reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
//===-- AVRISelDAGToDAG.cpp - A dag to dag inst selector for AVR ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AVR target.
//
//===----------------------------------------------------------------------===//

#include "AVR.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "avr-isel"

namespace llvm {

/// Lowers LLVM IR (in DAG form) to AVR MC instructions (in DAG form).
class AVRDAGToDAGISel : public SelectionDAGISel {
public:
  AVRDAGToDAGISel(AVRTargetMachine &TM, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(TM, OptLevel), Subtarget(nullptr) {}

  StringRef getPassName() const override {
    return "AVR DAG->DAG Instruction Selection";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp);

  bool selectIndexedLoad(SDNode *N);
  unsigned selectIndexedProgMemLoad(const LoadSDNode *LD, MVT VT);

  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintCode,
                                    std::vector<SDValue> &OutOps) override;

// Include the pieces autogenerated from the target description.
#include "AVRGenDAGISel.inc"

private:
  void Select(SDNode *N) override;
  bool trySelect(SDNode *N);

  template <unsigned NodeType> bool select(SDNode *N);
  bool selectMultiplication(SDNode *N);

  const AVRSubtarget *Subtarget;
};

bool AVRDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
  Subtarget = &MF.getSubtarget<AVRSubtarget>();
  return SelectionDAGISel::runOnMachineFunction(MF);
}

bool AVRDAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
                                 SDValue &Disp) {
  SDLoc dl(Op);
  auto DL = CurDAG->getDataLayout();
  MVT PtrVT = getTargetLowering()->getPointerTy(DL);

  // if the address is a frame index get the TargetFrameIndex.
  if (const FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N)) {
    Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), PtrVT);
    Disp = CurDAG->getTargetConstant(0, dl, MVT::i8);

    return true;
  }

  // Match simple Reg + uimm6 operands.
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
      !CurDAG->isBaseWithConstantOffset(N)) {
    return false;
  }

  if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    int RHSC = (int)RHS->getZExtValue();

    // Convert negative offsets into positives ones.
    if (N.getOpcode() == ISD::SUB) {
      RHSC = -RHSC;
    }

    // <#Frame index + const>
    // Allow folding offsets bigger than 63 so the frame pointer can be used
    // directly instead of copying it around by adjusting and restoring it for
    // each access.
    if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
      int FI = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex();

      Base = CurDAG->getTargetFrameIndex(FI, PtrVT);
      Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i16);

      return true;
    }

    // The value type of the memory instruction determines what is the maximum
    // offset allowed.
    MVT VT = cast<MemSDNode>(Op)->getMemoryVT().getSimpleVT();

    // We only accept offsets that fit in 6 bits (unsigned).
    if (isUInt<6>(RHSC) && (VT == MVT::i8 || VT == MVT::i16)) {
      Base = N.getOperand(0);
      Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i8);

      return true;
    }
  }

  return false;
}

bool AVRDAGToDAGISel::selectIndexedLoad(SDNode *N) {
  const LoadSDNode *LD = cast<LoadSDNode>(N);
  ISD::MemIndexedMode AM = LD->getAddressingMode();
  MVT VT = LD->getMemoryVT().getSimpleVT();
  auto PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());

  // We only care if this load uses a POSTINC or PREDEC mode.
  if ((LD->getExtensionType() != ISD::NON_EXTLOAD) ||
      (AM != ISD::POST_INC && AM != ISD::PRE_DEC)) {

    return false;
  }

  unsigned Opcode = 0;
  bool isPre = (AM == ISD::PRE_DEC);
  int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();

  switch (VT.SimpleTy) {
  case MVT::i8: {
    if ((!isPre && Offs != 1) || (isPre && Offs != -1)) {
      return false;
    }

    Opcode = (isPre) ? AVR::LDRdPtrPd : AVR::LDRdPtrPi;
    break;
  }
  case MVT::i16: {
    if ((!isPre && Offs != 2) || (isPre && Offs != -2)) {
      return false;
    }

    Opcode = (isPre) ? AVR::LDWRdPtrPd : AVR::LDWRdPtrPi;
    break;
  }
  default:
    return false;
  }

  SDNode *ResNode = CurDAG->getMachineNode(Opcode, SDLoc(N), VT,
                                           PtrVT, MVT::Other,
                                           LD->getBasePtr(), LD->getChain());
  ReplaceUses(N, ResNode);
  CurDAG->RemoveDeadNode(N);

  return true;
}

unsigned AVRDAGToDAGISel::selectIndexedProgMemLoad(const LoadSDNode *LD,
                                                   MVT VT) {
  ISD::MemIndexedMode AM = LD->getAddressingMode();

  // Progmem indexed loads only work in POSTINC mode.
  if (LD->getExtensionType() != ISD::NON_EXTLOAD || AM != ISD::POST_INC) {
    return 0;
  }

  unsigned Opcode = 0;
  int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();

  switch (VT.SimpleTy) {
  case MVT::i8: {
    if (Offs != 1) {
      return 0;
    }
    Opcode = AVR::LPMRdZPi;
    break;
  }
  case MVT::i16: {
    if (Offs != 2) {
      return 0;
    }
    Opcode = AVR::LPMWRdZPi;
    break;
  }
  default:
    return 0;
  }

  return Opcode;
}

bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
                                                   unsigned ConstraintCode,
                                                   std::vector<SDValue> &OutOps) {
  assert((ConstraintCode == InlineAsm::Constraint_m ||
         ConstraintCode == InlineAsm::Constraint_Q) &&
      "Unexpected asm memory constraint");

  MachineRegisterInfo &RI = MF->getRegInfo();
  const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
  const TargetLowering &TL = *STI.getTargetLowering();
  SDLoc dl(Op);
  auto DL = CurDAG->getDataLayout();

  const RegisterSDNode *RegNode = dyn_cast<RegisterSDNode>(Op);

  // If address operand is of PTRDISPREGS class, all is OK, then.
  if (RegNode &&
      RI.getRegClass(RegNode->getReg()) == &AVR::PTRDISPREGSRegClass) {
    OutOps.push_back(Op);
    return false;
  }

  if (Op->getOpcode() == ISD::FrameIndex) {
    SDValue Base, Disp;

    if (SelectAddr(Op.getNode(), Op, Base, Disp)) {
      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }

    return true;
  }

  // If Op is add 'register, immediate' and
  // register is either virtual register or register of PTRDISPREGSRegClass
  if (Op->getOpcode() == ISD::ADD || Op->getOpcode() == ISD::SUB) {
    SDValue CopyFromRegOp = Op->getOperand(0);
    SDValue ImmOp = Op->getOperand(1);
    ConstantSDNode *ImmNode = dyn_cast<ConstantSDNode>(ImmOp);

    unsigned Reg;
    bool CanHandleRegImmOpt = true;

    CanHandleRegImmOpt &= ImmNode != 0;
    CanHandleRegImmOpt &= ImmNode->getAPIntValue().getZExtValue() < 64;

    if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg) {
      RegisterSDNode *RegNode =
          cast<RegisterSDNode>(CopyFromRegOp->getOperand(1));
      Reg = RegNode->getReg();
      CanHandleRegImmOpt &= (Register::isVirtualRegister(Reg) ||
                             AVR::PTRDISPREGSRegClass.contains(Reg));
    } else {
      CanHandleRegImmOpt = false;
    }

    // If we detect proper case - correct virtual register class
    // if needed and go to another inlineasm operand.
    if (CanHandleRegImmOpt) {
      SDValue Base, Disp;

      if (RI.getRegClass(Reg) != &AVR::PTRDISPREGSRegClass) {
        SDLoc dl(CopyFromRegOp);

        unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

        SDValue CopyToReg =
            CurDAG->getCopyToReg(CopyFromRegOp, dl, VReg, CopyFromRegOp);

        SDValue NewCopyFromRegOp =
            CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));

        Base = NewCopyFromRegOp;
      } else {
        Base = CopyFromRegOp;
      }

      if (ImmNode->getValueType(0) != MVT::i8) {
        Disp = CurDAG->getTargetConstant(ImmNode->getAPIntValue().getZExtValue(), dl, MVT::i8);
      } else {
        Disp = ImmOp;
      }

      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }
  }

  // More generic case.
  // Create chain that puts Op into pointer register
  // and return that register.
  unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

  SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op);
  SDValue CopyFromReg =
      CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));

  OutOps.push_back(CopyFromReg);

  return false;
}

template <> bool AVRDAGToDAGISel::select<ISD::FrameIndex>(SDNode *N) {
  auto DL = CurDAG->getDataLayout();

  // Convert the frameindex into a temp instruction that will hold the
  // effective address of the final stack slot.
  int FI = cast<FrameIndexSDNode>(N)->getIndex();
  SDValue TFI =
    CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy(DL));

  CurDAG->SelectNodeTo(N, AVR::FRMIDX,
                       getTargetLowering()->getPointerTy(DL), TFI,
                       CurDAG->getTargetConstant(0, SDLoc(N), MVT::i16));
  return true;
}

template <> bool AVRDAGToDAGISel::select<ISD::STORE>(SDNode *N) {
  // Use the STD{W}SPQRr pseudo instruction when passing arguments through
  // the stack on function calls for further expansion during the PEI phase.
  const StoreSDNode *ST = cast<StoreSDNode>(N);
  SDValue BasePtr = ST->getBasePtr();

  // Early exit when the base pointer is a frame index node or a constant.
  if (isa<FrameIndexSDNode>(BasePtr) || isa<ConstantSDNode>(BasePtr) ||
      BasePtr.isUndef()) {
    return false;
  }

  const RegisterSDNode *RN = dyn_cast<RegisterSDNode>(BasePtr.getOperand(0));
  // Only stores where SP is the base pointer are valid.
  if (!RN || (RN->getReg() != AVR::SP)) {
    return false;
  }

  int CST = (int)cast<ConstantSDNode>(BasePtr.getOperand(1))->getZExtValue();
  SDValue Chain = ST->getChain();
  EVT VT = ST->getValue().getValueType();
  SDLoc DL(N);
  SDValue Offset = CurDAG->getTargetConstant(CST, DL, MVT::i16);
  SDValue Ops[] = {BasePtr.getOperand(0), Offset, ST->getValue(), Chain};
  unsigned Opc = (VT == MVT::i16) ? AVR::STDWSPQRr : AVR::STDSPQRr;

  SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, MVT::Other, Ops);

  // Transfer memory operands.
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {ST->getMemOperand()});

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  CurDAG->RemoveDeadNode(N);

  return true;
}

template <> bool AVRDAGToDAGISel::select<ISD::LOAD>(SDNode *N) {
  const LoadSDNode *LD = cast<LoadSDNode>(N);
  if (!AVR::isProgramMemoryAccess(LD)) {
    // Check if the opcode can be converted into an indexed load.
    return selectIndexedLoad(N);
  }

  assert(Subtarget->hasLPM() && "cannot load from program memory on this mcu");

  // This is a flash memory load, move the pointer into R31R30 and emit
  // the lpm instruction.
  MVT VT = LD->getMemoryVT().getSimpleVT();
  SDValue Chain = LD->getChain();
  SDValue Ptr = LD->getBasePtr();
  SDNode *ResNode;
  SDLoc DL(N);

  Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Ptr, SDValue());
  Ptr = CurDAG->getCopyFromReg(Chain, DL, AVR::R31R30, MVT::i16,
                               Chain.getValue(1));

  SDValue RegZ = CurDAG->getRegister(AVR::R31R30, MVT::i16);

  // Check if the opcode can be converted into an indexed load.
  if (unsigned LPMOpc = selectIndexedProgMemLoad(LD, VT)) {
    // It is legal to fold the load into an indexed load.
    ResNode = CurDAG->getMachineNode(LPMOpc, DL, VT, MVT::i16, MVT::Other, Ptr,
                                     RegZ);
    ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
  } else {
    // Selecting an indexed load is not legal, fallback to a normal load.
    switch (VT.SimpleTy) {
    case MVT::i8:
      ResNode = CurDAG->getMachineNode(AVR::LPMRdZ, DL, MVT::i8, MVT::Other,
                                       Ptr, RegZ);
      break;
    case MVT::i16:
      ResNode = CurDAG->getMachineNode(AVR::LPMWRdZ, DL, MVT::i16,
                                       MVT::Other, Ptr, RegZ);
      ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
      break;
    default:
      llvm_unreachable("Unsupported VT!");
    }
  }

  // Transfer memory operands.
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {LD->getMemOperand()});

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
  CurDAG->RemoveDeadNode(N);

  return true;
}

template <> bool AVRDAGToDAGISel::select<AVRISD::CALL>(SDNode *N) {
  SDValue InFlag;
  SDValue Chain = N->getOperand(0);
  SDValue Callee = N->getOperand(1);
  unsigned LastOpNum = N->getNumOperands() - 1;

  // Direct calls are autogenerated.
  unsigned Op = Callee.getOpcode();
  if (Op == ISD::TargetGlobalAddress || Op == ISD::TargetExternalSymbol) {
    return false;
  }

  // Skip the incoming flag if present
  if (N->getOperand(LastOpNum).getValueType() == MVT::Glue) {
    --LastOpNum;
  }

  SDLoc DL(N);
  Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Callee, InFlag);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(CurDAG->getRegister(AVR::R31R30, MVT::i16));

  // Map all operands into the new node.
  for (unsigned i = 2, e = LastOpNum + 1; i != e; ++i) {
    Ops.push_back(N->getOperand(i));
  }

  Ops.push_back(Chain);
  Ops.push_back(Chain.getValue(1));

  SDNode *ResNode =
    CurDAG->getMachineNode(AVR::ICALL, DL, MVT::Other, MVT::Glue, Ops);

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
  CurDAG->RemoveDeadNode(N);

  return true;
}

template <> bool AVRDAGToDAGISel::select<ISD::BRIND>(SDNode *N) {
  SDValue Chain = N->getOperand(0);
  SDValue JmpAddr = N->getOperand(1);

  SDLoc DL(N);
  // Move the destination address of the indirect branch into R31R30.
  Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, JmpAddr);
  SDNode *ResNode = CurDAG->getMachineNode(AVR::IJMP, DL, MVT::Other, Chain);

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  CurDAG->RemoveDeadNode(N);

  return true;
}

bool AVRDAGToDAGISel::selectMultiplication(llvm::SDNode *N) {
  SDLoc DL(N);
  MVT Type = N->getSimpleValueType(0);

  assert(Type == MVT::i8 && "unexpected value type");

  bool isSigned = N->getOpcode() == ISD::SMUL_LOHI;
  unsigned MachineOp = isSigned ? AVR::MULSRdRr : AVR::MULRdRr;

  SDValue Lhs = N->getOperand(0);
  SDValue Rhs = N->getOperand(1);
  SDNode *Mul = CurDAG->getMachineNode(MachineOp, DL, MVT::Glue, Lhs, Rhs);
  SDValue InChain = CurDAG->getEntryNode();
  SDValue InGlue = SDValue(Mul, 0);

  // Copy the low half of the result, if it is needed.
  if (N->hasAnyUseOfValue(0)) {
    SDValue CopyFromLo =
        CurDAG->getCopyFromReg(InChain, DL, AVR::R0, Type, InGlue);

    ReplaceUses(SDValue(N, 0), CopyFromLo);

    InChain = CopyFromLo.getValue(1);
    InGlue = CopyFromLo.getValue(2);
  }

  // Copy the high half of the result, if it is needed.
  if (N->hasAnyUseOfValue(1)) {
    SDValue CopyFromHi =
        CurDAG->getCopyFromReg(InChain, DL, AVR::R1, Type, InGlue);

    ReplaceUses(SDValue(N, 1), CopyFromHi);

    InChain = CopyFromHi.getValue(1);
    InGlue = CopyFromHi.getValue(2);
  }

  CurDAG->RemoveDeadNode(N);

  // We need to clear R1. This is currently done (dirtily)
  // using a custom inserter.

  return true;
}

void AVRDAGToDAGISel::Select(SDNode *N) {
  // If we have a custom node, we already have selected!
  if (N->isMachineOpcode()) {
    LLVM_DEBUG(errs() << "== "; N->dump(CurDAG); errs() << "\n");
    N->setNodeId(-1);
    return;
  }

  // See if subclasses can handle this node.
  if (trySelect(N))
    return;

  // Select the default instruction
  SelectCode(N);
}

bool AVRDAGToDAGISel::trySelect(SDNode *N) {
  unsigned Opcode = N->getOpcode();
  SDLoc DL(N);

  switch (Opcode) {
  // Nodes we fully handle.
  case ISD::FrameIndex: return select<ISD::FrameIndex>(N);
  case ISD::BRIND:      return select<ISD::BRIND>(N);
  case ISD::UMUL_LOHI:
  case ISD::SMUL_LOHI:  return selectMultiplication(N);

  // Nodes we handle partially. Other cases are autogenerated
  case ISD::STORE:   return select<ISD::STORE>(N);
  case ISD::LOAD:    return select<ISD::LOAD>(N);
  case AVRISD::CALL: return select<AVRISD::CALL>(N);
  default:           return false;
  }
}

FunctionPass *createAVRISelDag(AVRTargetMachine &TM,
                               CodeGenOpt::Level OptLevel) {
  return new AVRDAGToDAGISel(TM, OptLevel);
}

} // end of namespace llvm