1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
| //===-------- LegalizeTypesGeneric.cpp - Generic type legalization --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements generic type expansion and splitting for LegalizeTypes.
// The routines here perform legalization when the details of the type (such as
// whether it is an integer or a float) do not matter.
// Expansion is the act of changing a computation in an illegal type to be a
// computation in two identical registers of a smaller type. The Lo/Hi part
// is required to be stored first in memory on little/big-endian machines.
// Splitting is the act of changing a computation in an illegal type to be a
// computation in two not necessarily identical registers of a smaller type.
// There are no requirements on how the type is represented in memory.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/IR/DataLayout.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
//===----------------------------------------------------------------------===//
// Generic Result Expansion.
//===----------------------------------------------------------------------===//
// These routines assume that the Lo/Hi part is stored first in memory on
// little/big-endian machines, followed by the Hi/Lo part. This means that
// they cannot be used as is on vectors, for which Lo is always stored first.
void DAGTypeLegalizer::ExpandRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
GetExpandedOp(Op, Lo, Hi);
}
void DAGTypeLegalizer::ExpandRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
SDLoc dl(N);
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
case TargetLowering::TypePromoteInteger:
break;
case TargetLowering::TypePromoteFloat:
llvm_unreachable("Bitcast of a promotion-needing float should never need"
"expansion");
case TargetLowering::TypeSoftenFloat:
SplitInteger(GetSoftenedFloat(InOp), Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat: {
auto &DL = DAG.getDataLayout();
// Convert the expanded pieces of the input.
GetExpandedOp(InOp, Lo, Hi);
if (TLI.hasBigEndianPartOrdering(InVT, DL) !=
TLI.hasBigEndianPartOrdering(OutVT, DL))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
}
case TargetLowering::TypeSplitVector:
GetSplitVector(InOp, Lo, Hi);
if (TLI.hasBigEndianPartOrdering(OutVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
case TargetLowering::TypeScalarizeVector:
// Convert the element instead.
SplitInteger(BitConvertToInteger(GetScalarizedVector(InOp)), Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
case TargetLowering::TypeWidenVector: {
assert(!(InVT.getVectorNumElements() & 1) && "Unsupported BITCAST");
InOp = GetWidenedVector(InOp);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(InVT);
std::tie(Lo, Hi) = DAG.SplitVector(InOp, dl, LoVT, HiVT);
if (TLI.hasBigEndianPartOrdering(OutVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
}
}
if (InVT.isVector() && OutVT.isInteger()) {
// Handle cases like i64 = BITCAST v1i64 on x86, where the operand
// is legal but the result is not.
unsigned NumElems = 2;
EVT ElemVT = NOutVT;
EVT NVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, NumElems);
// If <ElemVT * N> is not a legal type, try <ElemVT/2 * (N*2)>.
while (!isTypeLegal(NVT)) {
unsigned NewSizeInBits = ElemVT.getSizeInBits() / 2;
// If the element size is smaller than byte, bail.
if (NewSizeInBits < 8)
break;
NumElems *= 2;
ElemVT = EVT::getIntegerVT(*DAG.getContext(), NewSizeInBits);
NVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, NumElems);
}
if (isTypeLegal(NVT)) {
SDValue CastInOp = DAG.getNode(ISD::BITCAST, dl, NVT, InOp);
SmallVector<SDValue, 8> Vals;
for (unsigned i = 0; i < NumElems; ++i)
Vals.push_back(DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, ElemVT, CastInOp,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
// Build Lo, Hi pair by pairing extracted elements if needed.
unsigned Slot = 0;
for (unsigned e = Vals.size(); e - Slot > 2; Slot += 2, e += 1) {
// Each iteration will BUILD_PAIR two nodes and append the result until
// there are only two nodes left, i.e. Lo and Hi.
SDValue LHS = Vals[Slot];
SDValue RHS = Vals[Slot + 1];
if (DAG.getDataLayout().isBigEndian())
std::swap(LHS, RHS);
Vals.push_back(DAG.getNode(
ISD::BUILD_PAIR, dl,
EVT::getIntegerVT(*DAG.getContext(), LHS.getValueSizeInBits() << 1),
LHS, RHS));
}
Lo = Vals[Slot++];
Hi = Vals[Slot++];
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
return;
}
}
// Lower the bit-convert to a store/load from the stack.
assert(NOutVT.isByteSized() && "Expanded type not byte sized!");
// Create the stack frame object. Make sure it is aligned for both
// the source and expanded destination types.
unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(
NOutVT.getTypeForEVT(*DAG.getContext()));
SDValue StackPtr = DAG.CreateStackTemporary(InVT, Alignment);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
MachinePointerInfo PtrInfo =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
// Emit a store to the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, InOp, StackPtr, PtrInfo);
// Load the first half from the stack slot.
Lo = DAG.getLoad(NOutVT, dl, Store, StackPtr, PtrInfo);
// Increment the pointer to the other half.
unsigned IncrementSize = NOutVT.getSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, dl,
StackPtr.getValueType()));
// Load the second half from the stack slot.
Hi = DAG.getLoad(NOutVT, dl, Store, StackPtr,
PtrInfo.getWithOffset(IncrementSize),
MinAlign(Alignment, IncrementSize));
// Handle endianness of the load.
if (TLI.hasBigEndianPartOrdering(OutVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
}
void DAGTypeLegalizer::ExpandRes_BUILD_PAIR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// Return the operands.
Lo = N->getOperand(0);
Hi = N->getOperand(1);
}
void DAGTypeLegalizer::ExpandRes_EXTRACT_ELEMENT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
GetExpandedOp(N->getOperand(0), Lo, Hi);
SDValue Part = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() ?
Hi : Lo;
assert(Part.getValueType() == N->getValueType(0) &&
"Type twice as big as expanded type not itself expanded!");
GetPairElements(Part, Lo, Hi);
}
void DAGTypeLegalizer::ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue OldVec = N->getOperand(0);
unsigned OldElts = OldVec.getValueType().getVectorNumElements();
EVT OldEltVT = OldVec.getValueType().getVectorElementType();
SDLoc dl(N);
// Convert to a vector of the expanded element type, for example
// <3 x i64> -> <6 x i32>.
EVT OldVT = N->getValueType(0);
EVT NewVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldVT);
if (OldVT != OldEltVT) {
// The result of EXTRACT_VECTOR_ELT may be larger than the element type of
// the input vector. If so, extend the elements of the input vector to the
// same bitwidth as the result before expanding.
assert(OldEltVT.bitsLT(OldVT) && "Result type smaller then element type!");
EVT NVecVT = EVT::getVectorVT(*DAG.getContext(), OldVT, OldElts);
OldVec = DAG.getNode(ISD::ANY_EXTEND, dl, NVecVT, N->getOperand(0));
}
SDValue NewVec = DAG.getNode(ISD::BITCAST, dl,
EVT::getVectorVT(*DAG.getContext(),
NewVT, 2*OldElts),
OldVec);
// Extract the elements at 2 * Idx and 2 * Idx + 1 from the new vector.
SDValue Idx = N->getOperand(1);
Idx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, Idx);
Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, NewVec, Idx);
Idx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
DAG.getConstant(1, dl, Idx.getValueType()));
Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, NewVec, Idx);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
}
void DAGTypeLegalizer::ExpandRes_NormalLoad(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isNormalLoad(N) && "This routine only for normal loads!");
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT ValueVT = LD->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ValueVT);
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
unsigned Alignment = LD->getAlignment();
AAMDNodes AAInfo = LD->getAAInfo();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
Lo = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getPointerInfo(), Alignment,
LD->getMemOperand()->getFlags(), AAInfo);
// Increment the pointer to the other half.
unsigned IncrementSize = NVT.getSizeInBits() / 8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
Hi = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(IncrementSize),
MinAlign(Alignment, IncrementSize),
LD->getMemOperand()->getFlags(), AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Handle endianness of the load.
if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
// Modified the chain - switch anything that used the old chain to use
// the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
}
void DAGTypeLegalizer::ExpandRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT OVT = N->getValueType(0);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), OVT);
SDValue Chain = N->getOperand(0);
SDValue Ptr = N->getOperand(1);
SDLoc dl(N);
const unsigned Align = N->getConstantOperandVal(3);
Lo = DAG.getVAArg(NVT, dl, Chain, Ptr, N->getOperand(2), Align);
Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, N->getOperand(2), 0);
Chain = Hi.getValue(1);
// Handle endianness of the load.
if (TLI.hasBigEndianPartOrdering(OVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
// Modified the chain - switch anything that used the old chain to use
// the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
}
//===--------------------------------------------------------------------===//
// Generic Operand Expansion.
//===--------------------------------------------------------------------===//
void DAGTypeLegalizer::IntegerToVector(SDValue Op, unsigned NumElements,
SmallVectorImpl<SDValue> &Ops,
EVT EltVT) {
assert(Op.getValueType().isInteger());
SDLoc DL(Op);
SDValue Parts[2];
if (NumElements > 1) {
NumElements >>= 1;
SplitInteger(Op, Parts[0], Parts[1]);
if (DAG.getDataLayout().isBigEndian())
std::swap(Parts[0], Parts[1]);
IntegerToVector(Parts[0], NumElements, Ops, EltVT);
IntegerToVector(Parts[1], NumElements, Ops, EltVT);
} else {
Ops.push_back(DAG.getNode(ISD::BITCAST, DL, EltVT, Op));
}
}
SDValue DAGTypeLegalizer::ExpandOp_BITCAST(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isInteger()) {
// An illegal expanding type is being converted to a legal vector type.
// Make a two element vector out of the expanded parts and convert that
// instead, but only if the new vector type is legal (otherwise there
// is no point, and it might create expansion loops). For example, on
// x86 this turns v1i64 = BITCAST i64 into v1i64 = BITCAST v2i32.
//
// FIXME: I'm not sure why we are first trying to split the input into
// a 2 element vector, so I'm leaving it here to maintain the current
// behavior.
unsigned NumElts = 2;
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = EVT::getVectorVT(*DAG.getContext(),
TLI.getTypeToTransformTo(*DAG.getContext(), OVT),
NumElts);
if (!isTypeLegal(NVT)) {
// If we can't find a legal type by splitting the integer in half,
// then we can use the node's value type.
NumElts = N->getValueType(0).getVectorNumElements();
NVT = N->getValueType(0);
}
SmallVector<SDValue, 8> Ops;
IntegerToVector(N->getOperand(0), NumElts, Ops, NVT.getVectorElementType());
SDValue Vec =
DAG.getBuildVector(NVT, dl, makeArrayRef(Ops.data(), NumElts));
return DAG.getNode(ISD::BITCAST, dl, N->getValueType(0), Vec);
}
// Otherwise, store to a temporary and load out again as the new type.
return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
}
SDValue DAGTypeLegalizer::ExpandOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type needs expansion.
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
EVT OldVT = N->getOperand(0).getValueType();
EVT NewVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldVT);
SDLoc dl(N);
assert(OldVT == VecVT.getVectorElementType() &&
"BUILD_VECTOR operand type doesn't match vector element type!");
// Build a vector of twice the length out of the expanded elements.
// For example <3 x i64> -> <6 x i32>.
SmallVector<SDValue, 16> NewElts;
NewElts.reserve(NumElts*2);
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Lo, Hi;
GetExpandedOp(N->getOperand(i), Lo, Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
NewElts.push_back(Lo);
NewElts.push_back(Hi);
}
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NewElts.size());
SDValue NewVec = DAG.getBuildVector(NewVecVT, dl, NewElts);
// Convert the new vector to the old vector type.
return DAG.getNode(ISD::BITCAST, dl, VecVT, NewVec);
}
SDValue DAGTypeLegalizer::ExpandOp_EXTRACT_ELEMENT(SDNode *N) {
SDValue Lo, Hi;
GetExpandedOp(N->getOperand(0), Lo, Hi);
return cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() ? Hi : Lo;
}
SDValue DAGTypeLegalizer::ExpandOp_INSERT_VECTOR_ELT(SDNode *N) {
// The vector type is legal but the element type needs expansion.
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
SDLoc dl(N);
SDValue Val = N->getOperand(1);
EVT OldEVT = Val.getValueType();
EVT NewEVT = TLI.getTypeToTransformTo(*DAG.getContext(), OldEVT);
assert(OldEVT == VecVT.getVectorElementType() &&
"Inserted element type doesn't match vector element type!");
// Bitconvert to a vector of twice the length with elements of the expanded
// type, insert the expanded vector elements, and then convert back.
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewEVT, NumElts*2);
SDValue NewVec = DAG.getNode(ISD::BITCAST, dl,
NewVecVT, N->getOperand(0));
SDValue Lo, Hi;
GetExpandedOp(Val, Lo, Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
SDValue Idx = N->getOperand(2);
Idx = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, Idx);
NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, NewVec, Lo, Idx);
Idx = DAG.getNode(ISD::ADD, dl,
Idx.getValueType(), Idx,
DAG.getConstant(1, dl, Idx.getValueType()));
NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, NewVec, Hi, Idx);
// Convert the new vector to the old vector type.
return DAG.getNode(ISD::BITCAST, dl, VecVT, NewVec);
}
SDValue DAGTypeLegalizer::ExpandOp_SCALAR_TO_VECTOR(SDNode *N) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
assert(VT.getVectorElementType() == N->getOperand(0).getValueType() &&
"SCALAR_TO_VECTOR operand type doesn't match vector element type!");
unsigned NumElts = VT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(NumElts);
Ops[0] = N->getOperand(0);
SDValue UndefVal = DAG.getUNDEF(Ops[0].getValueType());
for (unsigned i = 1; i < NumElts; ++i)
Ops[i] = UndefVal;
return DAG.getBuildVector(VT, dl, Ops);
}
SDValue DAGTypeLegalizer::ExpandOp_NormalStore(SDNode *N, unsigned OpNo) {
assert(ISD::isNormalStore(N) && "This routine only for normal stores!");
assert(OpNo == 1 && "Can only expand the stored value so far");
SDLoc dl(N);
StoreSDNode *St = cast<StoreSDNode>(N);
EVT ValueVT = St->getValue().getValueType();
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), ValueVT);
SDValue Chain = St->getChain();
SDValue Ptr = St->getBasePtr();
unsigned Alignment = St->getAlignment();
AAMDNodes AAInfo = St->getAAInfo();
assert(NVT.isByteSized() && "Expanded type not byte sized!");
unsigned IncrementSize = NVT.getSizeInBits() / 8;
SDValue Lo, Hi;
GetExpandedOp(St->getValue(), Lo, Hi);
if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, St->getPointerInfo(), Alignment,
St->getMemOperand()->getFlags(), AAInfo);
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
Hi = DAG.getStore(Chain, dl, Hi, Ptr,
St->getPointerInfo().getWithOffset(IncrementSize),
MinAlign(Alignment, IncrementSize),
St->getMemOperand()->getFlags(), AAInfo);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
}
//===--------------------------------------------------------------------===//
// Generic Result Splitting.
//===--------------------------------------------------------------------===//
// Be careful to make no assumptions about which of Lo/Hi is stored first in
// memory (for vectors it is always Lo first followed by Hi in the following
// bytes; for integers and floats it is Lo first if and only if the machine is
// little-endian).
void DAGTypeLegalizer::SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
GetSplitOp(Op, Lo, Hi);
}
void DAGTypeLegalizer::SplitRes_SELECT(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue LL, LH, RL, RH, CL, CH;
SDLoc dl(N);
GetSplitOp(N->getOperand(1), LL, LH);
GetSplitOp(N->getOperand(2), RL, RH);
SDValue Cond = N->getOperand(0);
CL = CH = Cond;
if (Cond.getValueType().isVector()) {
if (SDValue Res = WidenVSELECTAndMask(N))
std::tie(CL, CH) = DAG.SplitVector(Res->getOperand(0), dl);
// Check if there are already splitted versions of the vector available and
// use those instead of splitting the mask operand again.
else if (getTypeAction(Cond.getValueType()) ==
TargetLowering::TypeSplitVector)
GetSplitVector(Cond, CL, CH);
// It seems to improve code to generate two narrow SETCCs as opposed to
// splitting a wide result vector.
else if (Cond.getOpcode() == ISD::SETCC) {
// If the condition is a vXi1 vector, and the LHS of the setcc is a legal
// type and the setcc result type is the same vXi1, then leave the setcc
// alone.
EVT CondLHSVT = Cond.getOperand(0).getValueType();
if (Cond.getValueType().getVectorElementType() == MVT::i1 &&
isTypeLegal(CondLHSVT) &&
getSetCCResultType(CondLHSVT) == Cond.getValueType())
std::tie(CL, CH) = DAG.SplitVector(Cond, dl);
else
SplitVecRes_SETCC(Cond.getNode(), CL, CH);
} else
std::tie(CL, CH) = DAG.SplitVector(Cond, dl);
}
Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), CL, LL, RL);
Hi = DAG.getNode(N->getOpcode(), dl, LH.getValueType(), CH, LH, RH);
}
void DAGTypeLegalizer::SplitRes_SELECT_CC(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LL, LH, RL, RH;
SDLoc dl(N);
GetSplitOp(N->getOperand(2), LL, LH);
GetSplitOp(N->getOperand(3), RL, RH);
Lo = DAG.getNode(ISD::SELECT_CC, dl, LL.getValueType(), N->getOperand(0),
N->getOperand(1), LL, RL, N->getOperand(4));
Hi = DAG.getNode(ISD::SELECT_CC, dl, LH.getValueType(), N->getOperand(0),
N->getOperand(1), LH, RH, N->getOperand(4));
}
void DAGTypeLegalizer::SplitRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getUNDEF(LoVT);
Hi = DAG.getUNDEF(HiVT);
}
|