reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
//===-- AVRFrameLowering.cpp - AVR Frame Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AVR implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//

#include "AVRFrameLowering.h"

#include "AVR.h"
#include "AVRInstrInfo.h"
#include "AVRMachineFunctionInfo.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"

#include <vector>

namespace llvm {

AVRFrameLowering::AVRFrameLowering()
    : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, Align::None(),
                          -2) {}

bool AVRFrameLowering::canSimplifyCallFramePseudos(
    const MachineFunction &MF) const {
  // Always simplify call frame pseudo instructions, even when
  // hasReservedCallFrame is false.
  return true;
}

bool AVRFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
  // Reserve call frame memory in function prologue under the following
  // conditions:
  // - Y pointer is reserved to be the frame pointer.
  // - The function does not contain variable sized objects.

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  return hasFP(MF) && !MFI.hasVarSizedObjects();
}

void AVRFrameLowering::emitPrologue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.begin();
  CallingConv::ID CallConv = MF.getFunction().getCallingConv();
  DebugLoc DL = (MBBI != MBB.end()) ? MBBI->getDebugLoc() : DebugLoc();
  const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
  const AVRInstrInfo &TII = *STI.getInstrInfo();
  bool HasFP = hasFP(MF);

  // Interrupt handlers re-enable interrupts in function entry.
  if (CallConv == CallingConv::AVR_INTR) {
    BuildMI(MBB, MBBI, DL, TII.get(AVR::BSETs))
        .addImm(0x07)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // Save the frame pointer if we have one.
  if (HasFP) {
    BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHWRr))
        .addReg(AVR::R29R28, RegState::Kill)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // Emit special prologue code to save R1, R0 and SREG in interrupt/signal
  // handlers before saving any other registers.
  if (CallConv == CallingConv::AVR_INTR ||
      CallConv == CallingConv::AVR_SIGNAL) {
    BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHWRr))
        .addReg(AVR::R1R0, RegState::Kill)
        .setMIFlag(MachineInstr::FrameSetup);

    BuildMI(MBB, MBBI, DL, TII.get(AVR::INRdA), AVR::R0)
        .addImm(0x3f)
        .setMIFlag(MachineInstr::FrameSetup);
    BuildMI(MBB, MBBI, DL, TII.get(AVR::PUSHRr))
        .addReg(AVR::R0, RegState::Kill)
        .setMIFlag(MachineInstr::FrameSetup);
    BuildMI(MBB, MBBI, DL, TII.get(AVR::EORRdRr))
        .addReg(AVR::R0, RegState::Define)
        .addReg(AVR::R0, RegState::Kill)
        .addReg(AVR::R0, RegState::Kill)
        .setMIFlag(MachineInstr::FrameSetup);
  }

  // Early exit if the frame pointer is not needed in this function.
  if (!HasFP) {
    return;
  }

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
  unsigned FrameSize = MFI.getStackSize() - AFI->getCalleeSavedFrameSize();

  // Skip the callee-saved push instructions.
  while (
      (MBBI != MBB.end()) && MBBI->getFlag(MachineInstr::FrameSetup) &&
      (MBBI->getOpcode() == AVR::PUSHRr || MBBI->getOpcode() == AVR::PUSHWRr)) {
    ++MBBI;
  }

  // Update Y with the new base value.
  BuildMI(MBB, MBBI, DL, TII.get(AVR::SPREAD), AVR::R29R28)
      .addReg(AVR::SP)
      .setMIFlag(MachineInstr::FrameSetup);

  // Mark the FramePtr as live-in in every block except the entry.
  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ++I) {
    I->addLiveIn(AVR::R29R28);
  }

  if (!FrameSize) {
    return;
  }

  // Reserve the necessary frame memory by doing FP -= <size>.
  unsigned Opcode = (isUInt<6>(FrameSize)) ? AVR::SBIWRdK : AVR::SUBIWRdK;

  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opcode), AVR::R29R28)
                         .addReg(AVR::R29R28, RegState::Kill)
                         .addImm(FrameSize)
                         .setMIFlag(MachineInstr::FrameSetup);
  // The SREG implicit def is dead.
  MI->getOperand(3).setIsDead();

  // Write back R29R28 to SP and temporarily disable interrupts.
  BuildMI(MBB, MBBI, DL, TII.get(AVR::SPWRITE), AVR::SP)
      .addReg(AVR::R29R28)
      .setMIFlag(MachineInstr::FrameSetup);
}

void AVRFrameLowering::emitEpilogue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  CallingConv::ID CallConv = MF.getFunction().getCallingConv();
  bool isHandler = (CallConv == CallingConv::AVR_INTR ||
                    CallConv == CallingConv::AVR_SIGNAL);

  // Early exit if the frame pointer is not needed in this function except for
  // signal/interrupt handlers where special code generation is required.
  if (!hasFP(MF) && !isHandler) {
    return;
  }

  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
  assert(MBBI->getDesc().isReturn() &&
         "Can only insert epilog into returning blocks");

  DebugLoc DL = MBBI->getDebugLoc();
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
  unsigned FrameSize = MFI.getStackSize() - AFI->getCalleeSavedFrameSize();
  const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
  const AVRInstrInfo &TII = *STI.getInstrInfo();

  // Emit special epilogue code to restore R1, R0 and SREG in interrupt/signal
  // handlers at the very end of the function, just before reti.
  if (isHandler) {
    BuildMI(MBB, MBBI, DL, TII.get(AVR::POPRd), AVR::R0);
    BuildMI(MBB, MBBI, DL, TII.get(AVR::OUTARr))
        .addImm(0x3f)
        .addReg(AVR::R0, RegState::Kill);
    BuildMI(MBB, MBBI, DL, TII.get(AVR::POPWRd), AVR::R1R0);
  }

  if (hasFP(MF))
    BuildMI(MBB, MBBI, DL, TII.get(AVR::POPWRd), AVR::R29R28);

  // Early exit if there is no need to restore the frame pointer.
  if (!FrameSize) {
    return;
  }

  // Skip the callee-saved pop instructions.
  while (MBBI != MBB.begin()) {
    MachineBasicBlock::iterator PI = std::prev(MBBI);
    int Opc = PI->getOpcode();

    if (Opc != AVR::POPRd && Opc != AVR::POPWRd && !PI->isTerminator()) {
      break;
    }

    --MBBI;
  }

  unsigned Opcode;

  // Select the optimal opcode depending on how big it is.
  if (isUInt<6>(FrameSize)) {
    Opcode = AVR::ADIWRdK;
  } else {
    Opcode = AVR::SUBIWRdK;
    FrameSize = -FrameSize;
  }

  // Restore the frame pointer by doing FP += <size>.
  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opcode), AVR::R29R28)
                         .addReg(AVR::R29R28, RegState::Kill)
                         .addImm(FrameSize);
  // The SREG implicit def is dead.
  MI->getOperand(3).setIsDead();

  // Write back R29R28 to SP and temporarily disable interrupts.
  BuildMI(MBB, MBBI, DL, TII.get(AVR::SPWRITE), AVR::SP)
      .addReg(AVR::R29R28, RegState::Kill);
}

// Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function meets any of the following
// conditions:
//  - a register has been spilled
//  - has allocas
//  - input arguments are passed using the stack
//
// Notice that strictly this is not a frame pointer because it contains SP after
// frame allocation instead of having the original SP in function entry.
bool AVRFrameLowering::hasFP(const MachineFunction &MF) const {
  const AVRMachineFunctionInfo *FuncInfo = MF.getInfo<AVRMachineFunctionInfo>();

  return (FuncInfo->getHasSpills() || FuncInfo->getHasAllocas() ||
          FuncInfo->getHasStackArgs());
}

bool AVRFrameLowering::spillCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    const std::vector<CalleeSavedInfo> &CSI,
    const TargetRegisterInfo *TRI) const {
  if (CSI.empty()) {
    return false;
  }

  unsigned CalleeFrameSize = 0;
  DebugLoc DL = MBB.findDebugLoc(MI);
  MachineFunction &MF = *MBB.getParent();
  const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
  const TargetInstrInfo &TII = *STI.getInstrInfo();
  AVRMachineFunctionInfo *AVRFI = MF.getInfo<AVRMachineFunctionInfo>();

  for (unsigned i = CSI.size(); i != 0; --i) {
    unsigned Reg = CSI[i - 1].getReg();
    bool IsNotLiveIn = !MBB.isLiveIn(Reg);

    assert(TRI->getRegSizeInBits(*TRI->getMinimalPhysRegClass(Reg)) == 8 &&
           "Invalid register size");

    // Add the callee-saved register as live-in only if it is not already a
    // live-in register, this usually happens with arguments that are passed
    // through callee-saved registers.
    if (IsNotLiveIn) {
      MBB.addLiveIn(Reg);
    }

    // Do not kill the register when it is an input argument.
    BuildMI(MBB, MI, DL, TII.get(AVR::PUSHRr))
        .addReg(Reg, getKillRegState(IsNotLiveIn))
        .setMIFlag(MachineInstr::FrameSetup);
    ++CalleeFrameSize;
  }

  AVRFI->setCalleeSavedFrameSize(CalleeFrameSize);

  return true;
}

bool AVRFrameLowering::restoreCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    std::vector<CalleeSavedInfo> &CSI,
    const TargetRegisterInfo *TRI) const {
  if (CSI.empty()) {
    return false;
  }

  DebugLoc DL = MBB.findDebugLoc(MI);
  const MachineFunction &MF = *MBB.getParent();
  const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
  const TargetInstrInfo &TII = *STI.getInstrInfo();

  for (const CalleeSavedInfo &CCSI : CSI) {
    unsigned Reg = CCSI.getReg();

    assert(TRI->getRegSizeInBits(*TRI->getMinimalPhysRegClass(Reg)) == 8 &&
           "Invalid register size");

    BuildMI(MBB, MI, DL, TII.get(AVR::POPRd), Reg);
  }

  return true;
}

/// Replace pseudo store instructions that pass arguments through the stack with
/// real instructions. If insertPushes is true then all instructions are
/// replaced with push instructions, otherwise regular std instructions are
/// inserted.
static void fixStackStores(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI,
                           const TargetInstrInfo &TII, bool insertPushes) {
  const AVRSubtarget &STI = MBB.getParent()->getSubtarget<AVRSubtarget>();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();

  // Iterate through the BB until we hit a call instruction or we reach the end.
  for (auto I = MI, E = MBB.end(); I != E && !I->isCall();) {
    MachineBasicBlock::iterator NextMI = std::next(I);
    MachineInstr &MI = *I;
    unsigned Opcode = I->getOpcode();

    // Only care of pseudo store instructions where SP is the base pointer.
    if (Opcode != AVR::STDSPQRr && Opcode != AVR::STDWSPQRr) {
      I = NextMI;
      continue;
    }

    assert(MI.getOperand(0).getReg() == AVR::SP &&
           "Invalid register, should be SP!");
    if (insertPushes) {
      // Replace this instruction with a push.
      Register SrcReg = MI.getOperand(2).getReg();
      bool SrcIsKill = MI.getOperand(2).isKill();

      // We can't use PUSHWRr here because when expanded the order of the new
      // instructions are reversed from what we need. Perform the expansion now.
      if (Opcode == AVR::STDWSPQRr) {
        BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
            .addReg(TRI.getSubReg(SrcReg, AVR::sub_hi),
                    getKillRegState(SrcIsKill));
        BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
            .addReg(TRI.getSubReg(SrcReg, AVR::sub_lo),
                    getKillRegState(SrcIsKill));
      } else {
        BuildMI(MBB, I, MI.getDebugLoc(), TII.get(AVR::PUSHRr))
            .addReg(SrcReg, getKillRegState(SrcIsKill));
      }

      MI.eraseFromParent();
      I = NextMI;
      continue;
    }

    // Replace this instruction with a regular store. Use Y as the base
    // pointer since it is guaranteed to contain a copy of SP.
    unsigned STOpc =
        (Opcode == AVR::STDWSPQRr) ? AVR::STDWPtrQRr : AVR::STDPtrQRr;

    MI.setDesc(TII.get(STOpc));
    MI.getOperand(0).setReg(AVR::R29R28);

    I = NextMI;
  }
}

MachineBasicBlock::iterator AVRFrameLowering::eliminateCallFramePseudoInstr(
    MachineFunction &MF, MachineBasicBlock &MBB,
    MachineBasicBlock::iterator MI) const {
  const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
  const AVRInstrInfo &TII = *STI.getInstrInfo();

  // There is nothing to insert when the call frame memory is allocated during
  // function entry. Delete the call frame pseudo and replace all pseudo stores
  // with real store instructions.
  if (hasReservedCallFrame(MF)) {
    fixStackStores(MBB, MI, TII, false);
    return MBB.erase(MI);
  }

  DebugLoc DL = MI->getDebugLoc();
  unsigned int Opcode = MI->getOpcode();
  int Amount = TII.getFrameSize(*MI);

  // Adjcallstackup does not need to allocate stack space for the call, instead
  // we insert push instructions that will allocate the necessary stack.
  // For adjcallstackdown we convert it into an 'adiw reg, <amt>' handling
  // the read and write of SP in I/O space.
  if (Amount != 0) {
    assert(getStackAlignment() == 1 && "Unsupported stack alignment");

    if (Opcode == TII.getCallFrameSetupOpcode()) {
      fixStackStores(MBB, MI, TII, true);
    } else {
      assert(Opcode == TII.getCallFrameDestroyOpcode());

      // Select the best opcode to adjust SP based on the offset size.
      unsigned addOpcode;
      if (isUInt<6>(Amount)) {
        addOpcode = AVR::ADIWRdK;
      } else {
        addOpcode = AVR::SUBIWRdK;
        Amount = -Amount;
      }

      // Build the instruction sequence.
      BuildMI(MBB, MI, DL, TII.get(AVR::SPREAD), AVR::R31R30).addReg(AVR::SP);

      MachineInstr *New = BuildMI(MBB, MI, DL, TII.get(addOpcode), AVR::R31R30)
                              .addReg(AVR::R31R30, RegState::Kill)
                              .addImm(Amount);
      New->getOperand(3).setIsDead();

      BuildMI(MBB, MI, DL, TII.get(AVR::SPWRITE), AVR::SP)
          .addReg(AVR::R31R30, RegState::Kill);
    }
  }

  return MBB.erase(MI);
}

void AVRFrameLowering::determineCalleeSaves(MachineFunction &MF,
                                            BitVector &SavedRegs,
                                            RegScavenger *RS) const {
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);

  // If we have a frame pointer, the Y register needs to be saved as well.
  // We don't do that here however - the prologue and epilogue generation
  // code will handle it specially.
}
/// The frame analyzer pass.
///
/// Scans the function for allocas and used arguments
/// that are passed through the stack.
struct AVRFrameAnalyzer : public MachineFunctionPass {
  static char ID;
  AVRFrameAnalyzer() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) {
    const MachineFrameInfo &MFI = MF.getFrameInfo();
    AVRMachineFunctionInfo *FuncInfo = MF.getInfo<AVRMachineFunctionInfo>();

    // If there are no fixed frame indexes during this stage it means there
    // are allocas present in the function.
    if (MFI.getNumObjects() != MFI.getNumFixedObjects()) {
      // Check for the type of allocas present in the function. We only care
      // about fixed size allocas so do not give false positives if only
      // variable sized allocas are present.
      for (unsigned i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
        // Variable sized objects have size 0.
        if (MFI.getObjectSize(i)) {
          FuncInfo->setHasAllocas(true);
          break;
        }
      }
    }

    // If there are fixed frame indexes present, scan the function to see if
    // they are really being used.
    if (MFI.getNumFixedObjects() == 0) {
      return false;
    }

    // Ok fixed frame indexes present, now scan the function to see if they
    // are really being used, otherwise we can ignore them.
    for (const MachineBasicBlock &BB : MF) {
      for (const MachineInstr &MI : BB) {
        int Opcode = MI.getOpcode();

        if ((Opcode != AVR::LDDRdPtrQ) && (Opcode != AVR::LDDWRdPtrQ) &&
            (Opcode != AVR::STDPtrQRr) && (Opcode != AVR::STDWPtrQRr)) {
          continue;
        }

        for (const MachineOperand &MO : MI.operands()) {
          if (!MO.isFI()) {
            continue;
          }

          if (MFI.isFixedObjectIndex(MO.getIndex())) {
            FuncInfo->setHasStackArgs(true);
            return false;
          }
        }
      }
    }

    return false;
  }

  StringRef getPassName() const { return "AVR Frame Analyzer"; }
};

char AVRFrameAnalyzer::ID = 0;

/// Creates instance of the frame analyzer pass.
FunctionPass *createAVRFrameAnalyzerPass() { return new AVRFrameAnalyzer(); }

/// Create the Dynalloca Stack Pointer Save/Restore pass.
/// Insert a copy of SP before allocating the dynamic stack memory and restore
/// it in function exit to restore the original SP state. This avoids the need
/// of reserving a register pair for a frame pointer.
struct AVRDynAllocaSR : public MachineFunctionPass {
  static char ID;
  AVRDynAllocaSR() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) {
    // Early exit when there are no variable sized objects in the function.
    if (!MF.getFrameInfo().hasVarSizedObjects()) {
      return false;
    }

    const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
    const TargetInstrInfo &TII = *STI.getInstrInfo();
    MachineBasicBlock &EntryMBB = MF.front();
    MachineBasicBlock::iterator MBBI = EntryMBB.begin();
    DebugLoc DL = EntryMBB.findDebugLoc(MBBI);

    unsigned SPCopy =
        MF.getRegInfo().createVirtualRegister(&AVR::DREGSRegClass);

    // Create a copy of SP in function entry before any dynallocas are
    // inserted.
    BuildMI(EntryMBB, MBBI, DL, TII.get(AVR::COPY), SPCopy).addReg(AVR::SP);

    // Restore SP in all exit basic blocks.
    for (MachineBasicBlock &MBB : MF) {
      // If last instruction is a return instruction, add a restore copy.
      if (!MBB.empty() && MBB.back().isReturn()) {
        MBBI = MBB.getLastNonDebugInstr();
        DL = MBBI->getDebugLoc();
        BuildMI(MBB, MBBI, DL, TII.get(AVR::COPY), AVR::SP)
            .addReg(SPCopy, RegState::Kill);
      }
    }

    return true;
  }

  StringRef getPassName() const {
    return "AVR dynalloca stack pointer save/restore";
  }
};

char AVRDynAllocaSR::ID = 0;

/// createAVRDynAllocaSRPass - returns an instance of the dynalloca stack
/// pointer save/restore pass.
FunctionPass *createAVRDynAllocaSRPass() { return new AVRDynAllocaSR(); }

} // end of namespace llvm