1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
| //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetRegisterInfo interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Printable.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>
#define DEBUG_TYPE "target-reg-info"
using namespace llvm;
TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
regclass_iterator RCB, regclass_iterator RCE,
const char *const *SRINames,
const LaneBitmask *SRILaneMasks,
LaneBitmask SRICoveringLanes,
const RegClassInfo *const RCIs,
unsigned Mode)
: InfoDesc(ID), SubRegIndexNames(SRINames),
SubRegIndexLaneMasks(SRILaneMasks),
RegClassBegin(RCB), RegClassEnd(RCE),
CoveringLanes(SRICoveringLanes),
RCInfos(RCIs), HwMode(Mode) {
}
TargetRegisterInfo::~TargetRegisterInfo() = default;
void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
const {
for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
RegisterSet.set(*AI);
}
bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
ArrayRef<MCPhysReg> Exceptions) const {
// Check that all super registers of reserved regs are reserved as well.
BitVector Checked(getNumRegs());
for (unsigned Reg : RegisterSet.set_bits()) {
if (Checked[Reg])
continue;
for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
dbgs() << "Error: Super register " << printReg(*SR, this)
<< " of reserved register " << printReg(Reg, this)
<< " is not reserved.\n";
return false;
}
// We transitively check superregs. So we can remember this for later
// to avoid compiletime explosion in deep register hierarchies.
Checked.set(*SR);
}
}
return true;
}
namespace llvm {
Printable printReg(Register Reg, const TargetRegisterInfo *TRI,
unsigned SubIdx, const MachineRegisterInfo *MRI) {
return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
if (!Reg)
OS << "$noreg";
else if (Register::isStackSlot(Reg))
OS << "SS#" << Register::stackSlot2Index(Reg);
else if (Register::isVirtualRegister(Reg)) {
StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
if (Name != "") {
OS << '%' << Name;
} else {
OS << '%' << Register::virtReg2Index(Reg);
}
} else if (!TRI)
OS << '$' << "physreg" << Reg;
else if (Reg < TRI->getNumRegs()) {
OS << '$';
printLowerCase(TRI->getName(Reg), OS);
} else
llvm_unreachable("Register kind is unsupported.");
if (SubIdx) {
if (TRI)
OS << ':' << TRI->getSubRegIndexName(SubIdx);
else
OS << ":sub(" << SubIdx << ')';
}
});
}
Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
return Printable([Unit, TRI](raw_ostream &OS) {
// Generic printout when TRI is missing.
if (!TRI) {
OS << "Unit~" << Unit;
return;
}
// Check for invalid register units.
if (Unit >= TRI->getNumRegUnits()) {
OS << "BadUnit~" << Unit;
return;
}
// Normal units have at least one root.
MCRegUnitRootIterator Roots(Unit, TRI);
assert(Roots.isValid() && "Unit has no roots.");
OS << TRI->getName(*Roots);
for (++Roots; Roots.isValid(); ++Roots)
OS << '~' << TRI->getName(*Roots);
});
}
Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
return Printable([Unit, TRI](raw_ostream &OS) {
if (Register::isVirtualRegister(Unit)) {
OS << '%' << Register::virtReg2Index(Unit);
} else {
OS << printRegUnit(Unit, TRI);
}
});
}
Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
if (RegInfo.getRegClassOrNull(Reg))
OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
else if (RegInfo.getRegBankOrNull(Reg))
OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
else {
OS << "_";
assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
"Generic registers must have a valid type");
}
});
}
} // end namespace llvm
/// getAllocatableClass - Return the maximal subclass of the given register
/// class that is alloctable, or NULL.
const TargetRegisterClass *
TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
if (!RC || RC->isAllocatable())
return RC;
for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
++It) {
const TargetRegisterClass *SubRC = getRegClass(It.getID());
if (SubRC->isAllocatable())
return SubRC;
}
return nullptr;
}
/// getMinimalPhysRegClass - Returns the Register Class of a physical
/// register of the given type, picking the most sub register class of
/// the right type that contains this physreg.
const TargetRegisterClass *
TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
assert(Register::isPhysicalRegister(reg) &&
"reg must be a physical register");
// Pick the most sub register class of the right type that contains
// this physreg.
const TargetRegisterClass* BestRC = nullptr;
for (const TargetRegisterClass* RC : regclasses()) {
if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
BestRC = RC;
}
assert(BestRC && "Couldn't find the register class");
return BestRC;
}
/// getAllocatableSetForRC - Toggle the bits that represent allocatable
/// registers for the specific register class.
static void getAllocatableSetForRC(const MachineFunction &MF,
const TargetRegisterClass *RC, BitVector &R){
assert(RC->isAllocatable() && "invalid for nonallocatable sets");
ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
for (unsigned i = 0; i != Order.size(); ++i)
R.set(Order[i]);
}
BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
const TargetRegisterClass *RC) const {
BitVector Allocatable(getNumRegs());
if (RC) {
// A register class with no allocatable subclass returns an empty set.
const TargetRegisterClass *SubClass = getAllocatableClass(RC);
if (SubClass)
getAllocatableSetForRC(MF, SubClass, Allocatable);
} else {
for (const TargetRegisterClass *C : regclasses())
if (C->isAllocatable())
getAllocatableSetForRC(MF, C, Allocatable);
}
// Mask out the reserved registers
BitVector Reserved = getReservedRegs(MF);
Allocatable &= Reserved.flip();
return Allocatable;
}
static inline
const TargetRegisterClass *firstCommonClass(const uint32_t *A,
const uint32_t *B,
const TargetRegisterInfo *TRI) {
for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
if (unsigned Common = *A++ & *B++)
return TRI->getRegClass(I + countTrailingZeros(Common));
return nullptr;
}
const TargetRegisterClass *
TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
const TargetRegisterClass *B) const {
// First take care of the trivial cases.
if (A == B)
return A;
if (!A || !B)
return nullptr;
// Register classes are ordered topologically, so the largest common
// sub-class it the common sub-class with the smallest ID.
return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
}
const TargetRegisterClass *
TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
unsigned Idx) const {
assert(A && B && "Missing register class");
assert(Idx && "Bad sub-register index");
// Find Idx in the list of super-register indices.
for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
if (RCI.getSubReg() == Idx)
// The bit mask contains all register classes that are projected into B
// by Idx. Find a class that is also a sub-class of A.
return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
return nullptr;
}
const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
const TargetRegisterClass *RCB, unsigned SubB,
unsigned &PreA, unsigned &PreB) const {
assert(RCA && SubA && RCB && SubB && "Invalid arguments");
// Search all pairs of sub-register indices that project into RCA and RCB
// respectively. This is quadratic, but usually the sets are very small. On
// most targets like X86, there will only be a single sub-register index
// (e.g., sub_16bit projecting into GR16).
//
// The worst case is a register class like DPR on ARM.
// We have indices dsub_0..dsub_7 projecting into that class.
//
// It is very common that one register class is a sub-register of the other.
// Arrange for RCA to be the larger register so the answer will be found in
// the first iteration. This makes the search linear for the most common
// case.
const TargetRegisterClass *BestRC = nullptr;
unsigned *BestPreA = &PreA;
unsigned *BestPreB = &PreB;
if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
std::swap(RCA, RCB);
std::swap(SubA, SubB);
std::swap(BestPreA, BestPreB);
}
// Also terminate the search one we have found a register class as small as
// RCA.
unsigned MinSize = getRegSizeInBits(*RCA);
for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
// Check if a common super-register class exists for this index pair.
const TargetRegisterClass *RC =
firstCommonClass(IA.getMask(), IB.getMask(), this);
if (!RC || getRegSizeInBits(*RC) < MinSize)
continue;
// The indexes must compose identically: PreA+SubA == PreB+SubB.
unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
if (FinalA != FinalB)
continue;
// Is RC a better candidate than BestRC?
if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
continue;
// Yes, RC is the smallest super-register seen so far.
BestRC = RC;
*BestPreA = IA.getSubReg();
*BestPreB = IB.getSubReg();
// Bail early if we reached MinSize. We won't find a better candidate.
if (getRegSizeInBits(*BestRC) == MinSize)
return BestRC;
}
}
return BestRC;
}
/// Check if the registers defined by the pair (RegisterClass, SubReg)
/// share the same register file.
static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) {
// Same register class.
if (DefRC == SrcRC)
return true;
// Both operands are sub registers. Check if they share a register class.
unsigned SrcIdx, DefIdx;
if (SrcSubReg && DefSubReg) {
return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
SrcIdx, DefIdx) != nullptr;
}
// At most one of the register is a sub register, make it Src to avoid
// duplicating the test.
if (!SrcSubReg) {
std::swap(DefSubReg, SrcSubReg);
std::swap(DefRC, SrcRC);
}
// One of the register is a sub register, check if we can get a superclass.
if (SrcSubReg)
return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
// Plain copy.
return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
}
bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) const {
// If this source does not incur a cross register bank copy, use it.
return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
}
// Compute target-independent register allocator hints to help eliminate copies.
bool
TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints,
const MachineFunction &MF,
const VirtRegMap *VRM,
const LiveRegMatrix *Matrix) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
MRI.getRegAllocationHints(VirtReg);
SmallSet<unsigned, 32> HintedRegs;
// First hint may be a target hint.
bool Skip = (Hints_MRI.first != 0);
for (auto Reg : Hints_MRI.second) {
if (Skip) {
Skip = false;
continue;
}
// Target-independent hints are either a physical or a virtual register.
unsigned Phys = Reg;
if (VRM && Register::isVirtualRegister(Phys))
Phys = VRM->getPhys(Phys);
// Don't add the same reg twice (Hints_MRI may contain multiple virtual
// registers allocated to the same physreg).
if (!HintedRegs.insert(Phys).second)
continue;
// Check that Phys is a valid hint in VirtReg's register class.
if (!Register::isPhysicalRegister(Phys))
continue;
if (MRI.isReserved(Phys))
continue;
// Check that Phys is in the allocation order. We shouldn't heed hints
// from VirtReg's register class if they aren't in the allocation order. The
// target probably has a reason for removing the register.
if (!is_contained(Order, Phys))
continue;
// All clear, tell the register allocator to prefer this register.
Hints.push_back(Phys);
}
return false;
}
bool TargetRegisterInfo::isCalleeSavedPhysReg(
unsigned PhysReg, const MachineFunction &MF) const {
if (PhysReg == 0)
return false;
const uint32_t *callerPreservedRegs =
getCallPreservedMask(MF, MF.getFunction().getCallingConv());
if (callerPreservedRegs) {
assert(Register::isPhysicalRegister(PhysReg) &&
"Expected physical register");
return (callerPreservedRegs[PhysReg / 32] >> PhysReg % 32) & 1;
}
return false;
}
bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
return !MF.getFunction().hasFnAttribute("no-realign-stack");
}
bool TargetRegisterInfo::needsStackRealignment(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const Function &F = MF.getFunction();
unsigned StackAlign = TFI->getStackAlignment();
bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
F.hasFnAttribute(Attribute::StackAlignment));
if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
if (canRealignStack(MF))
return true;
LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
<< "\n");
}
return false;
}
bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
const uint32_t *mask1) const {
unsigned N = (getNumRegs()+31) / 32;
for (unsigned I = 0; I < N; ++I)
if ((mask0[I] & mask1[I]) != mask0[I])
return false;
return true;
}
unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
const MachineRegisterInfo &MRI) const {
const TargetRegisterClass *RC{};
if (Register::isPhysicalRegister(Reg)) {
// The size is not directly available for physical registers.
// Instead, we need to access a register class that contains Reg and
// get the size of that register class.
RC = getMinimalPhysRegClass(Reg);
} else {
LLT Ty = MRI.getType(Reg);
unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
// If Reg is not a generic register, query the register class to
// get its size.
if (RegSize)
return RegSize;
// Since Reg is not a generic register, it must have a register class.
RC = MRI.getRegClass(Reg);
}
assert(RC && "Unable to deduce the register class");
return getRegSizeInBits(*RC);
}
unsigned
TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
const MachineRegisterInfo *MRI) const {
while (true) {
const MachineInstr *MI = MRI->getVRegDef(SrcReg);
if (!MI->isCopyLike())
return SrcReg;
unsigned CopySrcReg;
if (MI->isCopy())
CopySrcReg = MI->getOperand(1).getReg();
else {
assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
CopySrcReg = MI->getOperand(2).getReg();
}
if (!Register::isVirtualRegister(CopySrcReg))
return CopySrcReg;
SrcReg = CopySrcReg;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
const TargetRegisterInfo *TRI) {
dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
}
#endif
|