }

    /// Remove associated live ranges for the register units associated with \p
    /// Reg. Subsequent uses should rely on on-demand recomputation.  \note This
    /// method can result in inconsistent liveness tracking if multiple phyical
    /// registers share a regunit, and should be used cautiously.
    void removeAllRegUnitsForPhysReg(unsigned Reg) {
      for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
        removeRegUnit(*Units);
    }

    /// Remove value numbers and related live segments starting at position
    /// \p Pos that are part of any liverange of physical register \p Reg or one
    /// of its subregisters.
    void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);

    /// Remove value number and related live segments of \p LI and its subranges
    /// that start at position \p Pos.
    void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);

    /// Split separate components in LiveInterval \p LI into separate intervals.
    void splitSeparateComponents(LiveInterval &LI,
                                 SmallVectorImpl<LiveInterval*> &SplitLIs);

    /// For live interval \p LI with correct SubRanges construct matching
    /// information for the main live range. Expects the main live range to not
    /// have any segments or value numbers.
    void constructMainRangeFromSubranges(LiveInterval &LI);

  private:
    /// Compute live intervals for all virtual registers.
    void computeVirtRegs();

    /// Compute RegMaskSlots and RegMaskBits.
    void computeRegMasks();

    /// Walk the values in \p LI and check for dead values:
    /// - Dead PHIDef values are marked as unused.
    /// - Dead operands are marked as such.
    /// - Completely dead machine instructions are added to the \p dead vector
    ///   if it is not nullptr.
    /// Returns true if any PHI value numbers have been removed which may
    /// have separated the interval into multiple connected components.
    bool computeDeadValues(LiveInterval &LI,
                           SmallVectorImpl<MachineInstr*> *dead);

    static LiveInterval* createInterval(unsigned Reg);

    void printInstrs(raw_ostream &O) const;
    void dumpInstrs() const;

    void computeLiveInRegUnits();
    void computeRegUnitRange(LiveRange&, unsigned Unit);
    void computeVirtRegInterval(LiveInterval&);

    using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
    void extendSegmentsToUses(LiveRange &Segments,
                              ShrinkToUsesWorkList &WorkList, unsigned Reg,
                              LaneBitmask LaneMask);

    /// Helper function for repairIntervalsInRange(), walks backwards and
    /// creates/modifies live segments in \p LR to match the operands found.
    /// Only full operands or operands with subregisters matching \p LaneMask
    /// are considered.
    void repairOldRegInRange(MachineBasicBlock::iterator Begin,
                             MachineBasicBlock::iterator End,
                             const SlotIndex endIdx, LiveRange &LR,
                             unsigned Reg,
                             LaneBitmask LaneMask = LaneBitmask::getAll());

    class HMEditor;
  };

} // end namespace llvm

#endif