1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
| //===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LiveInterval analysis pass. Given some
/// numbering of each the machine instructions (in this implemention depth-first
/// order) an interval [i, j) is said to be a live interval for register v if
/// there is no instruction with number j' > j such that v is live at j' and
/// there is no instruction with number i' < i such that v is live at i'. In
/// this implementation intervals can have holes, i.e. an interval might look
/// like [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVALS_H
#define LLVM_CODEGEN_LIVEINTERVALS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <utility>
namespace llvm {
extern cl::opt<bool> UseSegmentSetForPhysRegs;
class BitVector;
class LiveRangeCalc;
class MachineBlockFrequencyInfo;
class MachineDominatorTree;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class raw_ostream;
class TargetInstrInfo;
class VirtRegMap;
class LiveIntervals : public MachineFunctionPass {
MachineFunction* MF;
MachineRegisterInfo* MRI;
const TargetRegisterInfo* TRI;
const TargetInstrInfo* TII;
AliasAnalysis *AA;
SlotIndexes* Indexes;
MachineDominatorTree *DomTree = nullptr;
LiveRangeCalc *LRCalc = nullptr;
/// Special pool allocator for VNInfo's (LiveInterval val#).
VNInfo::Allocator VNInfoAllocator;
/// Live interval pointers for all the virtual registers.
IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
/// Sorted list of instructions with register mask operands. Always use the
/// 'r' slot, RegMasks are normal clobbers, not early clobbers.
SmallVector<SlotIndex, 8> RegMaskSlots;
/// This vector is parallel to RegMaskSlots, it holds a pointer to the
/// corresponding register mask. This pointer can be recomputed as:
///
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
/// unsigned OpNum = findRegMaskOperand(MI);
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
///
/// This is kept in a separate vector partly because some standard
/// libraries don't support lower_bound() with mixed objects, partly to
/// improve locality when searching in RegMaskSlots.
/// Also see the comment in LiveInterval::find().
SmallVector<const uint32_t*, 8> RegMaskBits;
/// For each basic block number, keep (begin, size) pairs indexing into the
/// RegMaskSlots and RegMaskBits arrays.
/// Note that basic block numbers may not be layout contiguous, that's why
/// we can't just keep track of the first register mask in each basic
/// block.
SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
/// Keeps a live range set for each register unit to track fixed physreg
/// interference.
SmallVector<LiveRange*, 0> RegUnitRanges;
public:
static char ID;
LiveIntervals();
~LiveIntervals() override;
/// Calculate the spill weight to assign to a single instruction.
static float getSpillWeight(bool isDef, bool isUse,
const MachineBlockFrequencyInfo *MBFI,
const MachineInstr &MI);
/// Calculate the spill weight to assign to a single instruction.
static float getSpillWeight(bool isDef, bool isUse,
const MachineBlockFrequencyInfo *MBFI,
const MachineBasicBlock *MBB);
LiveInterval &getInterval(Register Reg) {
if (hasInterval(Reg))
return *VirtRegIntervals[Reg.id()];
else
return createAndComputeVirtRegInterval(Reg);
}
const LiveInterval &getInterval(Register Reg) const {
return const_cast<LiveIntervals*>(this)->getInterval(Reg);
}
bool hasInterval(Register Reg) const {
return VirtRegIntervals.inBounds(Reg.id()) &&
VirtRegIntervals[Reg.id()];
}
/// Interval creation.
LiveInterval &createEmptyInterval(Register Reg) {
assert(!hasInterval(Reg) && "Interval already exists!");
VirtRegIntervals.grow(Reg.id());
VirtRegIntervals[Reg.id()] = createInterval(Reg);
return *VirtRegIntervals[Reg.id()];
}
LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
LiveInterval &LI = createEmptyInterval(Reg);
computeVirtRegInterval(LI);
return LI;
}
/// Interval removal.
void removeInterval(unsigned Reg) {
delete VirtRegIntervals[Reg];
VirtRegIntervals[Reg] = nullptr;
}
/// Given a register and an instruction, adds a live segment from that
/// instruction to the end of its MBB.
LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
MachineInstr &startInst);
/// After removing some uses of a register, shrink its live range to just
/// the remaining uses. This method does not compute reaching defs for new
/// uses, and it doesn't remove dead defs.
/// Dead PHIDef values are marked as unused. New dead machine instructions
/// are added to the dead vector. Returns true if the interval may have been
/// separated into multiple connected components.
bool shrinkToUses(LiveInterval *li,
SmallVectorImpl<MachineInstr*> *dead = nullptr);
/// Specialized version of
/// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
/// that works on a subregister live range and only looks at uses matching
/// the lane mask of the subregister range.
/// This may leave the subrange empty which needs to be cleaned up with
/// LiveInterval::removeEmptySubranges() afterwards.
void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
/// Extend the live range \p LR to reach all points in \p Indices. The
/// points in the \p Indices array must be jointly dominated by the union
/// of the existing defs in \p LR and points in \p Undefs.
///
/// PHI-defs are added as needed to maintain SSA form.
///
/// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
/// will be extended to be live out of the basic block.
/// If a SlotIndex in \p Indices is jointy dominated only by points in
/// \p Undefs, the live range will not be extended to that point.
///
/// See also LiveRangeCalc::extend().
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
ArrayRef<SlotIndex> Undefs);
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
extendToIndices(LR, Indices, /*Undefs=*/{});
}
/// If \p LR has a live value at \p Kill, prune its live range by removing
/// any liveness reachable from Kill. Add live range end points to
/// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
/// value's live range.
///
/// Calling pruneValue() and extendToIndices() can be used to reconstruct
/// SSA form after adding defs to a virtual register.
void pruneValue(LiveRange &LR, SlotIndex Kill,
SmallVectorImpl<SlotIndex> *EndPoints);
/// This function should not be used. Its intent is to tell you that you are
/// doing something wrong if you call pruneValue directly on a
/// LiveInterval. Indeed, you are supposed to call pruneValue on the main
/// LiveRange and all the LiveRanges of the subranges if any.
LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
SmallVectorImpl<SlotIndex> *) {
llvm_unreachable(
"Use pruneValue on the main LiveRange and on each subrange");
}
SlotIndexes *getSlotIndexes() const {
return Indexes;
}
AliasAnalysis *getAliasAnalysis() const {
return AA;
}
/// Returns true if the specified machine instr has been removed or was
/// never entered in the map.
bool isNotInMIMap(const MachineInstr &Instr) const {
return !Indexes->hasIndex(Instr);
}
/// Returns the base index of the given instruction.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
return Indexes->getInstructionIndex(Instr);
}
/// Returns the instruction associated with the given index.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return Indexes->getInstructionFromIndex(index);
}
/// Return the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return Indexes->getMBBStartIdx(mbb);
}
/// Return the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return Indexes->getMBBEndIdx(mbb);
}
bool isLiveInToMBB(const LiveRange &LR,
const MachineBasicBlock *mbb) const {
return LR.liveAt(getMBBStartIdx(mbb));
}
bool isLiveOutOfMBB(const LiveRange &LR,
const MachineBasicBlock *mbb) const {
return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
}
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
return Indexes->getMBBFromIndex(index);
}
void insertMBBInMaps(MachineBasicBlock *MBB) {
Indexes->insertMBBInMaps(MBB);
assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
"Blocks must be added in order.");
RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
}
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
return Indexes->insertMachineInstrInMaps(MI);
}
void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
MachineBasicBlock::iterator E) {
for (MachineBasicBlock::iterator I = B; I != E; ++I)
Indexes->insertMachineInstrInMaps(*I);
}
void RemoveMachineInstrFromMaps(MachineInstr &MI) {
Indexes->removeMachineInstrFromMaps(MI);
}
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
return Indexes->replaceMachineInstrInMaps(MI, NewMI);
}
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
/// Pass entry point; Calculates LiveIntervals.
bool runOnMachineFunction(MachineFunction&) override;
/// Implement the dump method.
void print(raw_ostream &O, const Module* = nullptr) const override;
/// If LI is confined to a single basic block, return a pointer to that
/// block. If LI is live in to or out of any block, return NULL.
MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
/// Returns true if VNI is killed by any PHI-def values in LI.
/// This may conservatively return true to avoid expensive computations.
bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
/// Add kill flags to any instruction that kills a virtual register.
void addKillFlags(const VirtRegMap*);
/// Call this method to notify LiveIntervals that instruction \p MI has been
/// moved within a basic block. This will update the live intervals for all
/// operands of \p MI. Moves between basic blocks are not supported.
///
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
void handleMove(MachineInstr &MI, bool UpdateFlags = false);
/// Update intervals for operands of \p MI so that they begin/end on the
/// SlotIndex for \p BundleStart.
///
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
///
/// Requires MI and BundleStart to have SlotIndexes, and assumes
/// existing liveness is accurate. BundleStart should be the first
/// instruction in the Bundle.
void handleMoveIntoBundle(MachineInstr &MI, MachineInstr &BundleStart,
bool UpdateFlags = false);
/// Update live intervals for instructions in a range of iterators. It is
/// intended for use after target hooks that may insert or remove
/// instructions, and is only efficient for a small number of instructions.
///
/// OrigRegs is a vector of registers that were originally used by the
/// instructions in the range between the two iterators.
///
/// Currently, the only only changes that are supported are simple removal
/// and addition of uses.
void repairIntervalsInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
ArrayRef<unsigned> OrigRegs);
// Register mask functions.
//
// Machine instructions may use a register mask operand to indicate that a
// large number of registers are clobbered by the instruction. This is
// typically used for calls.
//
// For compile time performance reasons, these clobbers are not recorded in
// the live intervals for individual physical registers. Instead,
// LiveIntervalAnalysis maintains a sorted list of instructions with
// register mask operands.
/// Returns a sorted array of slot indices of all instructions with
/// register mask operands.
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
/// Returns a sorted array of slot indices of all instructions with register
/// mask operands in the basic block numbered \p MBBNum.
ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskSlots().slice(P.first, P.second);
}
/// Returns an array of register mask pointers corresponding to
/// getRegMaskSlots().
ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
/// Returns an array of mask pointers corresponding to
/// getRegMaskSlotsInBlock(MBBNum).
ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskBits().slice(P.first, P.second);
}
/// Test if \p LI is live across any register mask instructions, and
/// compute a bit mask of physical registers that are not clobbered by any
/// of them.
///
/// Returns false if \p LI doesn't cross any register mask instructions. In
/// that case, the bit vector is not filled in.
bool checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs);
// Register unit functions.
//
// Fixed interference occurs when MachineInstrs use physregs directly
// instead of virtual registers. This typically happens when passing
// arguments to a function call, or when instructions require operands in
// fixed registers.
//
// Each physreg has one or more register units, see MCRegisterInfo. We
// track liveness per register unit to handle aliasing registers more
// efficiently.
/// Return the live range for register unit \p Unit. It will be computed if
/// it doesn't exist.
LiveRange &getRegUnit(unsigned Unit) {
LiveRange *LR = RegUnitRanges[Unit];
if (!LR) {
// Compute missing ranges on demand.
// Use segment set to speed-up initial computation of the live range.
RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
computeRegUnitRange(*LR, Unit);
}
return *LR;
}
/// Return the live range for register unit \p Unit if it has already been
/// computed, or nullptr if it hasn't been computed yet.
LiveRange *getCachedRegUnit(unsigned Unit) {
return RegUnitRanges[Unit];
}
const LiveRange *getCachedRegUnit(unsigned Unit) const {
return RegUnitRanges[Unit];
}
/// Remove computed live range for register unit \p Unit. Subsequent uses
/// should rely on on-demand recomputation.
void removeRegUnit(unsigned Unit) {
delete RegUnitRanges[Unit];
RegUnitRanges[Unit] = nullptr;
}
/// Remove associated live ranges for the register units associated with \p
/// Reg. Subsequent uses should rely on on-demand recomputation. \note This
/// method can result in inconsistent liveness tracking if multiple phyical
/// registers share a regunit, and should be used cautiously.
void removeAllRegUnitsForPhysReg(unsigned Reg) {
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
removeRegUnit(*Units);
}
/// Remove value numbers and related live segments starting at position
/// \p Pos that are part of any liverange of physical register \p Reg or one
/// of its subregisters.
void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
/// Remove value number and related live segments of \p LI and its subranges
/// that start at position \p Pos.
void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
/// Split separate components in LiveInterval \p LI into separate intervals.
void splitSeparateComponents(LiveInterval &LI,
SmallVectorImpl<LiveInterval*> &SplitLIs);
/// For live interval \p LI with correct SubRanges construct matching
/// information for the main live range. Expects the main live range to not
/// have any segments or value numbers.
void constructMainRangeFromSubranges(LiveInterval &LI);
private:
/// Compute live intervals for all virtual registers.
void computeVirtRegs();
/// Compute RegMaskSlots and RegMaskBits.
void computeRegMasks();
/// Walk the values in \p LI and check for dead values:
/// - Dead PHIDef values are marked as unused.
/// - Dead operands are marked as such.
/// - Completely dead machine instructions are added to the \p dead vector
/// if it is not nullptr.
/// Returns true if any PHI value numbers have been removed which may
/// have separated the interval into multiple connected components.
bool computeDeadValues(LiveInterval &LI,
SmallVectorImpl<MachineInstr*> *dead);
static LiveInterval* createInterval(unsigned Reg);
void printInstrs(raw_ostream &O) const;
void dumpInstrs() const;
void computeLiveInRegUnits();
void computeRegUnitRange(LiveRange&, unsigned Unit);
void computeVirtRegInterval(LiveInterval&);
using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
void extendSegmentsToUses(LiveRange &Segments,
ShrinkToUsesWorkList &WorkList, unsigned Reg,
LaneBitmask LaneMask);
/// Helper function for repairIntervalsInRange(), walks backwards and
/// creates/modifies live segments in \p LR to match the operands found.
/// Only full operands or operands with subregisters matching \p LaneMask
/// are considered.
void repairOldRegInRange(MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
const SlotIndex endIdx, LiveRange &LR,
unsigned Reg,
LaneBitmask LaneMask = LaneBitmask::getAll());
class HMEditor;
};
} // end namespace llvm
#endif
|