reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes.  Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live range for register v if there is no instruction with number j' >= j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation ranges can have holes,
// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
// individual segment is represented as an instance of LiveRange::Segment,
// and the whole range is represented as an instance of LiveRange.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
#define LLVM_CODEGEN_LIVEINTERVAL_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <functional>
#include <memory>
#include <set>
#include <tuple>
#include <utility>

namespace llvm {

  class CoalescerPair;
  class LiveIntervals;
  class MachineRegisterInfo;
  class raw_ostream;

  /// VNInfo - Value Number Information.
  /// This class holds information about a machine level values, including
  /// definition and use points.
  ///
  class VNInfo {
  public:
    using Allocator = BumpPtrAllocator;

    /// The ID number of this value.
    unsigned id;

    /// The index of the defining instruction.
    SlotIndex def;

    /// VNInfo constructor.
    VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}

    /// VNInfo constructor, copies values from orig, except for the value number.
    VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}

    /// Copy from the parameter into this VNInfo.
    void copyFrom(VNInfo &src) {
      def = src.def;
    }

    /// Returns true if this value is defined by a PHI instruction (or was,
    /// PHI instructions may have been eliminated).
    /// PHI-defs begin at a block boundary, all other defs begin at register or
    /// EC slots.
    bool isPHIDef() const { return def.isBlock(); }

    /// Returns true if this value is unused.
    bool isUnused() const { return !def.isValid(); }

    /// Mark this value as unused.
    void markUnused() { def = SlotIndex(); }
  };

  /// Result of a LiveRange query. This class hides the implementation details
  /// of live ranges, and it should be used as the primary interface for
  /// examining live ranges around instructions.
  class LiveQueryResult {
    VNInfo *const EarlyVal;
    VNInfo *const LateVal;
    const SlotIndex EndPoint;
    const bool Kill;

  public:
    LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
                    bool Kill)
      : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
    {}

    /// Return the value that is live-in to the instruction. This is the value
    /// that will be read by the instruction's use operands. Return NULL if no
    /// value is live-in.
    VNInfo *valueIn() const {
      return EarlyVal;
    }

    /// Return true if the live-in value is killed by this instruction. This
    /// means that either the live range ends at the instruction, or it changes
    /// value.
    bool isKill() const {
      return Kill;
    }

    /// Return true if this instruction has a dead def.
    bool isDeadDef() const {
      return EndPoint.isDead();
    }

    /// Return the value leaving the instruction, if any. This can be a
    /// live-through value, or a live def. A dead def returns NULL.
    VNInfo *valueOut() const {
      return isDeadDef() ? nullptr : LateVal;
    }

    /// Returns the value alive at the end of the instruction, if any. This can
    /// be a live-through value, a live def or a dead def.
    VNInfo *valueOutOrDead() const {
      return LateVal;
    }

    /// Return the value defined by this instruction, if any. This includes
    /// dead defs, it is the value created by the instruction's def operands.
    VNInfo *valueDefined() const {
      return EarlyVal == LateVal ? nullptr : LateVal;
    }

    /// Return the end point of the last live range segment to interact with
    /// the instruction, if any.
    ///
    /// The end point is an invalid SlotIndex only if the live range doesn't
    /// intersect the instruction at all.
    ///
    /// The end point may be at or past the end of the instruction's basic
    /// block. That means the value was live out of the block.
    SlotIndex endPoint() const {
      return EndPoint;
    }
  };

  /// This class represents the liveness of a register, stack slot, etc.
  /// It manages an ordered list of Segment objects.
  /// The Segments are organized in a static single assignment form: At places
  /// where a new value is defined or different values reach a CFG join a new
  /// segment with a new value number is used.
  class LiveRange {
  public:
    /// This represents a simple continuous liveness interval for a value.
    /// The start point is inclusive, the end point exclusive. These intervals
    /// are rendered as [start,end).
    struct Segment {
      SlotIndex start;  // Start point of the interval (inclusive)
      SlotIndex end;    // End point of the interval (exclusive)
      VNInfo *valno = nullptr; // identifier for the value contained in this
                               // segment.

      Segment() = default;

      Segment(SlotIndex S, SlotIndex E, VNInfo *V)
        : start(S), end(E), valno(V) {
        assert(S < E && "Cannot create empty or backwards segment");
      }

      /// Return true if the index is covered by this segment.
      bool contains(SlotIndex I) const {
        return start <= I && I < end;
      }

      /// Return true if the given interval, [S, E), is covered by this segment.
      bool containsInterval(SlotIndex S, SlotIndex E) const {
        assert((S < E) && "Backwards interval?");
        return (start <= S && S < end) && (start < E && E <= end);
      }

      bool operator<(const Segment &Other) const {
        return std::tie(start, end) < std::tie(Other.start, Other.end);
      }
      bool operator==(const Segment &Other) const {
        return start == Other.start && end == Other.end;
      }

      bool operator!=(const Segment &Other) const {
        return !(*this == Other);
      }

      void dump() const;
    };

    using Segments = SmallVector<Segment, 2>;
    using VNInfoList = SmallVector<VNInfo *, 2>;

    Segments segments;   // the liveness segments
    VNInfoList valnos;   // value#'s

    // The segment set is used temporarily to accelerate initial computation
    // of live ranges of physical registers in computeRegUnitRange.
    // After that the set is flushed to the segment vector and deleted.
    using SegmentSet = std::set<Segment>;
    std::unique_ptr<SegmentSet> segmentSet;

    using iterator = Segments::iterator;
    using const_iterator = Segments::const_iterator;

    iterator begin() { return segments.begin(); }
    iterator end()   { return segments.end(); }

    const_iterator begin() const { return segments.begin(); }
    const_iterator end() const  { return segments.end(); }

    using vni_iterator = VNInfoList::iterator;
    using const_vni_iterator = VNInfoList::const_iterator;

    vni_iterator vni_begin() { return valnos.begin(); }
    vni_iterator vni_end()   { return valnos.end(); }

    const_vni_iterator vni_begin() const { return valnos.begin(); }
    const_vni_iterator vni_end() const   { return valnos.end(); }

    /// Constructs a new LiveRange object.
    LiveRange(bool UseSegmentSet = false)
        : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
                                   : nullptr) {}

    /// Constructs a new LiveRange object by copying segments and valnos from
    /// another LiveRange.
    LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
      assert(Other.segmentSet == nullptr &&
             "Copying of LiveRanges with active SegmentSets is not supported");
      assign(Other, Allocator);
    }

    /// Copies values numbers and live segments from \p Other into this range.
    void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
      if (this == &Other)
        return;

      assert(Other.segmentSet == nullptr &&
             "Copying of LiveRanges with active SegmentSets is not supported");
      // Duplicate valnos.
      for (const VNInfo *VNI : Other.valnos)
        createValueCopy(VNI, Allocator);
      // Now we can copy segments and remap their valnos.
      for (const Segment &S : Other.segments)
        segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
    }

    /// advanceTo - Advance the specified iterator to point to the Segment
    /// containing the specified position, or end() if the position is past the
    /// end of the range.  If no Segment contains this position, but the
    /// position is in a hole, this method returns an iterator pointing to the
    /// Segment immediately after the hole.
    iterator advanceTo(iterator I, SlotIndex Pos) {
      assert(I != end());
      if (Pos >= endIndex())
        return end();
      while (I->end <= Pos) ++I;
      return I;
    }

    const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
      assert(I != end());
      if (Pos >= endIndex())
        return end();
      while (I->end <= Pos) ++I;
      return I;
    }

    /// find - Return an iterator pointing to the first segment that ends after
    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
    /// when searching large ranges.
    ///
    /// If Pos is contained in a Segment, that segment is returned.
    /// If Pos is in a hole, the following Segment is returned.
    /// If Pos is beyond endIndex, end() is returned.
    iterator find(SlotIndex Pos);

    const_iterator find(SlotIndex Pos) const {
      return const_cast<LiveRange*>(this)->find(Pos);
    }

    void clear() {
      valnos.clear();
      segments.clear();
    }

    size_t size() const {
      return segments.size();
    }

    bool hasAtLeastOneValue() const { return !valnos.empty(); }

    bool containsOneValue() const { return valnos.size() == 1; }

    unsigned getNumValNums() const { return (unsigned)valnos.size(); }

    /// getValNumInfo - Returns pointer to the specified val#.
    ///
    inline VNInfo *getValNumInfo(unsigned ValNo) {
      return valnos[ValNo];
    }
    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
      return valnos[ValNo];
    }

    /// containsValue - Returns true if VNI belongs to this range.
    bool containsValue(const VNInfo *VNI) const {
      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
    }

    /// getNextValue - Create a new value number and return it.  MIIdx specifies
    /// the instruction that defines the value number.
    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
      VNInfo *VNI =
        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
      valnos.push_back(VNI);
      return VNI;
    }

    /// createDeadDef - Make sure the range has a value defined at Def.
    /// If one already exists, return it. Otherwise allocate a new value and
    /// add liveness for a dead def.
    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);

    /// Create a def of value @p VNI. Return @p VNI. If there already exists
    /// a definition at VNI->def, the value defined there must be @p VNI.
    VNInfo *createDeadDef(VNInfo *VNI);

    /// Create a copy of the given value. The new value will be identical except
    /// for the Value number.
    VNInfo *createValueCopy(const VNInfo *orig,
                            VNInfo::Allocator &VNInfoAllocator) {
      VNInfo *VNI =
        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
      valnos.push_back(VNI);
      return VNI;
    }

    /// RenumberValues - Renumber all values in order of appearance and remove
    /// unused values.
    void RenumberValues();

    /// MergeValueNumberInto - This method is called when two value numbers
    /// are found to be equivalent.  This eliminates V1, replacing all
    /// segments with the V1 value number with the V2 value number.  This can
    /// cause merging of V1/V2 values numbers and compaction of the value space.
    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);

    /// Merge all of the live segments of a specific val# in RHS into this live
    /// range as the specified value number. The segments in RHS are allowed
    /// to overlap with segments in the current range, it will replace the
    /// value numbers of the overlaped live segments with the specified value
    /// number.
    void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);

    /// MergeValueInAsValue - Merge all of the segments of a specific val#
    /// in RHS into this live range as the specified value number.
    /// The segments in RHS are allowed to overlap with segments in the
    /// current range, but only if the overlapping segments have the
    /// specified value number.
    void MergeValueInAsValue(const LiveRange &RHS,
                             const VNInfo *RHSValNo, VNInfo *LHSValNo);

    bool empty() const { return segments.empty(); }

    /// beginIndex - Return the lowest numbered slot covered.
    SlotIndex beginIndex() const {
      assert(!empty() && "Call to beginIndex() on empty range.");
      return segments.front().start;
    }

    /// endNumber - return the maximum point of the range of the whole,
    /// exclusive.
    SlotIndex endIndex() const {
      assert(!empty() && "Call to endIndex() on empty range.");
      return segments.back().end;
    }

    bool expiredAt(SlotIndex index) const {
      return index >= endIndex();
    }

    bool liveAt(SlotIndex index) const {
      const_iterator r = find(index);
      return r != end() && r->start <= index;
    }

    /// Return the segment that contains the specified index, or null if there
    /// is none.
    const Segment *getSegmentContaining(SlotIndex Idx) const {
      const_iterator I = FindSegmentContaining(Idx);
      return I == end() ? nullptr : &*I;
    }

    /// Return the live segment that contains the specified index, or null if
    /// there is none.
    Segment *getSegmentContaining(SlotIndex Idx) {
      iterator I = FindSegmentContaining(Idx);
      return I == end() ? nullptr : &*I;
    }

    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
    VNInfo *getVNInfoAt(SlotIndex Idx) const {
      const_iterator I = FindSegmentContaining(Idx);
      return I == end() ? nullptr : I->valno;
    }

    /// getVNInfoBefore - Return the VNInfo that is live up to but not
    /// necessarilly including Idx, or NULL. Use this to find the reaching def
    /// used by an instruction at this SlotIndex position.
    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
      const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
      return I == end() ? nullptr : I->valno;
    }

    /// Return an iterator to the segment that contains the specified index, or
    /// end() if there is none.
    iterator FindSegmentContaining(SlotIndex Idx) {
      iterator I = find(Idx);
      return I != end() && I->start <= Idx ? I : end();
    }

    const_iterator FindSegmentContaining(SlotIndex Idx) const {
      const_iterator I = find(Idx);
      return I != end() && I->start <= Idx ? I : end();
    }

    /// overlaps - Return true if the intersection of the two live ranges is
    /// not empty.
    bool overlaps(const LiveRange &other) const {
      if (other.empty())
        return false;
      return overlapsFrom(other, other.begin());
    }

    /// overlaps - Return true if the two ranges have overlapping segments
    /// that are not coalescable according to CP.
    ///
    /// Overlapping segments where one range is defined by a coalescable
    /// copy are allowed.
    bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
                  const SlotIndexes&) const;

    /// overlaps - Return true if the live range overlaps an interval specified
    /// by [Start, End).
    bool overlaps(SlotIndex Start, SlotIndex End) const;

    /// overlapsFrom - Return true if the intersection of the two live ranges
    /// is not empty.  The specified iterator is a hint that we can begin
    /// scanning the Other range starting at I.
    bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;

    /// Returns true if all segments of the @p Other live range are completely
    /// covered by this live range.
    /// Adjacent live ranges do not affect the covering:the liverange
    /// [1,5](5,10] covers (3,7].
    bool covers(const LiveRange &Other) const;

    /// Add the specified Segment to this range, merging segments as
    /// appropriate.  This returns an iterator to the inserted segment (which
    /// may have grown since it was inserted).
    iterator addSegment(Segment S);

    /// Attempt to extend a value defined after @p StartIdx to include @p Use.
    /// Both @p StartIdx and @p Use should be in the same basic block. In case
    /// of subranges, an extension could be prevented by an explicit "undef"
    /// caused by a <def,read-undef> on a non-overlapping lane. The list of
    /// location of such "undefs" should be provided in @p Undefs.
    /// The return value is a pair: the first element is VNInfo of the value
    /// that was extended (possibly nullptr), the second is a boolean value
    /// indicating whether an "undef" was encountered.
    /// If this range is live before @p Use in the basic block that starts at
    /// @p StartIdx, and there is no intervening "undef", extend it to be live
    /// up to @p Use, and return the pair {value, false}. If there is no
    /// segment before @p Use and there is no "undef" between @p StartIdx and
    /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
    /// return {nullptr, true}.
    std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
        SlotIndex StartIdx, SlotIndex Kill);

    /// Simplified version of the above "extendInBlock", which assumes that
    /// no register lanes are undefined by <def,read-undef> operands.
    /// If this range is live before @p Use in the basic block that starts
    /// at @p StartIdx, extend it to be live up to @p Use, and return the
    /// value. If there is no segment before @p Use, return nullptr.
    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);

    /// join - Join two live ranges (this, and other) together.  This applies
    /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
    /// the ranges are not joinable, this aborts.
    void join(LiveRange &Other,
              const int *ValNoAssignments,
              const int *RHSValNoAssignments,
              SmallVectorImpl<VNInfo *> &NewVNInfo);

    /// True iff this segment is a single segment that lies between the
    /// specified boundaries, exclusively. Vregs live across a backedge are not
    /// considered local. The boundaries are expected to lie within an extended
    /// basic block, so vregs that are not live out should contain no holes.
    bool isLocal(SlotIndex Start, SlotIndex End) const {
      return beginIndex() > Start.getBaseIndex() &&
        endIndex() < End.getBoundaryIndex();
    }

    /// Remove the specified segment from this range.  Note that the segment
    /// must be a single Segment in its entirety.
    void removeSegment(SlotIndex Start, SlotIndex End,
                       bool RemoveDeadValNo = false);

    void removeSegment(Segment S, bool RemoveDeadValNo = false) {
      removeSegment(S.start, S.end, RemoveDeadValNo);
    }

    /// Remove segment pointed to by iterator @p I from this range.  This does
    /// not remove dead value numbers.
    iterator removeSegment(iterator I) {
      return segments.erase(I);
    }

    /// Query Liveness at Idx.
    /// The sub-instruction slot of Idx doesn't matter, only the instruction
    /// it refers to is considered.
    LiveQueryResult Query(SlotIndex Idx) const {
      // Find the segment that enters the instruction.
      const_iterator I = find(Idx.getBaseIndex());
      const_iterator E = end();
      if (I == E)
        return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);

      // Is this an instruction live-in segment?
      // If Idx is the start index of a basic block, include live-in segments
      // that start at Idx.getBaseIndex().
      VNInfo *EarlyVal = nullptr;
      VNInfo *LateVal  = nullptr;
      SlotIndex EndPoint;
      bool Kill = false;
      if (I->start <= Idx.getBaseIndex()) {
        EarlyVal = I->valno;
        EndPoint = I->end;
        // Move to the potentially live-out segment.
        if (SlotIndex::isSameInstr(Idx, I->end)) {
          Kill = true;
          if (++I == E)
            return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
        }
        // Special case: A PHIDef value can have its def in the middle of a
        // segment if the value happens to be live out of the layout
        // predecessor.
        // Such a value is not live-in.
        if (EarlyVal->def == Idx.getBaseIndex())
          EarlyVal = nullptr;
      }
      // I now points to the segment that may be live-through, or defined by
      // this instr. Ignore segments starting after the current instr.
      if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
        LateVal = I->valno;
        EndPoint = I->end;
      }
      return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
    }

    /// removeValNo - Remove all the segments defined by the specified value#.
    /// Also remove the value# from value# list.
    void removeValNo(VNInfo *ValNo);

    /// Returns true if the live range is zero length, i.e. no live segments
    /// span instructions. It doesn't pay to spill such a range.
    bool isZeroLength(SlotIndexes *Indexes) const {
      for (const Segment &S : segments)
        if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
            S.end.getBaseIndex())
          return false;
      return true;
    }

    // Returns true if any segment in the live range contains any of the
    // provided slot indexes.  Slots which occur in holes between
    // segments will not cause the function to return true.
    bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;

    bool operator<(const LiveRange& other) const {
      const SlotIndex &thisIndex = beginIndex();
      const SlotIndex &otherIndex = other.beginIndex();
      return thisIndex < otherIndex;
    }

    /// Returns true if there is an explicit "undef" between @p Begin
    /// @p End.
    bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
                   SlotIndex End) const {
      return std::any_of(Undefs.begin(), Undefs.end(),
                [Begin,End] (SlotIndex Idx) -> bool {
                  return Begin <= Idx && Idx < End;
                });
    }

    /// Flush segment set into the regular segment vector.
    /// The method is to be called after the live range
    /// has been created, if use of the segment set was
    /// activated in the constructor of the live range.
    void flushSegmentSet();

    /// Stores indexes from the input index sequence R at which this LiveRange
    /// is live to the output O iterator.
    /// R is a range of _ascending sorted_ _random_ access iterators
    /// to the input indexes. Indexes stored at O are ascending sorted so it
    /// can be used directly in the subsequent search (for example for
    /// subranges). Returns true if found at least one index.
    template <typename Range, typename OutputIt>
    bool findIndexesLiveAt(Range &&R, OutputIt O) const {
      assert(std::is_sorted(R.begin(), R.end()));
      auto Idx = R.begin(), EndIdx = R.end();
      auto Seg = segments.begin(), EndSeg = segments.end();
      bool Found = false;
      while (Idx != EndIdx && Seg != EndSeg) {
        // if the Seg is lower find first segment that is above Idx using binary
        // search
        if (Seg->end <= *Idx) {
          Seg = std::upper_bound(++Seg, EndSeg, *Idx,
            [=](typename std::remove_reference<decltype(*Idx)>::type V,
                const typename std::remove_reference<decltype(*Seg)>::type &S) {
              return V < S.end;
            });
          if (Seg == EndSeg)
            break;
        }
        auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
        if (NotLessStart == EndIdx)
          break;
        auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
        if (NotLessEnd != NotLessStart) {
          Found = true;
          O = std::copy(NotLessStart, NotLessEnd, O);
        }
        Idx = NotLessEnd;
        ++Seg;
      }
      return Found;
    }

    void print(raw_ostream &OS) const;
    void dump() const;

    /// Walk the range and assert if any invariants fail to hold.
    ///
    /// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
    void verify() const {}
#else
    void verify() const;
#endif

  protected:
    /// Append a segment to the list of segments.
    void append(const LiveRange::Segment S);

  private:
    friend class LiveRangeUpdater;
    void addSegmentToSet(Segment S);
    void markValNoForDeletion(VNInfo *V);
  };

  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
    LR.print(OS);
    return OS;
  }

  /// LiveInterval - This class represents the liveness of a register,
  /// or stack slot.
  class LiveInterval : public LiveRange {
  public:
    using super = LiveRange;

    /// A live range for subregisters. The LaneMask specifies which parts of the
    /// super register are covered by the interval.
    /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
    class SubRange : public LiveRange {
    public:
      SubRange *Next = nullptr;
      LaneBitmask LaneMask;

      /// Constructs a new SubRange object.
      SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}

      /// Constructs a new SubRange object by copying liveness from @p Other.
      SubRange(LaneBitmask LaneMask, const LiveRange &Other,
               BumpPtrAllocator &Allocator)
        : LiveRange(Other, Allocator), LaneMask(LaneMask) {}

      void print(raw_ostream &OS) const;
      void dump() const;
    };

  private:
    SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
                                   /// ranges.

  public:
    const unsigned reg;  // the register or stack slot of this interval.
    float weight;        // weight of this interval

    LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {}

    ~LiveInterval() {
      clearSubRanges();
    }

    template<typename T>
    class SingleLinkedListIterator {
      T *P;

    public:
      SingleLinkedListIterator<T>(T *P) : P(P) {}

      SingleLinkedListIterator<T> &operator++() {
        P = P->Next;
        return *this;
      }
      SingleLinkedListIterator<T> operator++(int) {
        SingleLinkedListIterator res = *this;
        ++*this;
        return res;
      }
      bool operator!=(const SingleLinkedListIterator<T> &Other) {
        return P != Other.operator->();
      }
      bool operator==(const SingleLinkedListIterator<T> &Other) {
        return P == Other.operator->();
      }
      T &operator*() const {
        return *P;
      }
      T *operator->() const {
        return P;
      }
    };

    using subrange_iterator = SingleLinkedListIterator<SubRange>;
    using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;

    subrange_iterator subrange_begin() {
      return subrange_iterator(SubRanges);
    }
    subrange_iterator subrange_end() {
      return subrange_iterator(nullptr);
    }

    const_subrange_iterator subrange_begin() const {
      return const_subrange_iterator(SubRanges);
    }
    const_subrange_iterator subrange_end() const {
      return const_subrange_iterator(nullptr);
    }

    iterator_range<subrange_iterator> subranges() {
      return make_range(subrange_begin(), subrange_end());
    }

    iterator_range<const_subrange_iterator> subranges() const {
      return make_range(subrange_begin(), subrange_end());
    }

    /// Creates a new empty subregister live range. The range is added at the
    /// beginning of the subrange list; subrange iterators stay valid.
    SubRange *createSubRange(BumpPtrAllocator &Allocator,
                             LaneBitmask LaneMask) {
      SubRange *Range = new (Allocator) SubRange(LaneMask);
      appendSubRange(Range);
      return Range;
    }

    /// Like createSubRange() but the new range is filled with a copy of the
    /// liveness information in @p CopyFrom.
    SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
                                 LaneBitmask LaneMask,
                                 const LiveRange &CopyFrom) {
      SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
      appendSubRange(Range);
      return Range;
    }

    /// Returns true if subregister liveness information is available.
    bool hasSubRanges() const {
      return SubRanges != nullptr;
    }

    /// Removes all subregister liveness information.
    void clearSubRanges();

    /// Removes all subranges without any segments (subranges without segments
    /// are not considered valid and should only exist temporarily).
    void removeEmptySubRanges();

    /// getSize - Returns the sum of sizes of all the LiveRange's.
    ///
    unsigned getSize() const;

    /// isSpillable - Can this interval be spilled?
    bool isSpillable() const {
      return weight != huge_valf;
    }

    /// markNotSpillable - Mark interval as not spillable
    void markNotSpillable() {
      weight = huge_valf;
    }

    /// For a given lane mask @p LaneMask, compute indexes at which the
    /// lane is marked undefined by subregister <def,read-undef> definitions.
    void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
                               LaneBitmask LaneMask,
                               const MachineRegisterInfo &MRI,
                               const SlotIndexes &Indexes) const;

    /// Refines the subranges to support \p LaneMask. This may only be called
    /// for LI.hasSubrange()==true. Subregister ranges are split or created
    /// until \p LaneMask can be matched exactly. \p Mod is executed on the
    /// matching subranges.
    ///
    /// Example:
    ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
    ///    L000F, refining for mask L0018. Will split the L00F0 lane into
    ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
    ///    function will be applied to the L0010 and L0008 subranges.
    ///
    /// \p Indexes and \p TRI are required to clean up the VNIs that
    /// don't defne the related lane masks after they get shrunk. E.g.,
    /// when L000F gets split into L0007 and L0008 maybe only a subset
    /// of the VNIs that defined L000F defines L0007.
    void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
                         std::function<void(LiveInterval::SubRange &)> Apply,
                         const SlotIndexes &Indexes,
                         const TargetRegisterInfo &TRI);

    bool operator<(const LiveInterval& other) const {
      const SlotIndex &thisIndex = beginIndex();
      const SlotIndex &otherIndex = other.beginIndex();
      return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
    }

    void print(raw_ostream &OS) const;
    void dump() const;

    /// Walks the interval and assert if any invariants fail to hold.
    ///
    /// Note that this is a no-op when asserts are disabled.
#ifdef NDEBUG
    void verify(const MachineRegisterInfo *MRI = nullptr) const {}
#else
    void verify(const MachineRegisterInfo *MRI = nullptr) const;
#endif

  private:
    /// Appends @p Range to SubRanges list.
    void appendSubRange(SubRange *Range) {
      Range->Next = SubRanges;
      SubRanges = Range;
    }

    /// Free memory held by SubRange.
    void freeSubRange(SubRange *S);
  };

  inline raw_ostream &operator<<(raw_ostream &OS,
                                 const LiveInterval::SubRange &SR) {
    SR.print(OS);
    return OS;
  }

  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
    LI.print(OS);
    return OS;
  }

  raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);

  inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
    return V < S.start;
  }

  inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
    return S.start < V;
  }

  /// Helper class for performant LiveRange bulk updates.
  ///
  /// Calling LiveRange::addSegment() repeatedly can be expensive on large
  /// live ranges because segments after the insertion point may need to be
  /// shifted. The LiveRangeUpdater class can defer the shifting when adding
  /// many segments in order.
  ///
  /// The LiveRange will be in an invalid state until flush() is called.
  class LiveRangeUpdater {
    LiveRange *LR;
    SlotIndex LastStart;
    LiveRange::iterator WriteI;
    LiveRange::iterator ReadI;
    SmallVector<LiveRange::Segment, 16> Spills;
    void mergeSpills();

  public:
    /// Create a LiveRangeUpdater for adding segments to LR.
    /// LR will temporarily be in an invalid state until flush() is called.
    LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}

    ~LiveRangeUpdater() { flush(); }

    /// Add a segment to LR and coalesce when possible, just like
    /// LR.addSegment(). Segments should be added in increasing start order for
    /// best performance.
    void add(LiveRange::Segment);

    void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
      add(LiveRange::Segment(Start, End, VNI));
    }

    /// Return true if the LR is currently in an invalid state, and flush()
    /// needs to be called.
    bool isDirty() const { return LastStart.isValid(); }

    /// Flush the updater state to LR so it is valid and contains all added
    /// segments.
    void flush();

    /// Select a different destination live range.
    void setDest(LiveRange *lr) {
      if (LR != lr && isDirty())
        flush();
      LR = lr;
    }

    /// Get the current destination live range.
    LiveRange *getDest() const { return LR; }

    void dump() const;
    void print(raw_ostream&) const;
  };

  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
    X.print(OS);
    return OS;
  }

  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
  /// LiveInterval into equivalence clases of connected components. A
  /// LiveInterval that has multiple connected components can be broken into
  /// multiple LiveIntervals.
  ///
  /// Given a LiveInterval that may have multiple connected components, run:
  ///
  ///   unsigned numComps = ConEQ.Classify(LI);
  ///   if (numComps > 1) {
  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
  ///     ConEQ.Distribute(LIS);
  /// }

  class ConnectedVNInfoEqClasses {
    LiveIntervals &LIS;
    IntEqClasses EqClass;

  public:
    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}

    /// Classify the values in \p LR into connected components.
    /// Returns the number of connected components.
    unsigned Classify(const LiveRange &LR);

    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
    /// the equivalence class assigned the VNI.
    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }

    /// Distribute values in \p LI into a separate LiveIntervals
    /// for each connected component. LIV must have an empty LiveInterval for
    /// each additional connected component. The first connected component is
    /// left in \p LI.
    void Distribute(LiveInterval &LI, LiveInterval *LIV[],
                    MachineRegisterInfo &MRI);
  };

} // end namespace llvm

#endif // LLVM_CODEGEN_LIVEINTERVAL_H