1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
| //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
/// AArch64_AM - AArch64 Addressing Mode Stuff
namespace AArch64_AM {
//===----------------------------------------------------------------------===//
// Shifts
//
enum ShiftExtendType {
InvalidShiftExtend = -1,
LSL = 0,
LSR,
ASR,
ROR,
MSL,
UXTB,
UXTH,
UXTW,
UXTX,
SXTB,
SXTH,
SXTW,
SXTX,
};
/// getShiftName - Get the string encoding for the shift type.
static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
switch (ST) {
default: llvm_unreachable("unhandled shift type!");
case AArch64_AM::LSL: return "lsl";
case AArch64_AM::LSR: return "lsr";
case AArch64_AM::ASR: return "asr";
case AArch64_AM::ROR: return "ror";
case AArch64_AM::MSL: return "msl";
case AArch64_AM::UXTB: return "uxtb";
case AArch64_AM::UXTH: return "uxth";
case AArch64_AM::UXTW: return "uxtw";
case AArch64_AM::UXTX: return "uxtx";
case AArch64_AM::SXTB: return "sxtb";
case AArch64_AM::SXTH: return "sxth";
case AArch64_AM::SXTW: return "sxtw";
case AArch64_AM::SXTX: return "sxtx";
}
return nullptr;
}
/// getShiftType - Extract the shift type.
static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
switch ((Imm >> 6) & 0x7) {
default: return AArch64_AM::InvalidShiftExtend;
case 0: return AArch64_AM::LSL;
case 1: return AArch64_AM::LSR;
case 2: return AArch64_AM::ASR;
case 3: return AArch64_AM::ROR;
case 4: return AArch64_AM::MSL;
}
}
/// getShiftValue - Extract the shift value.
static inline unsigned getShiftValue(unsigned Imm) {
return Imm & 0x3f;
}
/// getShifterImm - Encode the shift type and amount:
/// imm: 6-bit shift amount
/// shifter: 000 ==> lsl
/// 001 ==> lsr
/// 010 ==> asr
/// 011 ==> ror
/// 100 ==> msl
/// {8-6} = shifter
/// {5-0} = imm
static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
unsigned Imm) {
assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
unsigned STEnc = 0;
switch (ST) {
default: llvm_unreachable("Invalid shift requested");
case AArch64_AM::LSL: STEnc = 0; break;
case AArch64_AM::LSR: STEnc = 1; break;
case AArch64_AM::ASR: STEnc = 2; break;
case AArch64_AM::ROR: STEnc = 3; break;
case AArch64_AM::MSL: STEnc = 4; break;
}
return (STEnc << 6) | (Imm & 0x3f);
}
//===----------------------------------------------------------------------===//
// Extends
//
/// getArithShiftValue - get the arithmetic shift value.
static inline unsigned getArithShiftValue(unsigned Imm) {
return Imm & 0x7;
}
/// getExtendType - Extract the extend type for operands of arithmetic ops.
static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
assert((Imm & 0x7) == Imm && "invalid immediate!");
switch (Imm) {
default: llvm_unreachable("Compiler bug!");
case 0: return AArch64_AM::UXTB;
case 1: return AArch64_AM::UXTH;
case 2: return AArch64_AM::UXTW;
case 3: return AArch64_AM::UXTX;
case 4: return AArch64_AM::SXTB;
case 5: return AArch64_AM::SXTH;
case 6: return AArch64_AM::SXTW;
case 7: return AArch64_AM::SXTX;
}
}
static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
return getExtendType((Imm >> 3) & 0x7);
}
/// Mapping from extend bits to required operation:
/// shifter: 000 ==> uxtb
/// 001 ==> uxth
/// 010 ==> uxtw
/// 011 ==> uxtx
/// 100 ==> sxtb
/// 101 ==> sxth
/// 110 ==> sxtw
/// 111 ==> sxtx
inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
switch (ET) {
default: llvm_unreachable("Invalid extend type requested");
case AArch64_AM::UXTB: return 0; break;
case AArch64_AM::UXTH: return 1; break;
case AArch64_AM::UXTW: return 2; break;
case AArch64_AM::UXTX: return 3; break;
case AArch64_AM::SXTB: return 4; break;
case AArch64_AM::SXTH: return 5; break;
case AArch64_AM::SXTW: return 6; break;
case AArch64_AM::SXTX: return 7; break;
}
}
/// getArithExtendImm - Encode the extend type and shift amount for an
/// arithmetic instruction:
/// imm: 3-bit extend amount
/// {5-3} = shifter
/// {2-0} = imm3
static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
unsigned Imm) {
assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
}
/// getMemDoShift - Extract the "do shift" flag value for load/store
/// instructions.
static inline bool getMemDoShift(unsigned Imm) {
return (Imm & 0x1) != 0;
}
/// getExtendType - Extract the extend type for the offset operand of
/// loads/stores.
static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
return getExtendType((Imm >> 1) & 0x7);
}
/// getExtendImm - Encode the extend type and amount for a load/store inst:
/// doshift: should the offset be scaled by the access size
/// shifter: 000 ==> uxtb
/// 001 ==> uxth
/// 010 ==> uxtw
/// 011 ==> uxtx
/// 100 ==> sxtb
/// 101 ==> sxth
/// 110 ==> sxtw
/// 111 ==> sxtx
/// {3-1} = shifter
/// {0} = doshift
static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
bool DoShift) {
return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
}
static inline uint64_t ror(uint64_t elt, unsigned size) {
return ((elt & 1) << (size-1)) | (elt >> 1);
}
/// processLogicalImmediate - Determine if an immediate value can be encoded
/// as the immediate operand of a logical instruction for the given register
/// size. If so, return true with "encoding" set to the encoded value in
/// the form N:immr:imms.
static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
uint64_t &Encoding) {
if (Imm == 0ULL || Imm == ~0ULL ||
(RegSize != 64 &&
(Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
return false;
// First, determine the element size.
unsigned Size = RegSize;
do {
Size /= 2;
uint64_t Mask = (1ULL << Size) - 1;
if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
Size *= 2;
break;
}
} while (Size > 2);
// Second, determine the rotation to make the element be: 0^m 1^n.
uint32_t CTO, I;
uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
Imm &= Mask;
if (isShiftedMask_64(Imm)) {
I = countTrailingZeros(Imm);
assert(I < 64 && "undefined behavior");
CTO = countTrailingOnes(Imm >> I);
} else {
Imm |= ~Mask;
if (!isShiftedMask_64(~Imm))
return false;
unsigned CLO = countLeadingOnes(Imm);
I = 64 - CLO;
CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
}
// Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
// to our target value, where I is the number of RORs to go the opposite
// direction.
assert(Size > I && "I should be smaller than element size");
unsigned Immr = (Size - I) & (Size - 1);
// If size has a 1 in the n'th bit, create a value that has zeroes in
// bits [0, n] and ones above that.
uint64_t NImms = ~(Size-1) << 1;
// Or the CTO value into the low bits, which must be below the Nth bit
// bit mentioned above.
NImms |= (CTO-1);
// Extract the seventh bit and toggle it to create the N field.
unsigned N = ((NImms >> 6) & 1) ^ 1;
Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
return true;
}
/// isLogicalImmediate - Return true if the immediate is valid for a logical
/// immediate instruction of the given register size. Return false otherwise.
static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
uint64_t encoding;
return processLogicalImmediate(imm, regSize, encoding);
}
/// encodeLogicalImmediate - Return the encoded immediate value for a logical
/// immediate instruction of the given register size.
static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
uint64_t encoding = 0;
bool res = processLogicalImmediate(imm, regSize, encoding);
assert(res && "invalid logical immediate");
(void)res;
return encoding;
}
/// decodeLogicalImmediate - Decode a logical immediate value in the form
/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
/// integer value it represents with regSize bits.
static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
// Extract the N, imms, and immr fields.
unsigned N = (val >> 12) & 1;
unsigned immr = (val >> 6) & 0x3f;
unsigned imms = val & 0x3f;
assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
assert(len >= 0 && "undefined logical immediate encoding");
unsigned size = (1 << len);
unsigned R = immr & (size - 1);
unsigned S = imms & (size - 1);
assert(S != size - 1 && "undefined logical immediate encoding");
uint64_t pattern = (1ULL << (S + 1)) - 1;
for (unsigned i = 0; i < R; ++i)
pattern = ror(pattern, size);
// Replicate the pattern to fill the regSize.
while (size != regSize) {
pattern |= (pattern << size);
size *= 2;
}
return pattern;
}
/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
/// is a valid encoding for an integer value with regSize bits.
static inline bool isValidDecodeLogicalImmediate(uint64_t val,
unsigned regSize) {
// Extract the N and imms fields needed for checking.
unsigned N = (val >> 12) & 1;
unsigned imms = val & 0x3f;
if (regSize == 32 && N != 0) // undefined logical immediate encoding
return false;
int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
if (len < 0) // undefined logical immediate encoding
return false;
unsigned size = (1 << len);
unsigned S = imms & (size - 1);
if (S == size - 1) // undefined logical immediate encoding
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Floating-point Immediates
//
static inline float getFPImmFloat(unsigned Imm) {
// We expect an 8-bit binary encoding of a floating-point number here.
uint8_t Sign = (Imm >> 7) & 0x1;
uint8_t Exp = (Imm >> 4) & 0x7;
uint8_t Mantissa = Imm & 0xf;
// 8-bit FP IEEE Float Encoding
// abcd efgh aBbbbbbc defgh000 00000000 00000000
//
// where B = NOT(b);
uint32_t I = 0;
I |= Sign << 31;
I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
I |= (Exp & 0x3) << 23;
I |= Mantissa << 19;
return bit_cast<float>(I);
}
/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP16Imm(const APInt &Imm) {
uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0x3f)
return -1;
Mantissa >>= 6;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
static inline int getFP16Imm(const APFloat &FPImm) {
return getFP16Imm(FPImm.bitcastToAPInt());
}
/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP32Imm(const APInt &Imm) {
uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0x7ffff)
return -1;
Mantissa >>= 19;
if ((Mantissa & 0xf) != Mantissa)
return -1;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
static inline int getFP32Imm(const APFloat &FPImm) {
return getFP32Imm(FPImm.bitcastToAPInt());
}
/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP64Imm(const APInt &Imm) {
uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0xffffffffffffULL)
return -1;
Mantissa >>= 48;
if ((Mantissa & 0xf) != Mantissa)
return -1;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
static inline int getFP64Imm(const APFloat &FPImm) {
return getFP64Imm(FPImm.bitcastToAPInt());
}
//===--------------------------------------------------------------------===//
// AdvSIMD Modified Immediates
//===--------------------------------------------------------------------===//
// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xffffff00ffffff00ULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
return (Imm & 0xffULL);
}
static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 32) | EncVal;
}
// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xffff00ffffff00ffULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
return (Imm & 0xff00ULL) >> 8;
}
static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 40) | (EncVal << 8);
}
// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xff00ffffff00ffffULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
return (Imm & 0xff0000ULL) >> 16;
}
static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 48) | (EncVal << 16);
}
// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0x00ffffff00ffffffULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
return (Imm & 0xff000000ULL) >> 24;
}
static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 56) | (EncVal << 24);
}
// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
(((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
((Imm & 0xff00ff00ff00ff00ULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
return (Imm & 0xffULL);
}
static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
}
// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
(((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
((Imm & 0x00ff00ff00ff00ffULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
return (Imm & 0xff00ULL) >> 8;
}
static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
}
// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
}
static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
return (Imm & 0xff00ULL) >> 8;
}
static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
}
// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
}
static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
uint64_t EncVal = Imm;
return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
}
static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
return (Imm & 0x00ff0000ULL) >> 16;
}
// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
((Imm >> 56) == (Imm & 0x000000ffULL));
}
static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
return (Imm & 0xffULL);
}
static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
uint64_t EncVal = Imm;
EncVal |= (EncVal << 8);
EncVal |= (EncVal << 16);
EncVal |= (EncVal << 32);
return EncVal;
}
// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
// cmode: 1110, op: 1
static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
uint64_t ByteA = Imm & 0xff00000000000000ULL;
uint64_t ByteB = Imm & 0x00ff000000000000ULL;
uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
uint64_t ByteD = Imm & 0x000000ff00000000ULL;
uint64_t ByteE = Imm & 0x00000000ff000000ULL;
uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
uint64_t ByteG = Imm & 0x000000000000ff00ULL;
uint64_t ByteH = Imm & 0x00000000000000ffULL;
return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
(ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
(ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
(ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
(ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
(ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
(ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
(ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
}
static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
uint8_t EncVal = BitA;
EncVal <<= 1;
EncVal |= BitB;
EncVal <<= 1;
EncVal |= BitC;
EncVal <<= 1;
EncVal |= BitD;
EncVal <<= 1;
EncVal |= BitE;
EncVal <<= 1;
EncVal |= BitF;
EncVal <<= 1;
EncVal |= BitG;
EncVal <<= 1;
EncVal |= BitH;
return EncVal;
}
static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
uint64_t EncVal = 0;
if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
return EncVal;
}
// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
(BString == 0x1f || BString == 0x20) &&
((Imm & 0x0007ffff0007ffffULL) == 0);
}
static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
uint8_t BitA = (Imm & 0x80000000ULL) != 0;
uint8_t BitB = (Imm & 0x20000000ULL) != 0;
uint8_t BitC = (Imm & 0x01000000ULL) != 0;
uint8_t BitD = (Imm & 0x00800000ULL) != 0;
uint8_t BitE = (Imm & 0x00400000ULL) != 0;
uint8_t BitF = (Imm & 0x00200000ULL) != 0;
uint8_t BitG = (Imm & 0x00100000ULL) != 0;
uint8_t BitH = (Imm & 0x00080000ULL) != 0;
uint8_t EncVal = BitA;
EncVal <<= 1;
EncVal |= BitB;
EncVal <<= 1;
EncVal |= BitC;
EncVal <<= 1;
EncVal |= BitD;
EncVal <<= 1;
EncVal |= BitE;
EncVal <<= 1;
EncVal |= BitF;
EncVal <<= 1;
EncVal |= BitG;
EncVal <<= 1;
EncVal |= BitH;
return EncVal;
}
static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
uint64_t EncVal = 0;
if (Imm & 0x80) EncVal |= 0x80000000ULL;
if (Imm & 0x40) EncVal |= 0x3e000000ULL;
else EncVal |= 0x40000000ULL;
if (Imm & 0x20) EncVal |= 0x01000000ULL;
if (Imm & 0x10) EncVal |= 0x00800000ULL;
if (Imm & 0x08) EncVal |= 0x00400000ULL;
if (Imm & 0x04) EncVal |= 0x00200000ULL;
if (Imm & 0x02) EncVal |= 0x00100000ULL;
if (Imm & 0x01) EncVal |= 0x00080000ULL;
return (EncVal << 32) | EncVal;
}
// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
return ((BString == 0xff || BString == 0x100) &&
((Imm & 0x0000ffffffffffffULL) == 0));
}
static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
uint8_t EncVal = BitA;
EncVal <<= 1;
EncVal |= BitB;
EncVal <<= 1;
EncVal |= BitC;
EncVal <<= 1;
EncVal |= BitD;
EncVal <<= 1;
EncVal |= BitE;
EncVal <<= 1;
EncVal |= BitF;
EncVal <<= 1;
EncVal |= BitG;
EncVal <<= 1;
EncVal |= BitH;
return EncVal;
}
static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
uint64_t EncVal = 0;
if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
else EncVal |= 0x4000000000000000ULL;
if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
return (EncVal << 32) | EncVal;
}
/// Returns true if Imm is the concatenation of a repeating pattern of type T.
template <typename T>
static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; });
}
/// Returns true if Imm is valid for CPY/DUP.
template <typename T>
static inline bool isSVECpyImm(int64_t Imm) {
bool IsImm8 = int8_t(Imm) == Imm;
bool IsImm16 = int16_t(Imm & ~0xff) == Imm;
if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
return IsImm8 || uint8_t(Imm) == Imm;
if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;
return IsImm8 || IsImm16;
}
/// Returns true if Imm is valid for ADD/SUB.
template <typename T>
static inline bool isSVEAddSubImm(int64_t Imm) {
bool IsInt8t =
std::is_same<int8_t, typename std::make_signed<T>::type>::value;
return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
}
/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
if (isSVECpyImm<int64_t>(Imm))
return false;
auto S = bit_cast<std::array<int32_t, 2>>(Imm);
auto H = bit_cast<std::array<int16_t, 4>>(Imm);
auto B = bit_cast<std::array<int8_t, 8>>(Imm);
if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
return false;
if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
return false;
if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
return false;
return isLogicalImmediate(Imm, 64);
}
inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
if ((Value & ~(0xffffULL << Shift)) == 0)
return true;
return false;
}
inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
if (RegWidth == 32)
Value &= 0xffffffffULL;
// "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
if (Value == 0 && Shift != 0)
return false;
return (Value & ~(0xffffULL << Shift)) == 0;
}
inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
// MOVZ takes precedence over MOVN.
if (isAnyMOVZMovAlias(Value, RegWidth))
return false;
Value = ~Value;
if (RegWidth == 32)
Value &= 0xffffffffULL;
return isMOVZMovAlias(Value, Shift, RegWidth);
}
inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
if (isAnyMOVZMovAlias(Value, RegWidth))
return true;
// It's not a MOVZ, but it might be a MOVN.
Value = ~Value;
if (RegWidth == 32)
Value &= 0xffffffffULL;
return isAnyMOVZMovAlias(Value, RegWidth);
}
} // end namespace AArch64_AM
} // end namespace llvm
#endif
|