1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
| //===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file performs vector type splitting and scalarization for LegalizeTypes.
// Scalarization is the act of changing a computation in an illegal one-element
// vector type to be a computation in its scalar element type. For example,
// implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
// as a base case when scalarizing vector arithmetic like <4 x f32>, which
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
// be a computation in two vectors of half the size. For example, implementing
// <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
//===----------------------------------------------------------------------===//
// Result Vector Scalarization: <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Scalarize node result " << ResNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to scalarize the result of this "
"operator!\n");
case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::STRICT_FP_ROUND: R = ScalarizeVecRes_STRICT_FP_ROUND(N); break;
case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break;
case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
R = ScalarizeVecRes_VecInregOp(N);
break;
case ISD::ABS:
case ISD::ANY_EXTEND:
case ISD::BITREVERSE:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
case ISD::FCANONICALIZE:
R = ScalarizeVecRes_UnaryOp(N);
break;
case ISD::ADD:
case ISD::AND:
case ISD::FADD:
case ISD::FCOPYSIGN:
case ISD::FDIV:
case ISD::FMUL:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB:
case ISD::MUL:
case ISD::OR:
case ISD::SDIV:
case ISD::SREM:
case ISD::SUB:
case ISD::UDIV:
case ISD::UREM:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
R = ScalarizeVecRes_BinOp(N);
break;
case ISD::FMA:
R = ScalarizeVecRes_TernaryOp(N);
break;
case ISD::STRICT_FADD:
case ISD::STRICT_FSUB:
case ISD::STRICT_FMUL:
case ISD::STRICT_FDIV:
case ISD::STRICT_FREM:
case ISD::STRICT_FSQRT:
case ISD::STRICT_FMA:
case ISD::STRICT_FPOW:
case ISD::STRICT_FPOWI:
case ISD::STRICT_FSIN:
case ISD::STRICT_FCOS:
case ISD::STRICT_FEXP:
case ISD::STRICT_FEXP2:
case ISD::STRICT_FLOG:
case ISD::STRICT_FLOG10:
case ISD::STRICT_FLOG2:
case ISD::STRICT_FRINT:
case ISD::STRICT_FNEARBYINT:
case ISD::STRICT_FMAXNUM:
case ISD::STRICT_FMINNUM:
case ISD::STRICT_FCEIL:
case ISD::STRICT_FFLOOR:
case ISD::STRICT_FROUND:
case ISD::STRICT_FTRUNC:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::STRICT_FP_EXTEND:
R = ScalarizeVecRes_StrictFPOp(N);
break;
case ISD::UADDO:
case ISD::SADDO:
case ISD::USUBO:
case ISD::SSUBO:
case ISD::UMULO:
case ISD::SMULO:
R = ScalarizeVecRes_OverflowOp(N, ResNo);
break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
R = ScalarizeVecRes_MULFIX(N);
break;
}
// If R is null, the sub-method took care of registering the result.
if (R.getNode())
SetScalarizedVector(SDValue(N, ResNo), R);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS, N->getFlags());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
SDValue Op1 = GetScalarizedVector(N->getOperand(1));
SDValue Op2 = GetScalarizedVector(N->getOperand(2));
return DAG.getNode(N->getOpcode(), SDLoc(N),
Op0.getValueType(), Op0, Op1, Op2);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_MULFIX(SDNode *N) {
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
SDValue Op1 = GetScalarizedVector(N->getOperand(1));
SDValue Op2 = N->getOperand(2);
return DAG.getNode(N->getOpcode(), SDLoc(N), Op0.getValueType(), Op0, Op1,
Op2);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_StrictFPOp(SDNode *N) {
EVT VT = N->getValueType(0).getVectorElementType();
unsigned NumOpers = N->getNumOperands();
SDValue Chain = N->getOperand(0);
EVT ValueVTs[] = {VT, MVT::Other};
SDLoc dl(N);
SmallVector<SDValue, 4> Opers;
// The Chain is the first operand.
Opers.push_back(Chain);
// Now process the remaining operands.
for (unsigned i = 1; i < NumOpers; ++i) {
SDValue Oper = N->getOperand(i);
if (Oper.getValueType().isVector())
Oper = GetScalarizedVector(Oper);
Opers.push_back(Oper);
}
SDValue Result = DAG.getNode(N->getOpcode(), dl, ValueVTs, Opers);
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
return Result;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_OverflowOp(SDNode *N,
unsigned ResNo) {
SDLoc DL(N);
EVT ResVT = N->getValueType(0);
EVT OvVT = N->getValueType(1);
SDValue ScalarLHS, ScalarRHS;
if (getTypeAction(ResVT) == TargetLowering::TypeScalarizeVector) {
ScalarLHS = GetScalarizedVector(N->getOperand(0));
ScalarRHS = GetScalarizedVector(N->getOperand(1));
} else {
SmallVector<SDValue, 1> ElemsLHS, ElemsRHS;
DAG.ExtractVectorElements(N->getOperand(0), ElemsLHS);
DAG.ExtractVectorElements(N->getOperand(1), ElemsRHS);
ScalarLHS = ElemsLHS[0];
ScalarRHS = ElemsRHS[0];
}
SDVTList ScalarVTs = DAG.getVTList(
ResVT.getVectorElementType(), OvVT.getVectorElementType());
SDNode *ScalarNode = DAG.getNode(
N->getOpcode(), DL, ScalarVTs, ScalarLHS, ScalarRHS).getNode();
// Replace the other vector result not being explicitly scalarized here.
unsigned OtherNo = 1 - ResNo;
EVT OtherVT = N->getValueType(OtherNo);
if (getTypeAction(OtherVT) == TargetLowering::TypeScalarizeVector) {
SetScalarizedVector(SDValue(N, OtherNo), SDValue(ScalarNode, OtherNo));
} else {
SDValue OtherVal = DAG.getNode(
ISD::SCALAR_TO_VECTOR, DL, OtherVT, SDValue(ScalarNode, OtherNo));
ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
}
return SDValue(ScalarNode, ResNo);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return GetScalarizedVector(Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
SDValue Op = N->getOperand(0);
if (Op.getValueType().isVector()
&& Op.getValueType().getVectorNumElements() == 1
&& !isSimpleLegalType(Op.getValueType()))
Op = GetScalarizedVector(Op);
EVT NewVT = N->getValueType(0).getVectorElementType();
return DAG.getNode(ISD::BITCAST, SDLoc(N),
NewVT, Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
EVT EltVT = N->getValueType(0).getVectorElementType();
SDValue InOp = N->getOperand(0);
// The BUILD_VECTOR operands may be of wider element types and
// we may need to truncate them back to the requested return type.
if (EltVT.isInteger())
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
return InOp;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
N->getValueType(0).getVectorElementType(),
N->getOperand(0), N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
NewVT, Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_STRICT_FP_ROUND(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(1));
SDValue Res = DAG.getNode(ISD::STRICT_FP_ROUND, SDLoc(N),
{ NewVT, MVT::Other },
{ N->getOperand(0), Op, N->getOperand(2) });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FPOWI, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
// The value to insert may have a wider type than the vector element type,
// so be sure to truncate it to the element type if necessary.
SDValue Op = N->getOperand(1);
EVT EltVT = N->getValueType(0).getVectorElementType();
if (Op.getValueType() != EltVT)
// FIXME: Can this happen for floating point types?
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
return Op;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
assert(N->isUnindexed() && "Indexed vector load?");
SDValue Result = DAG.getLoad(
ISD::UNINDEXED, N->getExtensionType(),
N->getValueType(0).getVectorElementType(), SDLoc(N), N->getChain(),
N->getBasePtr(), DAG.getUNDEF(N->getBasePtr().getValueType()),
N->getPointerInfo(), N->getMemoryVT().getVectorElementType(),
N->getOriginalAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
return Result;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
// Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
EVT DestVT = N->getValueType(0).getVectorElementType();
SDValue Op = N->getOperand(0);
EVT OpVT = Op.getValueType();
SDLoc DL(N);
// The result needs scalarizing, but it's not a given that the source does.
// This is a workaround for targets where it's impossible to scalarize the
// result of a conversion, because the source type is legal.
// For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
// are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
// legal and was not scalarized.
// See the similar logic in ScalarizeVecRes_SETCC
if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
Op = GetScalarizedVector(Op);
} else {
EVT VT = OpVT.getVectorElementType();
Op = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
EVT EltVT = N->getValueType(0).getVectorElementType();
EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
SDValue LHS = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
LHS, DAG.getValueType(ExtVT));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VecInregOp(SDNode *N) {
SDLoc DL(N);
SDValue Op = N->getOperand(0);
EVT OpVT = Op.getValueType();
EVT OpEltVT = OpVT.getVectorElementType();
EVT EltVT = N->getValueType(0).getVectorElementType();
if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
Op = GetScalarizedVector(Op);
} else {
Op = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, OpEltVT, Op,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
switch (N->getOpcode()) {
case ISD::ANY_EXTEND_VECTOR_INREG:
return DAG.getNode(ISD::ANY_EXTEND, DL, EltVT, Op);
case ISD::SIGN_EXTEND_VECTOR_INREG:
return DAG.getNode(ISD::SIGN_EXTEND, DL, EltVT, Op);
case ISD::ZERO_EXTEND_VECTOR_INREG:
return DAG.getNode(ISD::ZERO_EXTEND, DL, EltVT, Op);
}
llvm_unreachable("Illegal extend_vector_inreg opcode");
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
EVT EltVT = N->getValueType(0).getVectorElementType();
SDValue InOp = N->getOperand(0);
if (InOp.getValueType() != EltVT)
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
return InOp;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
SDValue Cond = N->getOperand(0);
EVT OpVT = Cond.getValueType();
SDLoc DL(N);
// The vselect result and true/value operands needs scalarizing, but it's
// not a given that the Cond does. For instance, in AVX512 v1i1 is legal.
// See the similar logic in ScalarizeVecRes_SETCC
if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
Cond = GetScalarizedVector(Cond);
} else {
EVT VT = OpVT.getVectorElementType();
Cond = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, VT, Cond,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
SDValue LHS = GetScalarizedVector(N->getOperand(1));
TargetLowering::BooleanContent ScalarBool =
TLI.getBooleanContents(false, false);
TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
// If integer and float booleans have different contents then we can't
// reliably optimize in all cases. There is a full explanation for this in
// DAGCombiner::visitSELECT() where the same issue affects folding
// (select C, 0, 1) to (xor C, 1).
if (TLI.getBooleanContents(false, false) !=
TLI.getBooleanContents(false, true)) {
// At least try the common case where the boolean is generated by a
// comparison.
if (Cond->getOpcode() == ISD::SETCC) {
EVT OpVT = Cond->getOperand(0).getValueType();
ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
VecBool = TLI.getBooleanContents(OpVT);
} else
ScalarBool = TargetLowering::UndefinedBooleanContent;
}
EVT CondVT = Cond.getValueType();
if (ScalarBool != VecBool) {
switch (ScalarBool) {
case TargetLowering::UndefinedBooleanContent:
break;
case TargetLowering::ZeroOrOneBooleanContent:
assert(VecBool == TargetLowering::UndefinedBooleanContent ||
VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
// Vector read from all ones, scalar expects a single 1 so mask.
Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
Cond, DAG.getConstant(1, SDLoc(N), CondVT));
break;
case TargetLowering::ZeroOrNegativeOneBooleanContent:
assert(VecBool == TargetLowering::UndefinedBooleanContent ||
VecBool == TargetLowering::ZeroOrOneBooleanContent);
// Vector reads from a one, scalar from all ones so sign extend.
Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
Cond, DAG.getValueType(MVT::i1));
break;
}
}
// Truncate the condition if needed
auto BoolVT = getSetCCResultType(CondVT);
if (BoolVT.bitsLT(CondVT))
Cond = DAG.getNode(ISD::TRUNCATE, SDLoc(N), BoolVT, Cond);
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), Cond, LHS,
GetScalarizedVector(N->getOperand(2)));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(1));
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), N->getOperand(0), LHS,
GetScalarizedVector(N->getOperand(2)));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(2));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
N->getOperand(0), N->getOperand(1),
LHS, GetScalarizedVector(N->getOperand(3)),
N->getOperand(4));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
// Figure out if the scalar is the LHS or RHS and return it.
SDValue Arg = N->getOperand(2).getOperand(0);
if (Arg.isUndef())
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
return GetScalarizedVector(N->getOperand(Op));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT OpVT = LHS.getValueType();
EVT NVT = N->getValueType(0).getVectorElementType();
SDLoc DL(N);
// The result needs scalarizing, but it's not a given that the source does.
if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
LHS = GetScalarizedVector(LHS);
RHS = GetScalarizedVector(RHS);
} else {
EVT VT = OpVT.getVectorElementType();
LHS = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
RHS = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
// Turn it into a scalar SETCC.
SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
N->getOperand(2));
// Vectors may have a different boolean contents to scalars. Promote the
// value appropriately.
ISD::NodeType ExtendCode =
TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
return DAG.getNode(ExtendCode, DL, NVT, Res);
}
//===----------------------------------------------------------------------===//
// Operand Vector Scalarization <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (!Res.getNode()) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to scalarize this operator's "
"operand!\n");
case ISD::BITCAST:
Res = ScalarizeVecOp_BITCAST(N);
break;
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::TRUNCATE:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
Res = ScalarizeVecOp_UnaryOp(N);
break;
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
Res = ScalarizeVecOp_UnaryOp_StrictFP(N);
break;
case ISD::CONCAT_VECTORS:
Res = ScalarizeVecOp_CONCAT_VECTORS(N);
break;
case ISD::EXTRACT_VECTOR_ELT:
Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
break;
case ISD::VSELECT:
Res = ScalarizeVecOp_VSELECT(N);
break;
case ISD::SETCC:
Res = ScalarizeVecOp_VSETCC(N);
break;
case ISD::STORE:
Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
case ISD::STRICT_FP_ROUND:
Res = ScalarizeVecOp_STRICT_FP_ROUND(N, OpNo);
break;
case ISD::FP_ROUND:
Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
Res = ScalarizeVecOp_VECREDUCE(N);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// If the value to convert is a vector that needs to be scalarized, it must be
/// <1 x ty>. Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
SDValue Elt = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::BITCAST, SDLoc(N),
N->getValueType(0), Elt);
}
/// If the input is a vector that needs to be scalarized, it must be <1 x ty>.
/// Do the operation on the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
assert(N->getValueType(0).getVectorNumElements() == 1 &&
"Unexpected vector type!");
SDValue Elt = GetScalarizedVector(N->getOperand(0));
SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
N->getValueType(0).getScalarType(), Elt);
// Revectorize the result so the types line up with what the uses of this
// expression expect.
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Op);
}
/// If the input is a vector that needs to be scalarized, it must be <1 x ty>.
/// Do the strict FP operation on the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N) {
assert(N->getValueType(0).getVectorNumElements() == 1 &&
"Unexpected vector type!");
SDValue Elt = GetScalarizedVector(N->getOperand(1));
SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N),
{ N->getValueType(0).getScalarType(), MVT::Other },
{ N->getOperand(0), Elt });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
// Revectorize the result so the types line up with what the uses of this
// expression expect.
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
}
/// The vectors to concatenate have length one - use a BUILD_VECTOR instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
SmallVector<SDValue, 8> Ops(N->getNumOperands());
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
Ops[i] = GetScalarizedVector(N->getOperand(i));
return DAG.getBuildVector(N->getValueType(0), SDLoc(N), Ops);
}
/// If the input is a vector that needs to be scalarized, it must be <1 x ty>,
/// so just return the element, ignoring the index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue Res = GetScalarizedVector(N->getOperand(0));
if (Res.getValueType() != VT)
Res = VT.isFloatingPoint()
? DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Res)
: DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Res);
return Res;
}
/// If the input condition is a vector that needs to be scalarized, it must be
/// <1 x i1>, so just convert to a normal ISD::SELECT
/// (still with vector output type since that was acceptable if we got here).
SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
EVT VT = N->getValueType(0);
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
N->getOperand(2));
}
/// If the operand is a vector that needs to be scalarized then the
/// result must be v1i1, so just convert to a scalar SETCC and wrap
/// with a scalar_to_vector since the res type is legal if we got here
SDValue DAGTypeLegalizer::ScalarizeVecOp_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
assert(N->getValueType(0) == MVT::v1i1 && "Expected v1i1 type");
EVT VT = N->getValueType(0);
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
EVT OpVT = N->getOperand(0).getValueType();
EVT NVT = VT.getVectorElementType();
SDLoc DL(N);
// Turn it into a scalar SETCC.
SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
N->getOperand(2));
// Vectors may have a different boolean contents to scalars. Promote the
// value appropriately.
ISD::NodeType ExtendCode =
TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
Res = DAG.getNode(ExtendCode, DL, NVT, Res);
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Res);
}
/// If the value to store is a vector that needs to be scalarized, it must be
/// <1 x ty>. Just store the element.
SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(N->isUnindexed() && "Indexed store of one-element vector?");
assert(OpNo == 1 && "Do not know how to scalarize this operand!");
SDLoc dl(N);
if (N->isTruncatingStore())
return DAG.getTruncStore(
N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(), N->getAlignment(),
N->getMemOperand()->getFlags(), N->getAAInfo());
return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->getOriginalAlignment(), N->getMemOperand()->getFlags(),
N->getAAInfo());
}
/// If the value to round is a vector that needs to be scalarized, it must be
/// <1 x ty>. Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
SDValue Elt = GetScalarizedVector(N->getOperand(0));
SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
N->getValueType(0).getVectorElementType(), Elt,
N->getOperand(1));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
}
SDValue DAGTypeLegalizer::ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N,
unsigned OpNo) {
assert(OpNo == 1 && "Wrong operand for scalarization!");
SDValue Elt = GetScalarizedVector(N->getOperand(1));
SDValue Res = DAG.getNode(ISD::STRICT_FP_ROUND, SDLoc(N),
{ N->getValueType(0).getVectorElementType(),
MVT::Other },
{ N->getOperand(0), Elt, N->getOperand(2) });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
}
SDValue DAGTypeLegalizer::ScalarizeVecOp_VECREDUCE(SDNode *N) {
SDValue Res = GetScalarizedVector(N->getOperand(0));
// Result type may be wider than element type.
if (Res.getValueType() != N->getValueType(0))
Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Res);
return Res;
}
//===----------------------------------------------------------------------===//
// Result Vector Splitting
//===----------------------------------------------------------------------===//
/// This method is called when the specified result of the specified node is
/// found to need vector splitting. At this point, the node may also have
/// invalid operands or may have other results that need legalization, we just
/// know that (at least) one result needs vector splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Split node result: "; N->dump(&DAG); dbgs() << "\n");
SDValue Lo, Hi;
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SplitVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to split the result of this "
"operator!\n");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
case ISD::VSELECT:
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
case ISD::INSERT_SUBVECTOR: SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
case ISD::FCOPYSIGN: SplitVecRes_FCOPYSIGN(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::LOAD:
SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
break;
case ISD::MLOAD:
SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
break;
case ISD::MGATHER:
SplitVecRes_MGATHER(cast<MaskedGatherSDNode>(N), Lo, Hi);
break;
case ISD::SETCC:
SplitVecRes_SETCC(N, Lo, Hi);
break;
case ISD::VECTOR_SHUFFLE:
SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
break;
case ISD::VAARG:
SplitVecRes_VAARG(N, Lo, Hi);
break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
SplitVecRes_ExtVecInRegOp(N, Lo, Hi);
break;
case ISD::ABS:
case ISD::BITREVERSE:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTTZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FP_EXTEND:
case ISD::STRICT_FP_EXTEND:
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::FCANONICALIZE:
SplitVecRes_UnaryOp(N, Lo, Hi);
break;
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
SplitVecRes_ExtendOp(N, Lo, Hi);
break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::UREM:
case ISD::SREM:
case ISD::FREM:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::SSUBSAT:
case ISD::USUBSAT:
SplitVecRes_BinOp(N, Lo, Hi);
break;
case ISD::FMA:
SplitVecRes_TernaryOp(N, Lo, Hi);
break;
case ISD::STRICT_FADD:
case ISD::STRICT_FSUB:
case ISD::STRICT_FMUL:
case ISD::STRICT_FDIV:
case ISD::STRICT_FREM:
case ISD::STRICT_FSQRT:
case ISD::STRICT_FMA:
case ISD::STRICT_FPOW:
case ISD::STRICT_FPOWI:
case ISD::STRICT_FSIN:
case ISD::STRICT_FCOS:
case ISD::STRICT_FEXP:
case ISD::STRICT_FEXP2:
case ISD::STRICT_FLOG:
case ISD::STRICT_FLOG10:
case ISD::STRICT_FLOG2:
case ISD::STRICT_FRINT:
case ISD::STRICT_FNEARBYINT:
case ISD::STRICT_FMAXNUM:
case ISD::STRICT_FMINNUM:
case ISD::STRICT_FCEIL:
case ISD::STRICT_FFLOOR:
case ISD::STRICT_FROUND:
case ISD::STRICT_FTRUNC:
SplitVecRes_StrictFPOp(N, Lo, Hi);
break;
case ISD::UADDO:
case ISD::SADDO:
case ISD::USUBO:
case ISD::SSUBO:
case ISD::UMULO:
case ISD::SMULO:
SplitVecRes_OverflowOp(N, ResNo, Lo, Hi);
break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
SplitVecRes_MULFIX(N, Lo, Hi);
break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetSplitVector(SDValue(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDValue RHSLo, RHSHi;
GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
SDLoc dl(N);
const SDNodeFlags Flags = N->getFlags();
unsigned Opcode = N->getOpcode();
Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Flags);
Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Flags);
}
void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Op0Lo, Op0Hi;
GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
SDValue Op1Lo, Op1Hi;
GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
SDValue Op2Lo, Op2Hi;
GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
SDLoc dl(N);
Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
Op0Lo, Op1Lo, Op2Lo);
Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
Op0Hi, Op1Hi, Op2Hi);
}
void DAGTypeLegalizer::SplitVecRes_MULFIX(SDNode *N, SDValue &Lo, SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDValue RHSLo, RHSHi;
GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
SDLoc dl(N);
SDValue Op2 = N->getOperand(2);
unsigned Opcode = N->getOpcode();
Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Op2);
Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Op2);
}
void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SDLoc dl(N);
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
case TargetLowering::TypePromoteInteger:
case TargetLowering::TypePromoteFloat:
case TargetLowering::TypeSoftenFloat:
case TargetLowering::TypeScalarizeVector:
case TargetLowering::TypeWidenVector:
break;
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
// A scalar to vector conversion, where the scalar needs expansion.
// If the vector is being split in two then we can just convert the
// expanded pieces.
if (LoVT == HiVT) {
GetExpandedOp(InOp, Lo, Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
return;
}
break;
case TargetLowering::TypeSplitVector:
// If the input is a vector that needs to be split, convert each split
// piece of the input now.
GetSplitVector(InOp, Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
return;
}
// In the general case, convert the input to an integer and split it by hand.
EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
if (DAG.getDataLayout().isBigEndian())
std::swap(LoIntVT, HiIntVT);
SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
unsigned LoNumElts = LoVT.getVectorNumElements();
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
Lo = DAG.getBuildVector(LoVT, dl, LoOps);
SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
Hi = DAG.getBuildVector(HiVT, dl, HiOps);
}
void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
SDLoc dl(N);
unsigned NumSubvectors = N->getNumOperands() / 2;
if (NumSubvectors == 1) {
Lo = N->getOperand(0);
Hi = N->getOperand(1);
return;
}
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
}
void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
SDLoc dl(N);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
DAG.getConstant(IdxVal + LoVT.getVectorNumElements(), dl,
TLI.getVectorIdxTy(DAG.getDataLayout())));
}
void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue SubVec = N->getOperand(1);
SDValue Idx = N->getOperand(2);
SDLoc dl(N);
GetSplitVector(Vec, Lo, Hi);
EVT VecVT = Vec.getValueType();
unsigned VecElems = VecVT.getVectorNumElements();
unsigned SubElems = SubVec.getValueType().getVectorNumElements();
// If we know the index is 0, and we know the subvector doesn't cross the
// boundary between the halves, we can avoid spilling the vector, and insert
// into the lower half of the split vector directly.
// TODO: The IdxVal == 0 constraint is artificial, we could do this whenever
// the index is constant and there is no boundary crossing. But those cases
// don't seem to get hit in practice.
if (ConstantSDNode *ConstIdx = dyn_cast<ConstantSDNode>(Idx)) {
unsigned IdxVal = ConstIdx->getZExtValue();
if ((IdxVal == 0) && (IdxVal + SubElems <= VecElems / 2)) {
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, LoVT, Lo, SubVec, Idx);
return;
}
}
// Spill the vector to the stack.
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store =
DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, MachinePointerInfo());
// Store the new subvector into the specified index.
SDValue SubVecPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo());
// Load the Lo part from the stack slot.
Lo =
DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo());
// Increment the pointer to the other part.
unsigned IncrementSize = Lo.getValueSizeInBits() / 8;
StackPtr =
DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, dl, StackPtr.getValueType()));
// Load the Hi part from the stack slot.
Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
MinAlign(Alignment, IncrementSize));
}
void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
}
void DAGTypeLegalizer::SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDLoc DL(N);
SDValue RHSLo, RHSHi;
SDValue RHS = N->getOperand(1);
EVT RHSVT = RHS.getValueType();
if (getTypeAction(RHSVT) == TargetLowering::TypeSplitVector)
GetSplitVector(RHS, RHSLo, RHSHi);
else
std::tie(RHSLo, RHSHi) = DAG.SplitVector(RHS, SDLoc(RHS));
Lo = DAG.getNode(ISD::FCOPYSIGN, DL, LHSLo.getValueType(), LHSLo, RHSLo);
Hi = DAG.getNode(ISD::FCOPYSIGN, DL, LHSHi.getValueType(), LHSHi, RHSHi);
}
void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDLoc dl(N);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) =
DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
DAG.getValueType(LoVT));
Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
DAG.getValueType(HiVT));
}
void DAGTypeLegalizer::SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
unsigned Opcode = N->getOpcode();
SDValue N0 = N->getOperand(0);
SDLoc dl(N);
SDValue InLo, InHi;
if (getTypeAction(N0.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(N0, InLo, InHi);
else
std::tie(InLo, InHi) = DAG.SplitVectorOperand(N, 0);
EVT InLoVT = InLo.getValueType();
unsigned InNumElements = InLoVT.getVectorNumElements();
EVT OutLoVT, OutHiVT;
std::tie(OutLoVT, OutHiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
unsigned OutNumElements = OutLoVT.getVectorNumElements();
assert((2 * OutNumElements) <= InNumElements &&
"Illegal extend vector in reg split");
// *_EXTEND_VECTOR_INREG instructions extend the lowest elements of the
// input vector (i.e. we only use InLo):
// OutLo will extend the first OutNumElements from InLo.
// OutHi will extend the next OutNumElements from InLo.
// Shuffle the elements from InLo for OutHi into the bottom elements to
// create a 'fake' InHi.
SmallVector<int, 8> SplitHi(InNumElements, -1);
for (unsigned i = 0; i != OutNumElements; ++i)
SplitHi[i] = i + OutNumElements;
InHi = DAG.getVectorShuffle(InLoVT, dl, InLo, DAG.getUNDEF(InLoVT), SplitHi);
Lo = DAG.getNode(Opcode, dl, OutLoVT, InLo);
Hi = DAG.getNode(Opcode, dl, OutHiVT, InHi);
}
void DAGTypeLegalizer::SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
unsigned NumOps = N->getNumOperands();
SDValue Chain = N->getOperand(0);
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
SmallVector<SDValue, 4> OpsLo;
SmallVector<SDValue, 4> OpsHi;
// The Chain is the first operand.
OpsLo.push_back(Chain);
OpsHi.push_back(Chain);
// Now process the remaining operands.
for (unsigned i = 1; i < NumOps; ++i) {
SDValue Op = N->getOperand(i);
SDValue OpLo = Op;
SDValue OpHi = Op;
EVT InVT = Op.getValueType();
if (InVT.isVector()) {
// If the input also splits, handle it directly for a
// compile time speedup. Otherwise split it by hand.
if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
GetSplitVector(Op, OpLo, OpHi);
else
std::tie(OpLo, OpHi) = DAG.SplitVectorOperand(N, i);
}
OpsLo.push_back(OpLo);
OpsHi.push_back(OpHi);
}
EVT LoValueVTs[] = {LoVT, MVT::Other};
EVT HiValueVTs[] = {HiVT, MVT::Other};
Lo = DAG.getNode(N->getOpcode(), dl, LoValueVTs, OpsLo);
Hi = DAG.getNode(N->getOpcode(), dl, HiValueVTs, OpsHi);
// Build a factor node to remember that this Op is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Lo.getValue(1), Hi.getValue(1));
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
}
SDValue DAGTypeLegalizer::UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE) {
SDValue Chain = N->getOperand(0);
EVT VT = N->getValueType(0);
unsigned NE = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
SDLoc dl(N);
SmallVector<SDValue, 8> Scalars;
SmallVector<SDValue, 4> Operands(N->getNumOperands());
// If ResNE is 0, fully unroll the vector op.
if (ResNE == 0)
ResNE = NE;
else if (NE > ResNE)
NE = ResNE;
//The results of each unrolled operation, including the chain.
EVT ChainVTs[] = {EltVT, MVT::Other};
SmallVector<SDValue, 8> Chains;
unsigned i;
for (i = 0; i != NE; ++i) {
Operands[0] = Chain;
for (unsigned j = 1, e = N->getNumOperands(); j != e; ++j) {
SDValue Operand = N->getOperand(j);
EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(
DAG.getDataLayout())));
} else {
Operands[j] = Operand;
}
}
SDValue Scalar = DAG.getNode(N->getOpcode(), dl, ChainVTs, Operands);
Scalar.getNode()->setFlags(N->getFlags());
//Add in the scalar as well as its chain value to the
//result vectors.
Scalars.push_back(Scalar);
Chains.push_back(Scalar.getValue(1));
}
for (; i < ResNE; ++i)
Scalars.push_back(DAG.getUNDEF(EltVT));
// Build a new factor node to connect the chain back together.
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
ReplaceValueWith(SDValue(N, 1), Chain);
// Create a new BUILD_VECTOR node
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, ResNE);
return DAG.getBuildVector(VecVT, dl, Scalars);
}
void DAGTypeLegalizer::SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
SDValue &Lo, SDValue &Hi) {
SDLoc dl(N);
EVT ResVT = N->getValueType(0);
EVT OvVT = N->getValueType(1);
EVT LoResVT, HiResVT, LoOvVT, HiOvVT;
std::tie(LoResVT, HiResVT) = DAG.GetSplitDestVTs(ResVT);
std::tie(LoOvVT, HiOvVT) = DAG.GetSplitDestVTs(OvVT);
SDValue LoLHS, HiLHS, LoRHS, HiRHS;
if (getTypeAction(ResVT) == TargetLowering::TypeSplitVector) {
GetSplitVector(N->getOperand(0), LoLHS, HiLHS);
GetSplitVector(N->getOperand(1), LoRHS, HiRHS);
} else {
std::tie(LoLHS, HiLHS) = DAG.SplitVectorOperand(N, 0);
std::tie(LoRHS, HiRHS) = DAG.SplitVectorOperand(N, 1);
}
unsigned Opcode = N->getOpcode();
SDVTList LoVTs = DAG.getVTList(LoResVT, LoOvVT);
SDVTList HiVTs = DAG.getVTList(HiResVT, HiOvVT);
SDNode *LoNode = DAG.getNode(Opcode, dl, LoVTs, LoLHS, LoRHS).getNode();
SDNode *HiNode = DAG.getNode(Opcode, dl, HiVTs, HiLHS, HiRHS).getNode();
Lo = SDValue(LoNode, ResNo);
Hi = SDValue(HiNode, ResNo);
// Replace the other vector result not being explicitly split here.
unsigned OtherNo = 1 - ResNo;
EVT OtherVT = N->getValueType(OtherNo);
if (getTypeAction(OtherVT) == TargetLowering::TypeSplitVector) {
SetSplitVector(SDValue(N, OtherNo),
SDValue(LoNode, OtherNo), SDValue(HiNode, OtherNo));
} else {
SDValue OtherVal = DAG.getNode(
ISD::CONCAT_VECTORS, dl, OtherVT,
SDValue(LoNode, OtherNo), SDValue(HiNode, OtherNo));
ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
}
}
void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Elt = N->getOperand(1);
SDValue Idx = N->getOperand(2);
SDLoc dl(N);
GetSplitVector(Vec, Lo, Hi);
if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
unsigned IdxVal = CIdx->getZExtValue();
unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoNumElts)
Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
Lo.getValueType(), Lo, Elt, Idx);
else
Hi =
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
DAG.getConstant(IdxVal - LoNumElts, dl,
TLI.getVectorIdxTy(DAG.getDataLayout())));
return;
}
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(0), true))
return;
// Make the vector elements byte-addressable if they aren't already.
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
if (VecVT.getScalarSizeInBits() < 8) {
EltVT = MVT::i8;
VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
VecVT.getVectorNumElements());
Vec = DAG.getNode(ISD::ANY_EXTEND, dl, VecVT, Vec);
// Extend the element type to match if needed.
if (EltVT.bitsGT(Elt.getValueType()))
Elt = DAG.getNode(ISD::ANY_EXTEND, dl, EltVT, Elt);
}
// Spill the vector to the stack.
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
auto &MF = DAG.getMachineFunction();
auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
// Store the new element. This may be larger than the vector element type,
// so use a truncating store.
SDValue EltPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
Store = DAG.getTruncStore(Store, dl, Elt, EltPtr,
MachinePointerInfo::getUnknownStack(MF), EltVT);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
// Load the Lo part from the stack slot.
Lo = DAG.getLoad(LoVT, dl, Store, StackPtr, PtrInfo);
// Increment the pointer to the other part.
unsigned IncrementSize = LoVT.getSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getConstant(IncrementSize, dl,
StackPtr.getValueType()));
// Load the Hi part from the stack slot.
Hi = DAG.getLoad(HiVT, dl, Store, StackPtr,
PtrInfo.getWithOffset(IncrementSize),
MinAlign(Alignment, IncrementSize));
// If we adjusted the original type, we need to truncate the results.
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
if (LoVT != Lo.getValueType())
Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Lo);
if (HiVT != Hi.getValueType())
Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
}
void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
Hi = DAG.getUNDEF(HiVT);
}
void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
EVT LoVT, HiVT;
SDLoc dl(LD);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Ch = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
EVT MemoryVT = LD->getMemoryVT();
unsigned Alignment = LD->getOriginalAlignment();
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
AAMDNodes AAInfo = LD->getAAInfo();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo(), LoMemVT, Alignment, MMOFlags, AAInfo);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo().getWithOffset(IncrementSize), HiMemVT,
Alignment, MMOFlags, AAInfo);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(LD, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(MLD);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
SDValue Ch = MLD->getChain();
SDValue Ptr = MLD->getBasePtr();
SDValue Mask = MLD->getMask();
SDValue PassThru = MLD->getPassThru();
unsigned Alignment = MLD->getOriginalAlignment();
ISD::LoadExtType ExtType = MLD->getExtensionType();
// Split Mask operand
SDValue MaskLo, MaskHi;
if (Mask.getOpcode() == ISD::SETCC) {
SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
} else {
if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Mask, MaskLo, MaskHi);
else
std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
}
EVT MemoryVT = MLD->getMemoryVT();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue PassThruLo, PassThruHi;
if (getTypeAction(PassThru.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(PassThru, PassThruLo, PassThruHi);
else
std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, dl);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, PassThruLo, LoMemVT, MMO,
ExtType, MLD->isExpandingLoad());
Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, dl, LoMemVT, DAG,
MLD->isExpandingLoad());
unsigned HiOffset = LoMemVT.getStoreSize();
MMO = DAG.getMachineFunction().getMachineMemOperand(
MLD->getPointerInfo().getWithOffset(HiOffset), MachineMemOperand::MOLoad,
HiMemVT.getStoreSize(), Alignment, MLD->getAAInfo(),
MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, PassThruHi, HiMemVT, MMO,
ExtType, MLD->isExpandingLoad());
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(MLD, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_MGATHER(MaskedGatherSDNode *MGT,
SDValue &Lo, SDValue &Hi) {
EVT LoVT, HiVT;
SDLoc dl(MGT);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
SDValue Ch = MGT->getChain();
SDValue Ptr = MGT->getBasePtr();
SDValue Mask = MGT->getMask();
SDValue PassThru = MGT->getPassThru();
SDValue Index = MGT->getIndex();
SDValue Scale = MGT->getScale();
unsigned Alignment = MGT->getOriginalAlignment();
// Split Mask operand
SDValue MaskLo, MaskHi;
if (Mask.getOpcode() == ISD::SETCC) {
SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
} else {
if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Mask, MaskLo, MaskHi);
else
std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
}
EVT MemoryVT = MGT->getMemoryVT();
EVT LoMemVT, HiMemVT;
// Split MemoryVT
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue PassThruLo, PassThruHi;
if (getTypeAction(PassThru.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(PassThru, PassThruLo, PassThruHi);
else
std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, dl);
SDValue IndexHi, IndexLo;
if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Index, IndexLo, IndexHi);
else
std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MGT->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MGT->getAAInfo(), MGT->getRanges());
SDValue OpsLo[] = {Ch, PassThruLo, MaskLo, Ptr, IndexLo, Scale};
Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl, OpsLo,
MMO, MGT->getIndexType());
SDValue OpsHi[] = {Ch, PassThruHi, MaskHi, Ptr, IndexHi, Scale};
Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl, OpsHi,
MMO, MGT->getIndexType());
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(MGT, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
EVT LoVT, HiVT;
SDLoc DL(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// If the input also splits, handle it directly. Otherwise split it by hand.
SDValue LL, LH, RL, RH;
if (getTypeAction(N->getOperand(0).getValueType()) ==
TargetLowering::TypeSplitVector)
GetSplitVector(N->getOperand(0), LL, LH);
else
std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
if (getTypeAction(N->getOperand(1).getValueType()) ==
TargetLowering::TypeSplitVector)
GetSplitVector(N->getOperand(1), RL, RH);
else
std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
}
void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// Get the dest types - they may not match the input types, e.g. int_to_fp.
EVT LoVT, HiVT;
SDLoc dl(N);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
// If the input also splits, handle it directly for a compile time speedup.
// Otherwise split it by hand.
unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
EVT InVT = N->getOperand(OpNo).getValueType();
if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
GetSplitVector(N->getOperand(OpNo), Lo, Hi);
else
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, OpNo);
if (N->getOpcode() == ISD::FP_ROUND) {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
} else if (N->getOpcode() == ISD::STRICT_FP_ROUND) {
Lo = DAG.getNode(N->getOpcode(), dl, { LoVT, MVT::Other },
{ N->getOperand(0), Lo, N->getOperand(2) });
Hi = DAG.getNode(N->getOpcode(), dl, { HiVT, MVT::Other },
{ N->getOperand(0), Hi, N->getOperand(2) });
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Lo.getValue(1), Hi.getValue(1));
ReplaceValueWith(SDValue(N, 1), NewChain);
} else if (N->isStrictFPOpcode()) {
Lo = DAG.getNode(N->getOpcode(), dl, { LoVT, MVT::Other },
{ N->getOperand(0), Lo });
Hi = DAG.getNode(N->getOpcode(), dl, { HiVT, MVT::Other },
{ N->getOperand(0), Hi });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Lo.getValue(1), Hi.getValue(1));
ReplaceValueWith(SDValue(N, 1), NewChain);
} else {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
}
}
void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDLoc dl(N);
EVT SrcVT = N->getOperand(0).getValueType();
EVT DestVT = N->getValueType(0);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
// We can do better than a generic split operation if the extend is doing
// more than just doubling the width of the elements and the following are
// true:
// - The number of vector elements is even,
// - the source type is legal,
// - the type of a split source is illegal,
// - the type of an extended (by doubling element size) source is legal, and
// - the type of that extended source when split is legal.
//
// This won't necessarily completely legalize the operation, but it will
// more effectively move in the right direction and prevent falling down
// to scalarization in many cases due to the input vector being split too
// far.
unsigned NumElements = SrcVT.getVectorNumElements();
if ((NumElements & 1) == 0 &&
SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
LLVMContext &Ctx = *DAG.getContext();
EVT NewSrcVT = SrcVT.widenIntegerVectorElementType(Ctx);
EVT SplitSrcVT = SrcVT.getHalfNumVectorElementsVT(Ctx);
EVT SplitLoVT, SplitHiVT;
std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
LLVM_DEBUG(dbgs() << "Split vector extend via incremental extend:";
N->dump(&DAG); dbgs() << "\n");
// Extend the source vector by one step.
SDValue NewSrc =
DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
// Get the low and high halves of the new, extended one step, vector.
std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
// Extend those vector halves the rest of the way.
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
return;
}
}
// Fall back to the generic unary operator splitting otherwise.
SplitVecRes_UnaryOp(N, Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
SDValue &Lo, SDValue &Hi) {
// The low and high parts of the original input give four input vectors.
SDValue Inputs[4];
SDLoc dl(N);
GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
EVT NewVT = Inputs[0].getValueType();
unsigned NewElts = NewVT.getVectorNumElements();
// If Lo or Hi uses elements from at most two of the four input vectors, then
// express it as a vector shuffle of those two inputs. Otherwise extract the
// input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
SmallVector<int, 16> Ops;
for (unsigned High = 0; High < 2; ++High) {
SDValue &Output = High ? Hi : Lo;
// Build a shuffle mask for the output, discovering on the fly which
// input vectors to use as shuffle operands (recorded in InputUsed).
// If building a suitable shuffle vector proves too hard, then bail
// out with useBuildVector set.
unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
unsigned FirstMaskIdx = High * NewElts;
bool useBuildVector = false;
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element does not index into any input vector.
Ops.push_back(-1);
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Find or create a shuffle vector operand to hold this input.
unsigned OpNo;
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
if (InputUsed[OpNo] == Input) {
// This input vector is already an operand.
break;
} else if (InputUsed[OpNo] == -1U) {
// Create a new operand for this input vector.
InputUsed[OpNo] = Input;
break;
}
}
if (OpNo >= array_lengthof(InputUsed)) {
// More than two input vectors used! Give up on trying to create a
// shuffle vector. Insert all elements into a BUILD_VECTOR instead.
useBuildVector = true;
break;
}
// Add the mask index for the new shuffle vector.
Ops.push_back(Idx + OpNo * NewElts);
}
if (useBuildVector) {
EVT EltVT = NewVT.getVectorElementType();
SmallVector<SDValue, 16> SVOps;
// Extract the input elements by hand.
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element is "undef" or indexes off the end of the input.
SVOps.push_back(DAG.getUNDEF(EltVT));
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Extract the vector element by hand.
SVOps.push_back(DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Inputs[Input],
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
}
// Construct the Lo/Hi output using a BUILD_VECTOR.
Output = DAG.getBuildVector(NewVT, dl, SVOps);
} else if (InputUsed[0] == -1U) {
// No input vectors were used! The result is undefined.
Output = DAG.getUNDEF(NewVT);
} else {
SDValue Op0 = Inputs[InputUsed[0]];
// If only one input was used, use an undefined vector for the other.
SDValue Op1 = InputUsed[1] == -1U ?
DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
// At least one input vector was used. Create a new shuffle vector.
Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, Ops);
}
Ops.clear();
}
}
void DAGTypeLegalizer::SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi) {
EVT OVT = N->getValueType(0);
EVT NVT = OVT.getHalfNumVectorElementsVT(*DAG.getContext());
SDValue Chain = N->getOperand(0);
SDValue Ptr = N->getOperand(1);
SDValue SV = N->getOperand(2);
SDLoc dl(N);
const unsigned Alignment = DAG.getDataLayout().getABITypeAlignment(
NVT.getTypeForEVT(*DAG.getContext()));
Lo = DAG.getVAArg(NVT, dl, Chain, Ptr, SV, Alignment);
Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, SV, Alignment);
Chain = Hi.getValue(1);
// Modified the chain - switch anything that used the old chain to use
// the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
}
//===----------------------------------------------------------------------===//
// Operand Vector Splitting
//===----------------------------------------------------------------------===//
/// This method is called when the specified operand of the specified node is
/// found to need vector splitting. At this point, all of the result types of
/// the node are known to be legal, but other operands of the node may need
/// legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Split node operand: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom split this node.
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
return false;
if (!Res.getNode()) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to split this operator's "
"operand!\n");
case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
case ISD::TRUNCATE:
Res = SplitVecOp_TruncateHelper(N);
break;
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
case ISD::FCOPYSIGN: Res = SplitVecOp_FCOPYSIGN(N); break;
case ISD::STORE:
Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
case ISD::MSTORE:
Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
break;
case ISD::MSCATTER:
Res = SplitVecOp_MSCATTER(cast<MaskedScatterSDNode>(N), OpNo);
break;
case ISD::MGATHER:
Res = SplitVecOp_MGATHER(cast<MaskedGatherSDNode>(N), OpNo);
break;
case ISD::VSELECT:
Res = SplitVecOp_VSELECT(N, OpNo);
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
if (N->getValueType(0).bitsLT(N->getOperand(0).getValueType()))
Res = SplitVecOp_TruncateHelper(N);
else
Res = SplitVecOp_UnaryOp(N);
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::STRICT_FP_EXTEND:
case ISD::FP_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::FTRUNC:
case ISD::FCANONICALIZE:
Res = SplitVecOp_UnaryOp(N);
break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
Res = SplitVecOp_ExtVecInRegOp(N);
break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
Res = SplitVecOp_VECREDUCE(N, OpNo);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
if (N->isStrictFPOpcode())
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 2 &&
"Invalid operand expansion");
else
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
// The only possibility for an illegal operand is the mask, since result type
// legalization would have handled this node already otherwise.
assert(OpNo == 0 && "Illegal operand must be mask");
SDValue Mask = N->getOperand(0);
SDValue Src0 = N->getOperand(1);
SDValue Src1 = N->getOperand(2);
EVT Src0VT = Src0.getValueType();
SDLoc DL(N);
assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
assert(Lo.getValueType() == Hi.getValueType() &&
"Lo and Hi have differing types");
EVT LoOpVT, HiOpVT;
std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
SDValue LoSelect =
DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
SDValue HiSelect =
DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
}
SDValue DAGTypeLegalizer::SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo) {
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
SDLoc dl(N);
SDValue VecOp = N->getOperand(OpNo);
EVT VecVT = VecOp.getValueType();
assert(VecVT.isVector() && "Can only split reduce vector operand");
GetSplitVector(VecOp, Lo, Hi);
EVT LoOpVT, HiOpVT;
std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(VecVT);
bool NoNaN = N->getFlags().hasNoNaNs();
unsigned CombineOpc = 0;
switch (N->getOpcode()) {
case ISD::VECREDUCE_FADD: CombineOpc = ISD::FADD; break;
case ISD::VECREDUCE_FMUL: CombineOpc = ISD::FMUL; break;
case ISD::VECREDUCE_ADD: CombineOpc = ISD::ADD; break;
case ISD::VECREDUCE_MUL: CombineOpc = ISD::MUL; break;
case ISD::VECREDUCE_AND: CombineOpc = ISD::AND; break;
case ISD::VECREDUCE_OR: CombineOpc = ISD::OR; break;
case ISD::VECREDUCE_XOR: CombineOpc = ISD::XOR; break;
case ISD::VECREDUCE_SMAX: CombineOpc = ISD::SMAX; break;
case ISD::VECREDUCE_SMIN: CombineOpc = ISD::SMIN; break;
case ISD::VECREDUCE_UMAX: CombineOpc = ISD::UMAX; break;
case ISD::VECREDUCE_UMIN: CombineOpc = ISD::UMIN; break;
case ISD::VECREDUCE_FMAX:
CombineOpc = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
break;
case ISD::VECREDUCE_FMIN:
CombineOpc = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
break;
default:
llvm_unreachable("Unexpected reduce ISD node");
}
// Use the appropriate scalar instruction on the split subvectors before
// reducing the now partially reduced smaller vector.
SDValue Partial = DAG.getNode(CombineOpc, dl, LoOpVT, Lo, Hi, N->getFlags());
return DAG.getNode(N->getOpcode(), dl, ResVT, Partial, N->getFlags());
}
SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
SDLoc dl(N);
GetSplitVector(N->getOperand(N->isStrictFPOpcode() ? 1 : 0), Lo, Hi);
EVT InVT = Lo.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
if (N->isStrictFPOpcode()) {
Lo = DAG.getNode(N->getOpcode(), dl, { OutVT, MVT::Other },
{ N->getOperand(0), Lo });
Hi = DAG.getNode(N->getOpcode(), dl, { OutVT, MVT::Other },
{ N->getOperand(0), Hi });
// Build a factor node to remember that this operation is independent
// of the other one.
SDValue Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Ch);
} else {
Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
}
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
// For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
// end up being split all the way down to individual components. Convert the
// split pieces into integers and reassemble.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (DAG.getDataLayout().isBigEndian())
std::swap(Lo, Hi);
return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
JoinIntegers(Lo, Hi));
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
// We know that the extracted result type is legal.
EVT SubVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
SDLoc dl(N);
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal < LoElts) {
assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
"Extracted subvector crosses vector split!");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
} else {
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
DAG.getConstant(IdxVal - LoElts, dl,
Idx.getValueType()));
}
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VecVT = Vec.getValueType();
if (isa<ConstantSDNode>(Idx)) {
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
SDValue Lo, Hi;
GetSplitVector(Vec, Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoElts)
return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
return SDValue(DAG.UpdateNodeOperands(N, Hi,
DAG.getConstant(IdxVal - LoElts, SDLoc(N),
Idx.getValueType())), 0);
}
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(0), true))
return SDValue();
// Make the vector elements byte-addressable if they aren't already.
SDLoc dl(N);
EVT EltVT = VecVT.getVectorElementType();
if (VecVT.getScalarSizeInBits() < 8) {
EltVT = MVT::i8;
VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
VecVT.getVectorNumElements());
Vec = DAG.getNode(ISD::ANY_EXTEND, dl, VecVT, Vec);
}
// Store the vector to the stack.
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
auto &MF = DAG.getMachineFunction();
auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
// Load back the required element.
StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
// FIXME: This is to handle i1 vectors with elements promoted to i8.
// i1 vector handling needs general improvement.
if (N->getValueType(0).bitsLT(EltVT)) {
SDValue Load = DAG.getLoad(EltVT, dl, Store, StackPtr,
MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
return DAG.getZExtOrTrunc(Load, dl, N->getValueType(0));
}
return DAG.getExtLoad(
ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
}
SDValue DAGTypeLegalizer::SplitVecOp_ExtVecInRegOp(SDNode *N) {
SDValue Lo, Hi;
// *_EXTEND_VECTOR_INREG only reference the lower half of the input, so
// splitting the result has the same effect as splitting the input operand.
SplitVecRes_ExtVecInRegOp(N, Lo, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), N->getValueType(0), Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_MGATHER(MaskedGatherSDNode *MGT,
unsigned OpNo) {
EVT LoVT, HiVT;
SDLoc dl(MGT);
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
SDValue Ch = MGT->getChain();
SDValue Ptr = MGT->getBasePtr();
SDValue Index = MGT->getIndex();
SDValue Scale = MGT->getScale();
SDValue Mask = MGT->getMask();
SDValue PassThru = MGT->getPassThru();
unsigned Alignment = MGT->getOriginalAlignment();
SDValue MaskLo, MaskHi;
if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
// Split Mask operand
GetSplitVector(Mask, MaskLo, MaskHi);
else
std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
EVT MemoryVT = MGT->getMemoryVT();
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue PassThruLo, PassThruHi;
if (getTypeAction(PassThru.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(PassThru, PassThruLo, PassThruHi);
else
std::tie(PassThruLo, PassThruHi) = DAG.SplitVector(PassThru, dl);
SDValue IndexHi, IndexLo;
if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Index, IndexLo, IndexHi);
else
std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MGT->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MGT->getAAInfo(), MGT->getRanges());
SDValue OpsLo[] = {Ch, PassThruLo, MaskLo, Ptr, IndexLo, Scale};
SDValue Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl,
OpsLo, MMO, MGT->getIndexType());
MMO = DAG.getMachineFunction().
getMachineMemOperand(MGT->getPointerInfo(),
MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
Alignment, MGT->getAAInfo(),
MGT->getRanges());
SDValue OpsHi[] = {Ch, PassThruHi, MaskHi, Ptr, IndexHi, Scale};
SDValue Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl,
OpsHi, MMO, MGT->getIndexType());
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(MGT, 1), Ch);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MGT->getValueType(0), Lo,
Hi);
ReplaceValueWith(SDValue(MGT, 0), Res);
return SDValue();
}
SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
unsigned OpNo) {
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
SDValue Mask = N->getMask();
SDValue Data = N->getValue();
EVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getOriginalAlignment();
SDLoc DL(N);
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
// Split Data operand
GetSplitVector(Data, DataLo, DataHi);
else
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
// Split Mask operand
SDValue MaskLo, MaskHi;
if (OpNo == 1 && Mask.getOpcode() == ISD::SETCC) {
SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
} else {
if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Mask, MaskLo, MaskHi);
else
std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
}
SDValue Lo, Hi;
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(N->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, N->getAAInfo(), N->getRanges());
Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
N->isTruncatingStore(),
N->isCompressingStore());
Ptr = TLI.IncrementMemoryAddress(Ptr, MaskLo, DL, LoMemVT, DAG,
N->isCompressingStore());
unsigned HiOffset = LoMemVT.getStoreSize();
MMO = DAG.getMachineFunction().getMachineMemOperand(
N->getPointerInfo().getWithOffset(HiOffset), MachineMemOperand::MOStore,
HiMemVT.getStoreSize(), Alignment, N->getAAInfo(),
N->getRanges());
Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
N->isTruncatingStore(), N->isCompressingStore());
// Build a factor node to remember that this store is independent of the
// other one.
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_MSCATTER(MaskedScatterSDNode *N,
unsigned OpNo) {
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
SDValue Mask = N->getMask();
SDValue Index = N->getIndex();
SDValue Scale = N->getScale();
SDValue Data = N->getValue();
EVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getOriginalAlignment();
SDLoc DL(N);
// Split all operands
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
// Split Data operand
GetSplitVector(Data, DataLo, DataHi);
else
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
// Split Mask operand
SDValue MaskLo, MaskHi;
if (OpNo == 1 && Mask.getOpcode() == ISD::SETCC) {
SplitVecRes_SETCC(Mask.getNode(), MaskLo, MaskHi);
} else {
if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Mask, MaskLo, MaskHi);
else
std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
}
SDValue IndexHi, IndexLo;
if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
GetSplitVector(Index, IndexLo, IndexHi);
else
std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
SDValue Lo;
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(N->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, N->getAAInfo(), N->getRanges());
SDValue OpsLo[] = {Ch, DataLo, MaskLo, Ptr, IndexLo, Scale};
Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
DL, OpsLo, MMO, N->getIndexType());
MMO = DAG.getMachineFunction().
getMachineMemOperand(N->getPointerInfo(),
MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
Alignment, N->getAAInfo(), N->getRanges());
// The order of the Scatter operation after split is well defined. The "Hi"
// part comes after the "Lo". So these two operations should be chained one
// after another.
SDValue OpsHi[] = {Lo, DataHi, MaskHi, Ptr, IndexHi, Scale};
return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
DL, OpsHi, MMO, N->getIndexType());
}
SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
assert(N->isUnindexed() && "Indexed store of vector?");
assert(OpNo == 1 && "Can only split the stored value");
SDLoc DL(N);
bool isTruncating = N->isTruncatingStore();
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
EVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getOriginalAlignment();
MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags();
AAMDNodes AAInfo = N->getAAInfo();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
// Scalarize if the split halves are not byte-sized.
if (!LoMemVT.isByteSized() || !HiMemVT.isByteSized())
return TLI.scalarizeVectorStore(N, DAG);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
if (isTruncating)
Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), LoMemVT,
Alignment, MMOFlags, AAInfo);
else
Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), Alignment, MMOFlags,
AAInfo);
// Increment the pointer to the other half.
Ptr = DAG.getObjectPtrOffset(DL, Ptr, IncrementSize);
if (isTruncating)
Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
HiMemVT, Alignment, MMOFlags, AAInfo);
else
Hi = DAG.getStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
Alignment, MMOFlags, AAInfo);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
SDLoc DL(N);
// The input operands all must have the same type, and we know the result
// type is valid. Convert this to a buildvector which extracts all the
// input elements.
// TODO: If the input elements are power-two vectors, we could convert this to
// a new CONCAT_VECTORS node with elements that are half-wide.
SmallVector<SDValue, 32> Elts;
EVT EltVT = N->getValueType(0).getVectorElementType();
for (const SDValue &Op : N->op_values()) {
for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
i != e; ++i) {
Elts.push_back(DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op,
DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
}
}
return DAG.getBuildVector(N->getValueType(0), DL, Elts);
}
SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
// The result type is legal, but the input type is illegal. If splitting
// ends up with the result type of each half still being legal, just
// do that. If, however, that would result in an illegal result type,
// we can try to get more clever with power-two vectors. Specifically,
// split the input type, but also widen the result element size, then
// concatenate the halves and truncate again. For example, consider a target
// where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
// vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
// %inlo = v4i32 extract_subvector %in, 0
// %inhi = v4i32 extract_subvector %in, 4
// %lo16 = v4i16 trunc v4i32 %inlo
// %hi16 = v4i16 trunc v4i32 %inhi
// %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
// %res = v8i8 trunc v8i16 %in16
//
// Without this transform, the original truncate would end up being
// scalarized, which is pretty much always a last resort.
SDValue InVec = N->getOperand(0);
EVT InVT = InVec->getValueType(0);
EVT OutVT = N->getValueType(0);
unsigned NumElements = OutVT.getVectorNumElements();
bool IsFloat = OutVT.isFloatingPoint();
// Widening should have already made sure this is a power-two vector
// if we're trying to split it at all. assert() that's true, just in case.
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
unsigned InElementSize = InVT.getScalarSizeInBits();
unsigned OutElementSize = OutVT.getScalarSizeInBits();
// Determine the split output VT. If its legal we can just split dirctly.
EVT LoOutVT, HiOutVT;
std::tie(LoOutVT, HiOutVT) = DAG.GetSplitDestVTs(OutVT);
assert(LoOutVT == HiOutVT && "Unequal split?");
// If the input elements are only 1/2 the width of the result elements,
// just use the normal splitting. Our trick only work if there's room
// to split more than once.
if (isTypeLegal(LoOutVT) ||
InElementSize <= OutElementSize * 2)
return SplitVecOp_UnaryOp(N);
SDLoc DL(N);
// Don't touch if this will be scalarized.
EVT FinalVT = InVT;
while (getTypeAction(FinalVT) == TargetLowering::TypeSplitVector)
FinalVT = FinalVT.getHalfNumVectorElementsVT(*DAG.getContext());
if (getTypeAction(FinalVT) == TargetLowering::TypeScalarizeVector)
return SplitVecOp_UnaryOp(N);
// Get the split input vector.
SDValue InLoVec, InHiVec;
GetSplitVector(InVec, InLoVec, InHiVec);
// Truncate them to 1/2 the element size.
EVT HalfElementVT = IsFloat ?
EVT::getFloatingPointVT(InElementSize/2) :
EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
NumElements/2);
SDValue HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
SDValue HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
// Concatenate them to get the full intermediate truncation result.
EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
HalfHi);
// Now finish up by truncating all the way down to the original result
// type. This should normally be something that ends up being legal directly,
// but in theory if a target has very wide vectors and an annoyingly
// restricted set of legal types, this split can chain to build things up.
return IsFloat
? DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
DAG.getTargetConstant(
0, DL, TLI.getPointerTy(DAG.getDataLayout())))
: DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
}
SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
// The result has a legal vector type, but the input needs splitting.
SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
SDLoc DL(N);
GetSplitVector(N->getOperand(0), Lo0, Hi0);
GetSplitVector(N->getOperand(1), Lo1, Hi1);
unsigned PartElements = Lo0.getValueType().getVectorNumElements();
EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
EVT OpVT = N->getOperand(0).getValueType();
ISD::NodeType ExtendCode =
TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
return DAG.getNode(ExtendCode, DL, N->getValueType(0), Con);
}
SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
SDLoc DL(N);
GetSplitVector(N->getOperand(N->isStrictFPOpcode() ? 1 : 0), Lo, Hi);
EVT InVT = Lo.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
if (N->isStrictFPOpcode()) {
Lo = DAG.getNode(N->getOpcode(), DL, { OutVT, MVT::Other },
{ N->getOperand(0), Lo, N->getOperand(2) });
Hi = DAG.getNode(N->getOpcode(), DL, { OutVT, MVT::Other },
{ N->getOperand(0), Hi, N->getOperand(2) });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
Lo.getValue(1), Hi.getValue(1));
ReplaceValueWith(SDValue(N, 1), NewChain);
} else {
Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_FCOPYSIGN(SDNode *N) {
// The result (and the first input) has a legal vector type, but the second
// input needs splitting.
return DAG.UnrollVectorOp(N, N->getValueType(0).getVectorNumElements());
}
//===----------------------------------------------------------------------===//
// Result Vector Widening
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
LLVM_DEBUG(dbgs() << "Widen node result " << ResNo << ": "; N->dump(&DAG);
dbgs() << "\n");
// See if the target wants to custom widen this node.
if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
return;
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "WidenVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen the result of this operator!");
case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::VSELECT:
case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE:
Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
break;
case ISD::MLOAD:
Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
break;
case ISD::MGATHER:
Res = WidenVecRes_MGATHER(cast<MaskedGatherSDNode>(N));
break;
case ISD::ADD:
case ISD::AND:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::OR:
case ISD::SUB:
case ISD::XOR:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::UADDSAT:
case ISD::SADDSAT:
case ISD::USUBSAT:
case ISD::SSUBSAT:
Res = WidenVecRes_Binary(N);
break;
case ISD::FADD:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
Res = WidenVecRes_BinaryCanTrap(N);
break;
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
// These are binary operations, but with an extra operand that shouldn't
// be widened (the scale).
Res = WidenVecRes_BinaryWithExtraScalarOp(N);
break;
case ISD::STRICT_FADD:
case ISD::STRICT_FSUB:
case ISD::STRICT_FMUL:
case ISD::STRICT_FDIV:
case ISD::STRICT_FREM:
case ISD::STRICT_FSQRT:
case ISD::STRICT_FMA:
case ISD::STRICT_FPOW:
case ISD::STRICT_FPOWI:
case ISD::STRICT_FSIN:
case ISD::STRICT_FCOS:
case ISD::STRICT_FEXP:
case ISD::STRICT_FEXP2:
case ISD::STRICT_FLOG:
case ISD::STRICT_FLOG10:
case ISD::STRICT_FLOG2:
case ISD::STRICT_FRINT:
case ISD::STRICT_FNEARBYINT:
case ISD::STRICT_FMAXNUM:
case ISD::STRICT_FMINNUM:
case ISD::STRICT_FCEIL:
case ISD::STRICT_FFLOOR:
case ISD::STRICT_FROUND:
case ISD::STRICT_FTRUNC:
Res = WidenVecRes_StrictFP(N);
break;
case ISD::UADDO:
case ISD::SADDO:
case ISD::USUBO:
case ISD::SSUBO:
case ISD::UMULO:
case ISD::SMULO:
Res = WidenVecRes_OverflowOp(N, ResNo);
break;
case ISD::FCOPYSIGN:
Res = WidenVecRes_FCOPYSIGN(N);
break;
case ISD::FPOWI:
Res = WidenVecRes_POWI(N);
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
Res = WidenVecRes_Shift(N);
break;
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
Res = WidenVecRes_EXTEND_VECTOR_INREG(N);
break;
case ISD::ANY_EXTEND:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
Res = WidenVecRes_Convert(N);
break;
case ISD::STRICT_FP_EXTEND:
case ISD::STRICT_FP_ROUND:
case ISD::STRICT_FP_TO_SINT:
case ISD::STRICT_FP_TO_UINT:
Res = WidenVecRes_Convert_StrictFP(N);
break;
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FRINT:
case ISD::FROUND:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC: {
// We're going to widen this vector op to a legal type by padding with undef
// elements. If the wide vector op is eventually going to be expanded to
// scalar libcalls, then unroll into scalar ops now to avoid unnecessary
// libcalls on the undef elements.
EVT VT = N->getValueType(0);
EVT WideVecVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
if (!TLI.isOperationLegalOrCustom(N->getOpcode(), WideVecVT) &&
TLI.isOperationExpand(N->getOpcode(), VT.getScalarType())) {
Res = DAG.UnrollVectorOp(N, WideVecVT.getVectorNumElements());
break;
}
}
// If the target has custom/legal support for the scalar FP intrinsic ops
// (they are probably not destined to become libcalls), then widen those like
// any other unary ops.
LLVM_FALLTHROUGH;
case ISD::ABS:
case ISD::BITREVERSE:
case ISD::BSWAP:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::FNEG:
case ISD::FCANONICALIZE:
Res = WidenVecRes_Unary(N);
break;
case ISD::FMA:
Res = WidenVecRes_Ternary(N);
break;
}
// If Res is null, the sub-method took care of registering the result.
if (Res.getNode())
SetWidenedVector(SDValue(N, ResNo), Res);
}
SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
// Ternary op widening.
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
SDValue InOp3 = GetWidenedVector(N->getOperand(2));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
}
SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
// Binary op widening.
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, N->getFlags());
}
SDValue DAGTypeLegalizer::WidenVecRes_BinaryWithExtraScalarOp(SDNode *N) {
// Binary op widening, but with an extra operand that shouldn't be widened.
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
SDValue InOp3 = N->getOperand(2);
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3,
N->getFlags());
}
// Given a vector of operations that have been broken up to widen, see
// if we can collect them together into the next widest legal VT. This
// implementation is trap-safe.
static SDValue CollectOpsToWiden(SelectionDAG &DAG, const TargetLowering &TLI,
SmallVectorImpl<SDValue> &ConcatOps,
unsigned ConcatEnd, EVT VT, EVT MaxVT,
EVT WidenVT) {
// Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
SDLoc dl(ConcatOps[0]);
EVT WidenEltVT = WidenVT.getVectorElementType();
// while (Some element of ConcatOps is not of type MaxVT) {
// From the end of ConcatOps, collect elements of the same type and put
// them into an op of the next larger supported type
// }
while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
int Idx = ConcatEnd - 1;
VT = ConcatOps[Idx--].getValueType();
while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
Idx--;
int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
EVT NextVT;
do {
NextSize *= 2;
NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
} while (!TLI.isTypeLegal(NextVT));
if (!VT.isVector()) {
// Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
SDValue VecOp = DAG.getUNDEF(NextVT);
unsigned NumToInsert = ConcatEnd - Idx - 1;
for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
VecOp = DAG.getNode(
ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp, ConcatOps[OpIdx],
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
ConcatOps[Idx+1] = VecOp;
ConcatEnd = Idx + 2;
} else {
// Vector type, create a CONCAT_VECTORS of type NextVT
SDValue undefVec = DAG.getUNDEF(VT);
unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
unsigned RealVals = ConcatEnd - Idx - 1;
unsigned SubConcatEnd = 0;
unsigned SubConcatIdx = Idx + 1;
while (SubConcatEnd < RealVals)
SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
while (SubConcatEnd < OpsToConcat)
SubConcatOps[SubConcatEnd++] = undefVec;
ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
NextVT, SubConcatOps);
ConcatEnd = SubConcatIdx + 1;
}
}
// Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
// add undefs of size MaxVT until ConcatOps grows to length of WidenVT
unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
if (NumOps != ConcatEnd ) {
SDValue UndefVal = DAG.getUNDEF(MaxVT);
for (unsigned j = ConcatEnd; j < NumOps; ++j)
ConcatOps[j] = UndefVal;
}
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
makeArrayRef(ConcatOps.data(), NumOps));
}
SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
// Binary op widening for operations that can trap.
unsigned Opcode = N->getOpcode();
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT WidenEltVT = WidenVT.getVectorElementType();
EVT VT = WidenVT;
unsigned NumElts = VT.getVectorNumElements();
const SDNodeFlags Flags = N->getFlags();
while (!TLI.isTypeLegal(VT) && NumElts != 1) {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
}
if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
// Operation doesn't trap so just widen as normal.
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, Flags);
}
// No legal vector version so unroll the vector operation and then widen.
if (NumElts == 1)
return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
// Since the operation can trap, apply operation on the original vector.
EVT MaxVT = VT;
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
SmallVector<SDValue, 16> ConcatOps(CurNumElts);
unsigned ConcatEnd = 0; // Current ConcatOps index.
int Idx = 0; // Current Idx into input vectors.
// NumElts := greatest legal vector size (at most WidenVT)
// while (orig. vector has unhandled elements) {
// take munches of size NumElts from the beginning and add to ConcatOps
// NumElts := next smaller supported vector size or 1
// }
while (CurNumElts != 0) {
while (CurNumElts >= NumElts) {
SDValue EOp1 = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
SDValue EOp2 = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2, Flags);
Idx += NumElts;
CurNumElts -= NumElts;
}
do {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
} while (!TLI.isTypeLegal(VT) && NumElts != 1);
if (NumElts == 1) {
for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
SDValue EOp1 = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp1,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
SDValue EOp2 = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp2,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
EOp1, EOp2, Flags);
}
CurNumElts = 0;
}
}
return CollectOpsToWiden(DAG, TLI, ConcatOps, ConcatEnd, VT, MaxVT, WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_StrictFP(SDNode *N) {
// StrictFP op widening for operations that can trap.
unsigned NumOpers = N->getNumOperands();
unsigned Opcode = N->getOpcode();
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT WidenEltVT = WidenVT.getVectorElementType();
EVT VT = WidenVT;
unsigned NumElts = VT.getVectorNumElements();
while (!TLI.isTypeLegal(VT) && NumElts != 1) {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
}
// No legal vector version so unroll the vector operation and then widen.
if (NumElts == 1)
return UnrollVectorOp_StrictFP(N, WidenVT.getVectorNumElements());
// Since the operation can trap, apply operation on the original vector.
EVT MaxVT = VT;
SmallVector<SDValue, 4> InOps;
unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
SmallVector<SDValue, 16> ConcatOps(CurNumElts);
SmallVector<SDValue, 16> Chains;
unsigned ConcatEnd = 0; // Current ConcatOps index.
int Idx = 0; // Current Idx into input vectors.
// The Chain is the first operand.
InOps.push_back(N->getOperand(0));
// Now process the remaining operands.
for (unsigned i = 1; i < NumOpers; ++i) {
SDValue Oper = N->getOperand(i);
if (Oper.getValueType().isVector()) {
assert(Oper.getValueType() == N->getValueType(0) &&
"Invalid operand type to widen!");
Oper = GetWidenedVector(Oper);
}
InOps.push_back(Oper);
}
// NumElts := greatest legal vector size (at most WidenVT)
// while (orig. vector has unhandled elements) {
// take munches of size NumElts from the beginning and add to ConcatOps
// NumElts := next smaller supported vector size or 1
// }
while (CurNumElts != 0) {
while (CurNumElts >= NumElts) {
SmallVector<SDValue, 4> EOps;
for (unsigned i = 0; i < NumOpers; ++i) {
SDValue Op = InOps[i];
if (Op.getValueType().isVector())
Op = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
EOps.push_back(Op);
}
EVT OperVT[] = {VT, MVT::Other};
SDValue Oper = DAG.getNode(Opcode, dl, OperVT, EOps);
ConcatOps[ConcatEnd++] = Oper;
Chains.push_back(Oper.getValue(1));
Idx += NumElts;
CurNumElts -= NumElts;
}
do {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
} while (!TLI.isTypeLegal(VT) && NumElts != 1);
if (NumElts == 1) {
for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
SmallVector<SDValue, 4> EOps;
for (unsigned i = 0; i < NumOpers; ++i) {
SDValue Op = InOps[i];
if (Op.getValueType().isVector())
Op = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, Op,
DAG.getConstant(Idx, dl,
TLI.getVectorIdxTy(DAG.getDataLayout())));
EOps.push_back(Op);
}
EVT WidenVT[] = {WidenEltVT, MVT::Other};
SDValue Oper = DAG.getNode(Opcode, dl, WidenVT, EOps);
ConcatOps[ConcatEnd++] = Oper;
Chains.push_back(Oper.getValue(1));
}
CurNumElts = 0;
}
}
// Build a factor node to remember all the Ops that have been created.
SDValue NewChain;
if (Chains.size() == 1)
NewChain = Chains[0];
else
NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
ReplaceValueWith(SDValue(N, 1), NewChain);
return CollectOpsToWiden(DAG, TLI, ConcatOps, ConcatEnd, VT, MaxVT, WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo) {
SDLoc DL(N);
EVT ResVT = N->getValueType(0);
EVT OvVT = N->getValueType(1);
EVT WideResVT, WideOvVT;
SDValue WideLHS, WideRHS;
// TODO: This might result in a widen/split loop.
if (ResNo == 0) {
WideResVT = TLI.getTypeToTransformTo(*DAG.getContext(), ResVT);
WideOvVT = EVT::getVectorVT(
*DAG.getContext(), OvVT.getVectorElementType(),
WideResVT.getVectorNumElements());
WideLHS = GetWidenedVector(N->getOperand(0));
WideRHS = GetWidenedVector(N->getOperand(1));
} else {
WideOvVT = TLI.getTypeToTransformTo(*DAG.getContext(), OvVT);
WideResVT = EVT::getVectorVT(
*DAG.getContext(), ResVT.getVectorElementType(),
WideOvVT.getVectorNumElements());
SDValue Zero = DAG.getConstant(
0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
WideLHS = DAG.getNode(
ISD::INSERT_SUBVECTOR, DL, WideResVT, DAG.getUNDEF(WideResVT),
N->getOperand(0), Zero);
WideRHS = DAG.getNode(
ISD::INSERT_SUBVECTOR, DL, WideResVT, DAG.getUNDEF(WideResVT),
N->getOperand(1), Zero);
}
SDVTList WideVTs = DAG.getVTList(WideResVT, WideOvVT);
SDNode *WideNode = DAG.getNode(
N->getOpcode(), DL, WideVTs, WideLHS, WideRHS).getNode();
// Replace the other vector result not being explicitly widened here.
unsigned OtherNo = 1 - ResNo;
EVT OtherVT = N->getValueType(OtherNo);
if (getTypeAction(OtherVT) == TargetLowering::TypeWidenVector) {
SetWidenedVector(SDValue(N, OtherNo), SDValue(WideNode, OtherNo));
} else {
SDValue Zero = DAG.getConstant(
0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()));
SDValue OtherVal = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, OtherVT, SDValue(WideNode, OtherNo), Zero);
ReplaceValueWith(SDValue(N, OtherNo), OtherVal);
}
return SDValue(WideNode, ResNo);
}
SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
SDValue InOp = N->getOperand(0);
SDLoc DL(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
EVT InVT = InOp.getValueType();
EVT InEltVT = InVT.getVectorElementType();
EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
unsigned Opcode = N->getOpcode();
unsigned InVTNumElts = InVT.getVectorNumElements();
const SDNodeFlags Flags = N->getFlags();
if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
InOp = GetWidenedVector(N->getOperand(0));
InVT = InOp.getValueType();
InVTNumElts = InVT.getVectorNumElements();
if (InVTNumElts == WidenNumElts) {
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InOp);
return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1), Flags);
}
if (WidenVT.getSizeInBits() == InVT.getSizeInBits()) {
// If both input and result vector types are of same width, extend
// operations should be done with SIGN/ZERO_EXTEND_VECTOR_INREG, which
// accepts fewer elements in the result than in the input.
if (Opcode == ISD::ANY_EXTEND)
return DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, WidenVT, InOp);
if (Opcode == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, WidenVT, InOp);
if (Opcode == ISD::ZERO_EXTEND)
return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, WidenVT, InOp);
}
}
if (TLI.isTypeLegal(InWidenVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
if (WidenNumElts % InVTNumElts == 0) {
// Widen the input and call convert on the widened input vector.
unsigned NumConcat = WidenNumElts/InVTNumElts;
SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
Ops[0] = InOp;
SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InVec);
return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1), Flags);
}
if (InVTNumElts % WidenNumElts == 0) {
SDValue InVal = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, InOp,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
// Extract the input and convert the shorten input vector.
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InVal);
return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1), Flags);
}
}
// Otherwise unroll into some nasty scalar code and rebuild the vector.
EVT EltVT = WidenVT.getVectorElementType();
SmallVector<SDValue, 16> Ops(WidenNumElts, DAG.getUNDEF(EltVT));
// Use the original element count so we don't do more scalar opts than
// necessary.
unsigned MinElts = N->getValueType(0).getVectorNumElements();
for (unsigned i=0; i < MinElts; ++i) {
SDValue Val = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
if (N->getNumOperands() == 1)
Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
else
Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1), Flags);
}
return DAG.getBuildVector(WidenVT, DL, Ops);
}
SDValue DAGTypeLegalizer::WidenVecRes_Convert_StrictFP(SDNode *N) {
SDValue InOp = N->getOperand(1);
SDLoc DL(N);
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<EVT, 2> WidenVTs = { WidenVT, MVT::Other };
EVT InVT = InOp.getValueType();
EVT InEltVT = InVT.getVectorElementType();
unsigned Opcode = N->getOpcode();
// FIXME: Optimizations need to be implemented here.
// Otherwise unroll into some nasty scalar code and rebuild the vector.
EVT EltVT = WidenVT.getVectorElementType();
SmallVector<EVT, 2> EltVTs = { EltVT, MVT::Other };
SmallVector<SDValue, 16> Ops(WidenNumElts, DAG.getUNDEF(EltVT));
SmallVector<SDValue, 32> OpChains;
// Use the original element count so we don't do more scalar opts than
// necessary.
unsigned MinElts = N->getValueType(0).getVectorNumElements();
for (unsigned i=0; i < MinElts; ++i) {
NewOps[1] = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
Ops[i] = DAG.getNode(Opcode, DL, EltVTs, NewOps);
OpChains.push_back(Ops[i].getValue(1));
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OpChains);
ReplaceValueWith(SDValue(N, 1), NewChain);
return DAG.getBuildVector(WidenVT, DL, Ops);
}
SDValue DAGTypeLegalizer::WidenVecRes_EXTEND_VECTOR_INREG(SDNode *N) {
unsigned Opcode = N->getOpcode();
SDValue InOp = N->getOperand(0);
SDLoc DL(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT WidenSVT = WidenVT.getVectorElementType();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
EVT InVT = InOp.getValueType();
EVT InSVT = InVT.getVectorElementType();
unsigned InVTNumElts = InVT.getVectorNumElements();
if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
InOp = GetWidenedVector(InOp);
InVT = InOp.getValueType();
if (InVT.getSizeInBits() == WidenVT.getSizeInBits()) {
switch (Opcode) {
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG:
return DAG.getNode(Opcode, DL, WidenVT, InOp);
}
}
}
// Unroll, extend the scalars and rebuild the vector.
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0, e = std::min(InVTNumElts, WidenNumElts); i != e; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InSVT, InOp,
DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
switch (Opcode) {
case ISD::ANY_EXTEND_VECTOR_INREG:
Val = DAG.getNode(ISD::ANY_EXTEND, DL, WidenSVT, Val);
break;
case ISD::SIGN_EXTEND_VECTOR_INREG:
Val = DAG.getNode(ISD::SIGN_EXTEND, DL, WidenSVT, Val);
break;
case ISD::ZERO_EXTEND_VECTOR_INREG:
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenSVT, Val);
break;
default:
llvm_unreachable("A *_EXTEND_VECTOR_INREG node was expected");
}
Ops.push_back(Val);
}
while (Ops.size() != WidenNumElts)
Ops.push_back(DAG.getUNDEF(WidenSVT));
return DAG.getBuildVector(WidenVT, DL, Ops);
}
SDValue DAGTypeLegalizer::WidenVecRes_FCOPYSIGN(SDNode *N) {
// If this is an FCOPYSIGN with same input types, we can treat it as a
// normal (can trap) binary op.
if (N->getOperand(0).getValueType() == N->getOperand(1).getValueType())
return WidenVecRes_BinaryCanTrap(N);
// If the types are different, fall back to unrolling.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
}
SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
EVT ShVT = ShOp.getValueType();
if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
ShOp = GetWidenedVector(ShOp);
ShVT = ShOp.getValueType();
}
EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
ShVT.getVectorElementType(),
WidenVT.getVectorNumElements());
if (ShVT != ShWidenVT)
ShOp = ModifyToType(ShOp, ShWidenVT);
return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
// Unary op widening.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
cast<VTSDNode>(N->getOperand(1))->getVT()
.getVectorElementType(),
WidenVT.getVectorNumElements());
SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), SDLoc(N),
WidenVT, WidenLHS, DAG.getValueType(ExtVT));
}
SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
return GetWidenedVector(WidenVec);
}
SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
EVT VT = N->getValueType(0);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
SDLoc dl(N);
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
break;
case TargetLowering::TypePromoteInteger:
// If the incoming type is a vector that is being promoted, then
// we know that the elements are arranged differently and that we
// must perform the conversion using a stack slot.
if (InVT.isVector())
break;
// If the InOp is promoted to the same size, convert it. Otherwise,
// fall out of the switch and widen the promoted input.
InOp = GetPromotedInteger(InOp);
InVT = InOp.getValueType();
if (WidenVT.bitsEq(InVT))
return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
break;
case TargetLowering::TypeSoftenFloat:
case TargetLowering::TypePromoteFloat:
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
case TargetLowering::TypeScalarizeVector:
case TargetLowering::TypeSplitVector:
break;
case TargetLowering::TypeWidenVector:
// If the InOp is widened to the same size, convert it. Otherwise, fall
// out of the switch and widen the widened input.
InOp = GetWidenedVector(InOp);
InVT = InOp.getValueType();
if (WidenVT.bitsEq(InVT))
// The input widens to the same size. Convert to the widen value.
return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
break;
}
unsigned WidenSize = WidenVT.getSizeInBits();
unsigned InSize = InVT.getSizeInBits();
// x86mmx is not an acceptable vector element type, so don't try.
if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
// Determine new input vector type. The new input vector type will use
// the same element type (if its a vector) or use the input type as a
// vector. It is the same size as the type to widen to.
EVT NewInVT;
unsigned NewNumElts = WidenSize / InSize;
if (InVT.isVector()) {
EVT InEltVT = InVT.getVectorElementType();
NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
WidenSize / InEltVT.getSizeInBits());
} else {
NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
}
if (TLI.isTypeLegal(NewInVT)) {
SDValue NewVec;
if (InVT.isVector()) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
SmallVector<SDValue, 16> Ops(NewNumElts, DAG.getUNDEF(InVT));
Ops[0] = InOp;
NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
} else {
NewVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewInVT, InOp);
}
return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
}
}
return CreateStackStoreLoad(InOp, WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
SDLoc dl(N);
// Build a vector with undefined for the new nodes.
EVT VT = N->getValueType(0);
// Integer BUILD_VECTOR operands may be larger than the node's vector element
// type. The UNDEFs need to have the same type as the existing operands.
EVT EltVT = N->getOperand(0).getValueType();
unsigned NumElts = VT.getVectorNumElements();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
return DAG.getBuildVector(WidenVT, dl, NewOps);
}
SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
EVT InVT = N->getOperand(0).getValueType();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
unsigned NumInElts = InVT.getVectorNumElements();
unsigned NumOperands = N->getNumOperands();
bool InputWidened = false; // Indicates we need to widen the input.
if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
// Add undef vectors to widen to correct length.
unsigned NumConcat = WidenVT.getVectorNumElements() /
InVT.getVectorNumElements();
SDValue UndefVal = DAG.getUNDEF(InVT);
SmallVector<SDValue, 16> Ops(NumConcat);
for (unsigned i=0; i < NumOperands; ++i)
Ops[i] = N->getOperand(i);
for (unsigned i = NumOperands; i != NumConcat; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
}
} else {
InputWidened = true;
if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
// The inputs and the result are widen to the same value.
unsigned i;
for (i=1; i < NumOperands; ++i)
if (!N->getOperand(i).isUndef())
break;
if (i == NumOperands)
// Everything but the first operand is an UNDEF so just return the
// widened first operand.
return GetWidenedVector(N->getOperand(0));
if (NumOperands == 2) {
// Replace concat of two operands with a shuffle.
SmallVector<int, 16> MaskOps(WidenNumElts, -1);
for (unsigned i = 0; i < NumInElts; ++i) {
MaskOps[i] = i;
MaskOps[i + NumInElts] = i + WidenNumElts;
}
return DAG.getVectorShuffle(WidenVT, dl,
GetWidenedVector(N->getOperand(0)),
GetWidenedVector(N->getOperand(1)),
MaskOps);
}
}
}
// Fall back to use extracts and build vector.
EVT EltVT = WidenVT.getVectorElementType();
SmallVector<SDValue, 16> Ops(WidenNumElts);
unsigned Idx = 0;
for (unsigned i=0; i < NumOperands; ++i) {
SDValue InOp = N->getOperand(i);
if (InputWidened)
InOp = GetWidenedVector(InOp);
for (unsigned j=0; j < NumInElts; ++j)
Ops[Idx++] = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; Idx < WidenNumElts; ++Idx)
Ops[Idx] = UndefVal;
return DAG.getBuildVector(WidenVT, dl, Ops);
}
SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp = N->getOperand(0);
SDValue Idx = N->getOperand(1);
SDLoc dl(N);
if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
InOp = GetWidenedVector(InOp);
EVT InVT = InOp.getValueType();
// Check if we can just return the input vector after widening.
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0 && InVT == WidenVT)
return InOp;
// Check if we can extract from the vector.
unsigned InNumElts = InVT.getVectorNumElements();
if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
// We could try widening the input to the right length but for now, extract
// the original elements, fill the rest with undefs and build a vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
unsigned i;
for (i=0; i < NumElts; ++i)
Ops[i] =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getConstant(IdxVal + i, dl,
TLI.getVectorIdxTy(DAG.getDataLayout())));
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i < WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getBuildVector(WidenVT, dl, Ops);
}
SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
InOp.getValueType(), InOp,
N->getOperand(1), N->getOperand(2));
}
SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Result;
SmallVector<SDValue, 16> LdChain; // Chain for the series of load
if (ExtType != ISD::NON_EXTLOAD)
Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
else
Result = GenWidenVectorLoads(LdChain, LD);
// If we generate a single load, we can use that for the chain. Otherwise,
// build a factor node to remember the multiple loads are independent and
// chain to that.
SDValue NewChain;
if (LdChain.size() == 1)
NewChain = LdChain[0];
else
NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
// Modified the chain - switch anything that used the old chain to use
// the new one.
ReplaceValueWith(SDValue(N, 1), NewChain);
return Result;
}
SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
SDValue Mask = N->getMask();
EVT MaskVT = Mask.getValueType();
SDValue PassThru = GetWidenedVector(N->getPassThru());
ISD::LoadExtType ExtType = N->getExtensionType();
SDLoc dl(N);
// The mask should be widened as well
EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
MaskVT.getVectorElementType(),
WidenVT.getVectorNumElements());
Mask = ModifyToType(Mask, WideMaskVT, true);
SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
Mask, PassThru, N->getMemoryVT(),
N->getMemOperand(), ExtType,
N->isExpandingLoad());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::WidenVecRes_MGATHER(MaskedGatherSDNode *N) {
EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Mask = N->getMask();
EVT MaskVT = Mask.getValueType();
SDValue PassThru = GetWidenedVector(N->getPassThru());
SDValue Scale = N->getScale();
unsigned NumElts = WideVT.getVectorNumElements();
SDLoc dl(N);
// The mask should be widened as well
EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
MaskVT.getVectorElementType(),
WideVT.getVectorNumElements());
Mask = ModifyToType(Mask, WideMaskVT, true);
// Widen the Index operand
SDValue Index = N->getIndex();
EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
Index.getValueType().getScalarType(),
NumElts);
Index = ModifyToType(Index, WideIndexVT);
SDValue Ops[] = { N->getChain(), PassThru, Mask, N->getBasePtr(), Index,
Scale };
SDValue Res = DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other),
N->getMemoryVT(), dl, Ops,
N->getMemOperand(), N->getIndexType());
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
WidenVT, N->getOperand(0));
}
// Return true if this is a node that could have two SETCCs as operands.
static inline bool isLogicalMaskOp(unsigned Opcode) {
switch (Opcode) {
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return true;
}
return false;
}
// This is used just for the assert in convertMask(). Check that this either
// a SETCC or a previously handled SETCC by convertMask().
#ifndef NDEBUG
static inline bool isSETCCorConvertedSETCC(SDValue N) {
if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
N = N.getOperand(0);
else if (N.getOpcode() == ISD::CONCAT_VECTORS) {
for (unsigned i = 1; i < N->getNumOperands(); ++i)
if (!N->getOperand(i)->isUndef())
return false;
N = N.getOperand(0);
}
if (N.getOpcode() == ISD::TRUNCATE)
N = N.getOperand(0);
else if (N.getOpcode() == ISD::SIGN_EXTEND)
N = N.getOperand(0);
if (isLogicalMaskOp(N.getOpcode()))
return isSETCCorConvertedSETCC(N.getOperand(0)) &&
isSETCCorConvertedSETCC(N.getOperand(1));
return (N.getOpcode() == ISD::SETCC ||
ISD::isBuildVectorOfConstantSDNodes(N.getNode()));
}
#endif
// Return a mask of vector type MaskVT to replace InMask. Also adjust MaskVT
// to ToMaskVT if needed with vector extension or truncation.
SDValue DAGTypeLegalizer::convertMask(SDValue InMask, EVT MaskVT,
EVT ToMaskVT) {
// Currently a SETCC or a AND/OR/XOR with two SETCCs are handled.
// FIXME: This code seems to be too restrictive, we might consider
// generalizing it or dropping it.
assert(isSETCCorConvertedSETCC(InMask) && "Unexpected mask argument.");
// Make a new Mask node, with a legal result VT.
SmallVector<SDValue, 4> Ops;
for (unsigned i = 0, e = InMask->getNumOperands(); i < e; ++i)
Ops.push_back(InMask->getOperand(i));
SDValue Mask = DAG.getNode(InMask->getOpcode(), SDLoc(InMask), MaskVT, Ops);
// If MaskVT has smaller or bigger elements than ToMaskVT, a vector sign
// extend or truncate is needed.
LLVMContext &Ctx = *DAG.getContext();
unsigned MaskScalarBits = MaskVT.getScalarSizeInBits();
unsigned ToMaskScalBits = ToMaskVT.getScalarSizeInBits();
if (MaskScalarBits < ToMaskScalBits) {
EVT ExtVT = EVT::getVectorVT(Ctx, ToMaskVT.getVectorElementType(),
MaskVT.getVectorNumElements());
Mask = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Mask), ExtVT, Mask);
} else if (MaskScalarBits > ToMaskScalBits) {
EVT TruncVT = EVT::getVectorVT(Ctx, ToMaskVT.getVectorElementType(),
MaskVT.getVectorNumElements());
Mask = DAG.getNode(ISD::TRUNCATE, SDLoc(Mask), TruncVT, Mask);
}
assert(Mask->getValueType(0).getScalarSizeInBits() ==
ToMaskVT.getScalarSizeInBits() &&
"Mask should have the right element size by now.");
// Adjust Mask to the right number of elements.
unsigned CurrMaskNumEls = Mask->getValueType(0).getVectorNumElements();
if (CurrMaskNumEls > ToMaskVT.getVectorNumElements()) {
MVT IdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
SDValue ZeroIdx = DAG.getConstant(0, SDLoc(Mask), IdxTy);
Mask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Mask), ToMaskVT, Mask,
ZeroIdx);
} else if (CurrMaskNumEls < ToMaskVT.getVectorNumElements()) {
unsigned NumSubVecs = (ToMaskVT.getVectorNumElements() / CurrMaskNumEls);
EVT SubVT = Mask->getValueType(0);
SmallVector<SDValue, 16> SubOps(NumSubVecs, DAG.getUNDEF(SubVT));
SubOps[0] = Mask;
Mask = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Mask), ToMaskVT, SubOps);
}
assert((Mask->getValueType(0) == ToMaskVT) &&
"A mask of ToMaskVT should have been produced by now.");
return Mask;
}
// This method tries to handle VSELECT and its mask by legalizing operands
// (which may require widening) and if needed adjusting the mask vector type
// to match that of the VSELECT. Without it, many cases end up with
// scalarization of the SETCC, with many unnecessary instructions.
SDValue DAGTypeLegalizer::WidenVSELECTAndMask(SDNode *N) {
LLVMContext &Ctx = *DAG.getContext();
SDValue Cond = N->getOperand(0);
if (N->getOpcode() != ISD::VSELECT)
return SDValue();
if (Cond->getOpcode() != ISD::SETCC && !isLogicalMaskOp(Cond->getOpcode()))
return SDValue();
// If this is a splitted VSELECT that was previously already handled, do
// nothing.
EVT CondVT = Cond->getValueType(0);
if (CondVT.getScalarSizeInBits() != 1)
return SDValue();
EVT VSelVT = N->getValueType(0);
// Only handle vector types which are a power of 2.
if (!isPowerOf2_64(VSelVT.getSizeInBits()))
return SDValue();
// Don't touch if this will be scalarized.
EVT FinalVT = VSelVT;
while (getTypeAction(FinalVT) == TargetLowering::TypeSplitVector)
FinalVT = FinalVT.getHalfNumVectorElementsVT(Ctx);
if (FinalVT.getVectorNumElements() == 1)
return SDValue();
// If there is support for an i1 vector mask, don't touch.
if (Cond.getOpcode() == ISD::SETCC) {
EVT SetCCOpVT = Cond->getOperand(0).getValueType();
while (TLI.getTypeAction(Ctx, SetCCOpVT) != TargetLowering::TypeLegal)
SetCCOpVT = TLI.getTypeToTransformTo(Ctx, SetCCOpVT);
EVT SetCCResVT = getSetCCResultType(SetCCOpVT);
if (SetCCResVT.getScalarSizeInBits() == 1)
return SDValue();
} else if (CondVT.getScalarType() == MVT::i1) {
// If there is support for an i1 vector mask (or only scalar i1 conditions),
// don't touch.
while (TLI.getTypeAction(Ctx, CondVT) != TargetLowering::TypeLegal)
CondVT = TLI.getTypeToTransformTo(Ctx, CondVT);
if (CondVT.getScalarType() == MVT::i1)
return SDValue();
}
// Get the VT and operands for VSELECT, and widen if needed.
SDValue VSelOp1 = N->getOperand(1);
SDValue VSelOp2 = N->getOperand(2);
if (getTypeAction(VSelVT) == TargetLowering::TypeWidenVector) {
VSelVT = TLI.getTypeToTransformTo(Ctx, VSelVT);
VSelOp1 = GetWidenedVector(VSelOp1);
VSelOp2 = GetWidenedVector(VSelOp2);
}
// The mask of the VSELECT should have integer elements.
EVT ToMaskVT = VSelVT;
if (!ToMaskVT.getScalarType().isInteger())
ToMaskVT = ToMaskVT.changeVectorElementTypeToInteger();
SDValue Mask;
if (Cond->getOpcode() == ISD::SETCC) {
EVT MaskVT = getSetCCResultType(Cond.getOperand(0).getValueType());
Mask = convertMask(Cond, MaskVT, ToMaskVT);
} else if (isLogicalMaskOp(Cond->getOpcode()) &&
Cond->getOperand(0).getOpcode() == ISD::SETCC &&
Cond->getOperand(1).getOpcode() == ISD::SETCC) {
// Cond is (AND/OR/XOR (SETCC, SETCC))
SDValue SETCC0 = Cond->getOperand(0);
SDValue SETCC1 = Cond->getOperand(1);
EVT VT0 = getSetCCResultType(SETCC0.getOperand(0).getValueType());
EVT VT1 = getSetCCResultType(SETCC1.getOperand(0).getValueType());
unsigned ScalarBits0 = VT0.getScalarSizeInBits();
unsigned ScalarBits1 = VT1.getScalarSizeInBits();
unsigned ScalarBits_ToMask = ToMaskVT.getScalarSizeInBits();
EVT MaskVT;
// If the two SETCCs have different VTs, either extend/truncate one of
// them to the other "towards" ToMaskVT, or truncate one and extend the
// other to ToMaskVT.
if (ScalarBits0 != ScalarBits1) {
EVT NarrowVT = ((ScalarBits0 < ScalarBits1) ? VT0 : VT1);
EVT WideVT = ((NarrowVT == VT0) ? VT1 : VT0);
if (ScalarBits_ToMask >= WideVT.getScalarSizeInBits())
MaskVT = WideVT;
else if (ScalarBits_ToMask <= NarrowVT.getScalarSizeInBits())
MaskVT = NarrowVT;
else
MaskVT = ToMaskVT;
} else
// If the two SETCCs have the same VT, don't change it.
MaskVT = VT0;
// Make new SETCCs and logical nodes.
SETCC0 = convertMask(SETCC0, VT0, MaskVT);
SETCC1 = convertMask(SETCC1, VT1, MaskVT);
Cond = DAG.getNode(Cond->getOpcode(), SDLoc(Cond), MaskVT, SETCC0, SETCC1);
// Convert the logical op for VSELECT if needed.
Mask = convertMask(Cond, MaskVT, ToMaskVT);
} else
return SDValue();
return DAG.getNode(ISD::VSELECT, SDLoc(N), VSelVT, Mask, VSelOp1, VSelOp2);
}
SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue Cond1 = N->getOperand(0);
EVT CondVT = Cond1.getValueType();
if (CondVT.isVector()) {
if (SDValue Res = WidenVSELECTAndMask(N))
return Res;
EVT CondEltVT = CondVT.getVectorElementType();
EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(),
CondEltVT, WidenNumElts);
if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
Cond1 = GetWidenedVector(Cond1);
// If we have to split the condition there is no point in widening the
// select. This would result in an cycle of widening the select ->
// widening the condition operand -> splitting the condition operand ->
// splitting the select -> widening the select. Instead split this select
// further and widen the resulting type.
if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
SDValue Res = ModifyToType(SplitSelect, WidenVT);
return Res;
}
if (Cond1.getValueType() != CondWidenVT)
Cond1 = ModifyToType(Cond1, CondWidenVT);
}
SDValue InOp1 = GetWidenedVector(N->getOperand(1));
SDValue InOp2 = GetWidenedVector(N->getOperand(2));
assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
return DAG.getNode(N->getOpcode(), SDLoc(N),
WidenVT, Cond1, InOp1, InOp2);
}
SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
SDValue InOp1 = GetWidenedVector(N->getOperand(2));
SDValue InOp2 = GetWidenedVector(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
InOp1.getValueType(), N->getOperand(0),
N->getOperand(1), InOp1, InOp2, N->getOperand(4));
}
SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getUNDEF(WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned NumElts = VT.getVectorNumElements();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
// Adjust mask based on new input vector length.
SmallVector<int, 16> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = N->getMaskElt(i);
if (Idx < (int)NumElts)
NewMask.push_back(Idx);
else
NewMask.push_back(Idx - NumElts + WidenNumElts);
}
for (unsigned i = NumElts; i != WidenNumElts; ++i)
NewMask.push_back(-1);
return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, NewMask);
}
SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operands must be vectors");
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp1 = N->getOperand(0);
EVT InVT = InOp1.getValueType();
assert(InVT.isVector() && "can not widen non-vector type");
EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
InVT.getVectorElementType(), WidenNumElts);
// The input and output types often differ here, and it could be that while
// we'd prefer to widen the result type, the input operands have been split.
// In this case, we also need to split the result of this node as well.
if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
SDValue SplitVSetCC = SplitVecOp_VSETCC(N);
SDValue Res = ModifyToType(SplitVSetCC, WidenVT);
return Res;
}
// If the inputs also widen, handle them directly. Otherwise widen by hand.
SDValue InOp2 = N->getOperand(1);
if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
InOp1 = GetWidenedVector(InOp1);
InOp2 = GetWidenedVector(InOp2);
} else {
InOp1 = DAG.WidenVector(InOp1, SDLoc(N));
InOp2 = DAG.WidenVector(InOp2, SDLoc(N));
}
// Assume that the input and output will be widen appropriately. If not,
// we will have to unroll it at some point.
assert(InOp1.getValueType() == WidenInVT &&
InOp2.getValueType() == WidenInVT &&
"Input not widened to expected type!");
(void)WidenInVT;
return DAG.getNode(ISD::SETCC, SDLoc(N),
WidenVT, InOp1, InOp2, N->getOperand(2));
}
//===----------------------------------------------------------------------===//
// Widen Vector Operand
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
LLVM_DEBUG(dbgs() << "Widen node operand " << OpNo << ": "; N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom widen this node.
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
return false;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen this operator's operand!");
case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::STORE: Res = WidenVecOp_STORE(N); break;
case ISD::MSTORE: Res = WidenVecOp_MSTORE(N, OpNo); break;
case ISD::MGATHER: Res = WidenVecOp_MGATHER(N, OpNo); break;
case ISD::MSCATTER: Res = WidenVecOp_MSCATTER(N, OpNo); break;
case ISD::SETCC: Res = WidenVecOp_SETCC(N); break;
case ISD::VSELECT: Res = WidenVecOp_VSELECT(N); break;
case ISD::FCOPYSIGN: Res = WidenVecOp_FCOPYSIGN(N); break;
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
Res = WidenVecOp_EXTEND(N);
break;
case ISD::FP_EXTEND:
case ISD::STRICT_FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
Res = WidenVecOp_Convert(N);
break;
case ISD::VECREDUCE_FADD:
case ISD::VECREDUCE_FMUL:
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_MUL:
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_SMAX:
case ISD::VECREDUCE_SMIN:
case ISD::VECREDUCE_UMAX:
case ISD::VECREDUCE_UMIN:
case ISD::VECREDUCE_FMAX:
case ISD::VECREDUCE_FMIN:
Res = WidenVecOp_VECREDUCE(N);
break;
}
// If Res is null, the sub-method took care of registering the result.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
if (N->isStrictFPOpcode())
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 2 &&
"Invalid operand expansion");
else
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue InOp = N->getOperand(0);
assert(getTypeAction(InOp.getValueType()) ==
TargetLowering::TypeWidenVector &&
"Unexpected type action");
InOp = GetWidenedVector(InOp);
assert(VT.getVectorNumElements() <
InOp.getValueType().getVectorNumElements() &&
"Input wasn't widened!");
// We may need to further widen the operand until it has the same total
// vector size as the result.
EVT InVT = InOp.getValueType();
if (InVT.getSizeInBits() != VT.getSizeInBits()) {
EVT InEltVT = InVT.getVectorElementType();
for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
EVT FixedVT = (MVT::SimpleValueType)i;
EVT FixedEltVT = FixedVT.getVectorElementType();
if (TLI.isTypeLegal(FixedVT) &&
FixedVT.getSizeInBits() == VT.getSizeInBits() &&
FixedEltVT == InEltVT) {
assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
"Not enough elements in the fixed type for the operand!");
assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
"We can't have the same type as we started with!");
if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
InOp = DAG.getNode(
ISD::INSERT_SUBVECTOR, DL, FixedVT, DAG.getUNDEF(FixedVT), InOp,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
else
InOp = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
break;
}
}
InVT = InOp.getValueType();
if (InVT.getSizeInBits() != VT.getSizeInBits())
// We couldn't find a legal vector type that was a widening of the input
// and could be extended in-register to the result type, so we have to
// scalarize.
return WidenVecOp_Convert(N);
}
// Use special DAG nodes to represent the operation of extending the
// low lanes.
switch (N->getOpcode()) {
default:
llvm_unreachable("Extend legalization on extend operation!");
case ISD::ANY_EXTEND:
return DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, InOp);
case ISD::SIGN_EXTEND:
return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, InOp);
case ISD::ZERO_EXTEND:
return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, InOp);
}
}
SDValue DAGTypeLegalizer::WidenVecOp_FCOPYSIGN(SDNode *N) {
// The result (and first input) is legal, but the second input is illegal.
// We can't do much to fix that, so just unroll and let the extracts off of
// the second input be widened as needed later.
return DAG.UnrollVectorOp(N);
}
SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
// Since the result is legal and the input is illegal.
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDLoc dl(N);
unsigned NumElts = VT.getVectorNumElements();
SDValue InOp = N->getOperand(N->isStrictFPOpcode() ? 1 : 0);
assert(getTypeAction(InOp.getValueType()) ==
TargetLowering::TypeWidenVector &&
"Unexpected type action");
InOp = GetWidenedVector(InOp);
EVT InVT = InOp.getValueType();
unsigned Opcode = N->getOpcode();
// See if a widened result type would be legal, if so widen the node.
// FIXME: This isn't safe for StrictFP. Other optimization here is needed.
EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
InVT.getVectorNumElements());
if (TLI.isTypeLegal(WideVT) && !N->isStrictFPOpcode()) {
SDValue Res;
if (N->isStrictFPOpcode()) {
Res = DAG.getNode(Opcode, dl, { WideVT, MVT::Other },
{ N->getOperand(0), InOp });
// Legalize the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
} else
Res = DAG.getNode(Opcode, dl, WideVT, InOp);
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, VT, Res,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
EVT InEltVT = InVT.getVectorElementType();
// Unroll the convert into some scalar code and create a nasty build vector.
SmallVector<SDValue, 16> Ops(NumElts);
if (N->isStrictFPOpcode()) {
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
SmallVector<SDValue, 32> OpChains;
for (unsigned i=0; i < NumElts; ++i) {
NewOps[1] = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
Ops[i] = DAG.getNode(Opcode, dl, { EltVT, MVT::Other }, NewOps);
OpChains.push_back(Ops[i].getValue(1));
}
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
ReplaceValueWith(SDValue(N, 1), NewChain);
} else {
for (unsigned i = 0; i < NumElts; ++i)
Ops[i] = DAG.getNode(
Opcode, dl, EltVT,
DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
}
return DAG.getBuildVector(VT, dl, Ops);
}
SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue InOp = GetWidenedVector(N->getOperand(0));
EVT InWidenVT = InOp.getValueType();
SDLoc dl(N);
// Check if we can convert between two legal vector types and extract.
unsigned InWidenSize = InWidenVT.getSizeInBits();
unsigned Size = VT.getSizeInBits();
// x86mmx is not an acceptable vector element type, so don't try.
if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
unsigned NewNumElts = InWidenSize / Size;
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
if (TLI.isTypeLegal(NewVT)) {
SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
return DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
}
// Handle a case like bitcast v12i8 -> v3i32. Normally that would get widened
// to v16i8 -> v4i32, but for a target where v3i32 is legal but v12i8 is not,
// we end up here. Handling the case here with EXTRACT_SUBVECTOR avoids
// having to copy via memory.
if (VT.isVector()) {
EVT EltVT = VT.getVectorElementType();
unsigned EltSize = EltVT.getSizeInBits();
if (InWidenSize % EltSize == 0) {
unsigned NewNumElts = InWidenSize / EltSize;
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NewNumElts);
if (TLI.isTypeLegal(NewVT)) {
SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, BitOp,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
}
}
return CreateStackStoreLoad(InOp, VT);
}
SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
EVT InVT = N->getOperand(0).getValueType();
SDLoc dl(N);
// If the widen width for this operand is the same as the width of the concat
// and all but the first operand is undef, just use the widened operand.
unsigned NumOperands = N->getNumOperands();
if (VT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
unsigned i;
for (i = 1; i < NumOperands; ++i)
if (!N->getOperand(i).isUndef())
break;
if (i == NumOperands)
return GetWidenedVector(N->getOperand(0));
}
// Otherwise, fall back to a nasty build vector.
unsigned NumElts = VT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(NumElts);
unsigned NumInElts = InVT.getVectorNumElements();
unsigned Idx = 0;
for (unsigned i=0; i < NumOperands; ++i) {
SDValue InOp = N->getOperand(i);
assert(getTypeAction(InOp.getValueType()) ==
TargetLowering::TypeWidenVector &&
"Unexpected type action");
InOp = GetWidenedVector(InOp);
for (unsigned j=0; j < NumInElts; ++j)
Ops[Idx++] = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
return DAG.getBuildVector(VT, dl, Ops);
}
SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
N->getValueType(0), InOp, N->getOperand(1));
}
SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
N->getValueType(0), InOp, N->getOperand(1));
}
SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
// We have to widen the value, but we want only to store the original
// vector type.
StoreSDNode *ST = cast<StoreSDNode>(N);
if (!ST->getMemoryVT().getScalarType().isByteSized())
return TLI.scalarizeVectorStore(ST, DAG);
SmallVector<SDValue, 16> StChain;
if (ST->isTruncatingStore())
GenWidenVectorTruncStores(StChain, ST);
else
GenWidenVectorStores(StChain, ST);
if (StChain.size() == 1)
return StChain[0];
else
return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
}
SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
assert((OpNo == 1 || OpNo == 3) &&
"Can widen only data or mask operand of mstore");
MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
SDValue Mask = MST->getMask();
EVT MaskVT = Mask.getValueType();
SDValue StVal = MST->getValue();
SDLoc dl(N);
if (OpNo == 1) {
// Widen the value.
StVal = GetWidenedVector(StVal);
// The mask should be widened as well.
EVT WideVT = StVal.getValueType();
EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
MaskVT.getVectorElementType(),
WideVT.getVectorNumElements());
Mask = ModifyToType(Mask, WideMaskVT, true);
} else {
// Widen the mask.
EVT WideMaskVT = TLI.getTypeToTransformTo(*DAG.getContext(), MaskVT);
Mask = ModifyToType(Mask, WideMaskVT, true);
EVT ValueVT = StVal.getValueType();
EVT WideVT = EVT::getVectorVT(*DAG.getContext(),
ValueVT.getVectorElementType(),
WideMaskVT.getVectorNumElements());
StVal = ModifyToType(StVal, WideVT);
}
assert(Mask.getValueType().getVectorNumElements() ==
StVal.getValueType().getVectorNumElements() &&
"Mask and data vectors should have the same number of elements");
return DAG.getMaskedStore(MST->getChain(), dl, StVal, MST->getBasePtr(),
Mask, MST->getMemoryVT(), MST->getMemOperand(),
false, MST->isCompressingStore());
}
SDValue DAGTypeLegalizer::WidenVecOp_MGATHER(SDNode *N, unsigned OpNo) {
assert(OpNo == 4 && "Can widen only the index of mgather");
auto *MG = cast<MaskedGatherSDNode>(N);
SDValue DataOp = MG->getPassThru();
SDValue Mask = MG->getMask();
SDValue Scale = MG->getScale();
// Just widen the index. It's allowed to have extra elements.
SDValue Index = GetWidenedVector(MG->getIndex());
SDLoc dl(N);
SDValue Ops[] = {MG->getChain(), DataOp, Mask, MG->getBasePtr(), Index,
Scale};
SDValue Res = DAG.getMaskedGather(MG->getVTList(), MG->getMemoryVT(), dl, Ops,
MG->getMemOperand(), MG->getIndexType());
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
return SDValue();
}
SDValue DAGTypeLegalizer::WidenVecOp_MSCATTER(SDNode *N, unsigned OpNo) {
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
SDValue DataOp = MSC->getValue();
SDValue Mask = MSC->getMask();
SDValue Index = MSC->getIndex();
SDValue Scale = MSC->getScale();
if (OpNo == 1) {
DataOp = GetWidenedVector(DataOp);
unsigned NumElts = DataOp.getValueType().getVectorNumElements();
// Widen index.
EVT IndexVT = Index.getValueType();
EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
IndexVT.getVectorElementType(), NumElts);
Index = ModifyToType(Index, WideIndexVT);
// The mask should be widened as well.
EVT MaskVT = Mask.getValueType();
EVT WideMaskVT = EVT::getVectorVT(*DAG.getContext(),
MaskVT.getVectorElementType(), NumElts);
Mask = ModifyToType(Mask, WideMaskVT, true);
} else if (OpNo == 4) {
// Just widen the index. It's allowed to have extra elements.
Index = GetWidenedVector(Index);
} else
llvm_unreachable("Can't widen this operand of mscatter");
SDValue Ops[] = {MSC->getChain(), DataOp, Mask, MSC->getBasePtr(), Index,
Scale};
return DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
MSC->getMemoryVT(), SDLoc(N), Ops,
MSC->getMemOperand(), MSC->getIndexType());
}
SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
SDValue InOp0 = GetWidenedVector(N->getOperand(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(1));
SDLoc dl(N);
EVT VT = N->getValueType(0);
// WARNING: In this code we widen the compare instruction with garbage.
// This garbage may contain denormal floats which may be slow. Is this a real
// concern ? Should we zero the unused lanes if this is a float compare ?
// Get a new SETCC node to compare the newly widened operands.
// Only some of the compared elements are legal.
EVT SVT = getSetCCResultType(InOp0.getValueType());
// The result type is legal, if its vXi1, keep vXi1 for the new SETCC.
if (VT.getScalarType() == MVT::i1)
SVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
SVT.getVectorNumElements());
SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
SVT, InOp0, InOp1, N->getOperand(2));
// Extract the needed results from the result vector.
EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
SVT.getVectorElementType(),
VT.getVectorNumElements());
SDValue CC = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, ResVT, WideSETCC,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
EVT OpVT = N->getOperand(0).getValueType();
ISD::NodeType ExtendCode =
TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
return DAG.getNode(ExtendCode, dl, VT, CC);
}
SDValue DAGTypeLegalizer::WidenVecOp_VECREDUCE(SDNode *N) {
SDLoc dl(N);
SDValue Op = GetWidenedVector(N->getOperand(0));
EVT OrigVT = N->getOperand(0).getValueType();
EVT WideVT = Op.getValueType();
EVT ElemVT = OrigVT.getVectorElementType();
SDValue NeutralElem;
switch (N->getOpcode()) {
case ISD::VECREDUCE_ADD:
case ISD::VECREDUCE_OR:
case ISD::VECREDUCE_XOR:
case ISD::VECREDUCE_UMAX:
NeutralElem = DAG.getConstant(0, dl, ElemVT);
break;
case ISD::VECREDUCE_MUL:
NeutralElem = DAG.getConstant(1, dl, ElemVT);
break;
case ISD::VECREDUCE_AND:
case ISD::VECREDUCE_UMIN:
NeutralElem = DAG.getAllOnesConstant(dl, ElemVT);
break;
case ISD::VECREDUCE_SMAX:
NeutralElem = DAG.getConstant(
APInt::getSignedMinValue(ElemVT.getSizeInBits()), dl, ElemVT);
break;
case ISD::VECREDUCE_SMIN:
NeutralElem = DAG.getConstant(
APInt::getSignedMaxValue(ElemVT.getSizeInBits()), dl, ElemVT);
break;
case ISD::VECREDUCE_FADD:
NeutralElem = DAG.getConstantFP(0.0, dl, ElemVT);
break;
case ISD::VECREDUCE_FMUL:
NeutralElem = DAG.getConstantFP(1.0, dl, ElemVT);
break;
case ISD::VECREDUCE_FMAX:
NeutralElem = DAG.getConstantFP(
std::numeric_limits<double>::infinity(), dl, ElemVT);
break;
case ISD::VECREDUCE_FMIN:
NeutralElem = DAG.getConstantFP(
-std::numeric_limits<double>::infinity(), dl, ElemVT);
break;
}
// Pad the vector with the neutral element.
unsigned OrigElts = OrigVT.getVectorNumElements();
unsigned WideElts = WideVT.getVectorNumElements();
for (unsigned Idx = OrigElts; Idx < WideElts; Idx++)
Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WideVT, Op, NeutralElem,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
return DAG.getNode(N->getOpcode(), dl, N->getValueType(0), Op, N->getFlags());
}
SDValue DAGTypeLegalizer::WidenVecOp_VSELECT(SDNode *N) {
// This only gets called in the case that the left and right inputs and
// result are of a legal odd vector type, and the condition is illegal i1 of
// the same odd width that needs widening.
EVT VT = N->getValueType(0);
assert(VT.isVector() && !VT.isPow2VectorType() && isTypeLegal(VT));
SDValue Cond = GetWidenedVector(N->getOperand(0));
SDValue LeftIn = DAG.WidenVector(N->getOperand(1), SDLoc(N));
SDValue RightIn = DAG.WidenVector(N->getOperand(2), SDLoc(N));
SDLoc DL(N);
SDValue Select = DAG.getNode(N->getOpcode(), DL, LeftIn.getValueType(), Cond,
LeftIn, RightIn);
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, DL, VT, Select,
DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
//===----------------------------------------------------------------------===//
// Vector Widening Utilities
//===----------------------------------------------------------------------===//
// Utility function to find the type to chop up a widen vector for load/store
// TLI: Target lowering used to determine legal types.
// Width: Width left need to load/store.
// WidenVT: The widen vector type to load to/store from
// Align: If 0, don't allow use of a wider type
// WidenEx: If Align is not 0, the amount additional we can load/store from.
static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
unsigned Width, EVT WidenVT,
unsigned Align = 0, unsigned WidenEx = 0) {
EVT WidenEltVT = WidenVT.getVectorElementType();
unsigned WidenWidth = WidenVT.getSizeInBits();
unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
unsigned AlignInBits = Align*8;
// If we have one element to load/store, return it.
EVT RetVT = WidenEltVT;
if (Width == WidenEltWidth)
return RetVT;
// See if there is larger legal integer than the element type to load/store.
unsigned VT;
for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
EVT MemVT((MVT::SimpleValueType) VT);
unsigned MemVTWidth = MemVT.getSizeInBits();
if (MemVT.getSizeInBits() <= WidenEltWidth)
break;
auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
if ((Action == TargetLowering::TypeLegal ||
Action == TargetLowering::TypePromoteInteger) &&
(WidenWidth % MemVTWidth) == 0 &&
isPowerOf2_32(WidenWidth / MemVTWidth) &&
(MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
if (MemVTWidth == WidenWidth)
return MemVT;
RetVT = MemVT;
break;
}
}
// See if there is a larger vector type to load/store that has the same vector
// element type and is evenly divisible with the WidenVT.
for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
EVT MemVT = (MVT::SimpleValueType) VT;
unsigned MemVTWidth = MemVT.getSizeInBits();
auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
if ((Action == TargetLowering::TypeLegal ||
Action == TargetLowering::TypePromoteInteger) &&
WidenEltVT == MemVT.getVectorElementType() &&
(WidenWidth % MemVTWidth) == 0 &&
isPowerOf2_32(WidenWidth / MemVTWidth) &&
(MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
return MemVT;
}
}
return RetVT;
}
// Builds a vector type from scalar loads
// VecTy: Resulting Vector type
// LDOps: Load operators to build a vector type
// [Start,End) the list of loads to use.
static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
SmallVectorImpl<SDValue> &LdOps,
unsigned Start, unsigned End) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(LdOps[Start]);
EVT LdTy = LdOps[Start].getValueType();
unsigned Width = VecTy.getSizeInBits();
unsigned NumElts = Width / LdTy.getSizeInBits();
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
unsigned Idx = 1;
SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
for (unsigned i = Start + 1; i != End; ++i) {
EVT NewLdTy = LdOps[i].getValueType();
if (NewLdTy != LdTy) {
NumElts = Width / NewLdTy.getSizeInBits();
NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
// Readjust position and vector position based on new load type.
Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
LdTy = NewLdTy;
}
VecOp = DAG.getNode(
ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
DAG.getConstant(Idx++, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
}
return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
}
SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD) {
// The strategy assumes that we can efficiently load power-of-two widths.
// The routine chops the vector into the largest vector loads with the same
// element type or scalar loads and then recombines it to the widen vector
// type.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
unsigned WidenWidth = WidenVT.getSizeInBits();
EVT LdVT = LD->getMemoryVT();
SDLoc dl(LD);
assert(LdVT.isVector() && WidenVT.isVector());
assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
// Load information
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
unsigned Align = LD->getAlignment();
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
AAMDNodes AAInfo = LD->getAAInfo();
int LdWidth = LdVT.getSizeInBits();
int WidthDiff = WidenWidth - LdWidth;
unsigned LdAlign = (!LD->isSimple()) ? 0 : Align; // Allow wider loads.
// Find the vector type that can load from.
EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
int NewVTWidth = NewVT.getSizeInBits();
SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
Align, MMOFlags, AAInfo);
LdChain.push_back(LdOp.getValue(1));
// Check if we can load the element with one instruction.
if (LdWidth <= NewVTWidth) {
if (!NewVT.isVector()) {
unsigned NumElts = WidenWidth / NewVTWidth;
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
}
if (NewVT == WidenVT)
return LdOp;
assert(WidenWidth % NewVTWidth == 0);
unsigned NumConcat = WidenWidth / NewVTWidth;
SmallVector<SDValue, 16> ConcatOps(NumConcat);
SDValue UndefVal = DAG.getUNDEF(NewVT);
ConcatOps[0] = LdOp;
for (unsigned i = 1; i != NumConcat; ++i)
ConcatOps[i] = UndefVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
}
// Load vector by using multiple loads from largest vector to scalar.
SmallVector<SDValue, 16> LdOps;
LdOps.push_back(LdOp);
LdWidth -= NewVTWidth;
unsigned Offset = 0;
while (LdWidth > 0) {
unsigned Increment = NewVTWidth / 8;
Offset += Increment;
BasePtr = DAG.getObjectPtrOffset(dl, BasePtr, Increment);
SDValue L;
if (LdWidth < NewVTWidth) {
// The current type we are using is too large. Find a better size.
NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
NewVTWidth = NewVT.getSizeInBits();
L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset),
MinAlign(Align, Increment), MMOFlags, AAInfo);
LdChain.push_back(L.getValue(1));
if (L->getValueType(0).isVector() && NewVTWidth >= LdWidth) {
// Later code assumes the vector loads produced will be mergeable, so we
// must pad the final entry up to the previous width. Scalars are
// combined separately.
SmallVector<SDValue, 16> Loads;
Loads.push_back(L);
unsigned size = L->getValueSizeInBits(0);
while (size < LdOp->getValueSizeInBits(0)) {
Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
size += L->getValueSizeInBits(0);
}
L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads);
}
} else {
L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset),
MinAlign(Align, Increment), MMOFlags, AAInfo);
LdChain.push_back(L.getValue(1));
}
LdOps.push_back(L);
LdOp = L;
LdWidth -= NewVTWidth;
}
// Build the vector from the load operations.
unsigned End = LdOps.size();
if (!LdOps[0].getValueType().isVector())
// All the loads are scalar loads.
return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
// If the load contains vectors, build the vector using concat vector.
// All of the vectors used to load are power-of-2, and the scalar loads can be
// combined to make a power-of-2 vector.
SmallVector<SDValue, 16> ConcatOps(End);
int i = End - 1;
int Idx = End;
EVT LdTy = LdOps[i].getValueType();
// First, combine the scalar loads to a vector.
if (!LdTy.isVector()) {
for (--i; i >= 0; --i) {
LdTy = LdOps[i].getValueType();
if (LdTy.isVector())
break;
}
ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i + 1, End);
}
ConcatOps[--Idx] = LdOps[i];
for (--i; i >= 0; --i) {
EVT NewLdTy = LdOps[i].getValueType();
if (NewLdTy != LdTy) {
// Create a larger vector.
ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
makeArrayRef(&ConcatOps[Idx], End - Idx));
Idx = End - 1;
LdTy = NewLdTy;
}
ConcatOps[--Idx] = LdOps[i];
}
if (WidenWidth == LdTy.getSizeInBits() * (End - Idx))
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
makeArrayRef(&ConcatOps[Idx], End - Idx));
// We need to fill the rest with undefs to build the vector.
unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
SmallVector<SDValue, 16> WidenOps(NumOps);
SDValue UndefVal = DAG.getUNDEF(LdTy);
{
unsigned i = 0;
for (; i != End-Idx; ++i)
WidenOps[i] = ConcatOps[Idx+i];
for (; i != NumOps; ++i)
WidenOps[i] = UndefVal;
}
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
}
SDValue
DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
LoadSDNode *LD,
ISD::LoadExtType ExtType) {
// For extension loads, it may not be more efficient to chop up the vector
// and then extend it. Instead, we unroll the load and build a new vector.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
EVT LdVT = LD->getMemoryVT();
SDLoc dl(LD);
assert(LdVT.isVector() && WidenVT.isVector());
// Load information
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
unsigned Align = LD->getAlignment();
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
AAMDNodes AAInfo = LD->getAAInfo();
EVT EltVT = WidenVT.getVectorElementType();
EVT LdEltVT = LdVT.getVectorElementType();
unsigned NumElts = LdVT.getVectorNumElements();
// Load each element and widen.
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(WidenNumElts);
unsigned Increment = LdEltVT.getSizeInBits() / 8;
Ops[0] =
DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, LD->getPointerInfo(),
LdEltVT, Align, MMOFlags, AAInfo);
LdChain.push_back(Ops[0].getValue(1));
unsigned i = 0, Offset = Increment;
for (i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getObjectPtrOffset(dl, BasePtr, Offset);
Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
Align, MMOFlags, AAInfo);
LdChain.push_back(Ops[i].getValue(1));
}
// Fill the rest with undefs.
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i != WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getBuildVector(WidenVT, dl, Ops);
}
void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
StoreSDNode *ST) {
// The strategy assumes that we can efficiently store power-of-two widths.
// The routine chops the vector into the largest vector stores with the same
// element type or scalar stores.
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
unsigned Align = ST->getAlignment();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
SDValue ValOp = GetWidenedVector(ST->getValue());
SDLoc dl(ST);
EVT StVT = ST->getMemoryVT();
unsigned StWidth = StVT.getSizeInBits();
EVT ValVT = ValOp.getValueType();
unsigned ValWidth = ValVT.getSizeInBits();
EVT ValEltVT = ValVT.getVectorElementType();
unsigned ValEltWidth = ValEltVT.getSizeInBits();
assert(StVT.getVectorElementType() == ValEltVT);
int Idx = 0; // current index to store
unsigned Offset = 0; // offset from base to store
while (StWidth != 0) {
// Find the largest vector type we can store with.
EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
unsigned NewVTWidth = NewVT.getSizeInBits();
unsigned Increment = NewVTWidth / 8;
if (NewVT.isVector()) {
unsigned NumVTElts = NewVT.getVectorNumElements();
do {
SDValue EOp = DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
StChain.push_back(DAG.getStore(
Chain, dl, EOp, BasePtr, ST->getPointerInfo().getWithOffset(Offset),
MinAlign(Align, Offset), MMOFlags, AAInfo));
StWidth -= NewVTWidth;
Offset += Increment;
Idx += NumVTElts;
BasePtr = DAG.getObjectPtrOffset(dl, BasePtr, Increment);
} while (StWidth != 0 && StWidth >= NewVTWidth);
} else {
// Cast the vector to the scalar type we can store.
unsigned NumElts = ValWidth / NewVTWidth;
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
// Readjust index position based on new vector type.
Idx = Idx * ValEltWidth / NewVTWidth;
do {
SDValue EOp = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
DAG.getConstant(Idx++, dl,
TLI.getVectorIdxTy(DAG.getDataLayout())));
StChain.push_back(DAG.getStore(
Chain, dl, EOp, BasePtr, ST->getPointerInfo().getWithOffset(Offset),
MinAlign(Align, Offset), MMOFlags, AAInfo));
StWidth -= NewVTWidth;
Offset += Increment;
BasePtr = DAG.getObjectPtrOffset(dl, BasePtr, Increment);
} while (StWidth != 0 && StWidth >= NewVTWidth);
// Restore index back to be relative to the original widen element type.
Idx = Idx * NewVTWidth / ValEltWidth;
}
}
}
void
DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
StoreSDNode *ST) {
// For extension loads, it may not be more efficient to truncate the vector
// and then store it. Instead, we extract each element and then store it.
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
unsigned Align = ST->getAlignment();
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
AAMDNodes AAInfo = ST->getAAInfo();
SDValue ValOp = GetWidenedVector(ST->getValue());
SDLoc dl(ST);
EVT StVT = ST->getMemoryVT();
EVT ValVT = ValOp.getValueType();
// It must be true that the wide vector type is bigger than where we need to
// store.
assert(StVT.isVector() && ValOp.getValueType().isVector());
assert(StVT.bitsLT(ValOp.getValueType()));
// For truncating stores, we can not play the tricks of chopping legal vector
// types and bitcast it to the right type. Instead, we unroll the store.
EVT StEltVT = StVT.getVectorElementType();
EVT ValEltVT = ValVT.getVectorElementType();
unsigned Increment = ValEltVT.getSizeInBits() / 8;
unsigned NumElts = StVT.getVectorNumElements();
SDValue EOp = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo(), StEltVT, Align,
MMOFlags, AAInfo));
unsigned Offset = Increment;
for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getObjectPtrOffset(dl, BasePtr, Offset);
SDValue EOp = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
StChain.push_back(DAG.getTruncStore(
Chain, dl, EOp, NewBasePtr, ST->getPointerInfo().getWithOffset(Offset),
StEltVT, MinAlign(Align, Offset), MMOFlags, AAInfo));
}
}
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
/// FillWithZeroes specifies that the vector should be widened with zeroes.
SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT,
bool FillWithZeroes) {
// Note that InOp might have been widened so it might already have
// the right width or it might need be narrowed.
EVT InVT = InOp.getValueType();
assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
"input and widen element type must match");
SDLoc dl(InOp);
// Check if InOp already has the right width.
if (InVT == NVT)
return InOp;
unsigned InNumElts = InVT.getVectorNumElements();
unsigned WidenNumElts = NVT.getVectorNumElements();
if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
unsigned NumConcat = WidenNumElts / InNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, InVT) :
DAG.getUNDEF(InVT);
Ops[0] = InOp;
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = FillVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
}
if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
return DAG.getNode(
ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
// Fall back to extract and build.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = NVT.getVectorElementType();
unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
unsigned Idx;
for (Idx = 0; Idx < MinNumElts; ++Idx)
Ops[Idx] = DAG.getNode(
ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
DAG.getUNDEF(EltVT);
for ( ; Idx < WidenNumElts; ++Idx)
Ops[Idx] = FillVal;
return DAG.getBuildVector(NVT, dl, Ops);
}
|