reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
//===- HexagonGenExtract.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cstdint>
#include <iterator>

using namespace llvm;

static cl::opt<unsigned> ExtractCutoff("extract-cutoff", cl::init(~0U),
  cl::Hidden, cl::desc("Cutoff for generating \"extract\""
  " instructions"));

// This prevents generating extract instructions that have the offset of 0.
// One of the reasons for "extract" is to put a sequence of bits in a regis-
// ter, starting at offset 0 (so that these bits can then be used by an
// "insert"). If the bits are already at offset 0, it is better not to gene-
// rate "extract", since logical bit operations can be merged into compound
// instructions (as opposed to "extract").
static cl::opt<bool> NoSR0("extract-nosr0", cl::init(true), cl::Hidden,
  cl::desc("No extract instruction with offset 0"));

static cl::opt<bool> NeedAnd("extract-needand", cl::init(true), cl::Hidden,
  cl::desc("Require & in extract patterns"));

namespace llvm {

void initializeHexagonGenExtractPass(PassRegistry&);
FunctionPass *createHexagonGenExtract();

} // end namespace llvm

namespace {

  class HexagonGenExtract : public FunctionPass {
  public:
    static char ID;

    HexagonGenExtract() : FunctionPass(ID) {
      initializeHexagonGenExtractPass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override {
      return "Hexagon generate \"extract\" instructions";
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      FunctionPass::getAnalysisUsage(AU);
    }

  private:
    bool visitBlock(BasicBlock *B);
    bool convert(Instruction *In);

    unsigned ExtractCount = 0;
    DominatorTree *DT;
  };

} // end anonymous namespace

char HexagonGenExtract::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonGenExtract, "hextract", "Hexagon generate "
  "\"extract\" instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(HexagonGenExtract, "hextract", "Hexagon generate "
  "\"extract\" instructions", false, false)

bool HexagonGenExtract::convert(Instruction *In) {
  using namespace PatternMatch;

  Value *BF = nullptr;
  ConstantInt *CSL = nullptr, *CSR = nullptr, *CM = nullptr;
  BasicBlock *BB = In->getParent();
  LLVMContext &Ctx = BB->getContext();
  bool LogicalSR;

  // (and (shl (lshr x, #sr), #sl), #m)
  LogicalSR = true;
  bool Match = match(In, m_And(m_Shl(m_LShr(m_Value(BF), m_ConstantInt(CSR)),
                               m_ConstantInt(CSL)),
                         m_ConstantInt(CM)));

  if (!Match) {
    // (and (shl (ashr x, #sr), #sl), #m)
    LogicalSR = false;
    Match = match(In, m_And(m_Shl(m_AShr(m_Value(BF), m_ConstantInt(CSR)),
                            m_ConstantInt(CSL)),
                      m_ConstantInt(CM)));
  }
  if (!Match) {
    // (and (shl x, #sl), #m)
    LogicalSR = true;
    CSR = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
    Match = match(In, m_And(m_Shl(m_Value(BF), m_ConstantInt(CSL)),
                      m_ConstantInt(CM)));
    if (Match && NoSR0)
      return false;
  }
  if (!Match) {
    // (and (lshr x, #sr), #m)
    LogicalSR = true;
    CSL = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
    Match = match(In, m_And(m_LShr(m_Value(BF), m_ConstantInt(CSR)),
                            m_ConstantInt(CM)));
  }
  if (!Match) {
    // (and (ashr x, #sr), #m)
    LogicalSR = false;
    CSL = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
    Match = match(In, m_And(m_AShr(m_Value(BF), m_ConstantInt(CSR)),
                            m_ConstantInt(CM)));
  }
  if (!Match) {
    CM = nullptr;
    // (shl (lshr x, #sr), #sl)
    LogicalSR = true;
    Match = match(In, m_Shl(m_LShr(m_Value(BF), m_ConstantInt(CSR)),
                            m_ConstantInt(CSL)));
  }
  if (!Match) {
    CM = nullptr;
    // (shl (ashr x, #sr), #sl)
    LogicalSR = false;
    Match = match(In, m_Shl(m_AShr(m_Value(BF), m_ConstantInt(CSR)),
                            m_ConstantInt(CSL)));
  }
  if (!Match)
    return false;

  Type *Ty = BF->getType();
  if (!Ty->isIntegerTy())
    return false;
  unsigned BW = Ty->getPrimitiveSizeInBits();
  if (BW != 32 && BW != 64)
    return false;

  uint32_t SR = CSR->getZExtValue();
  uint32_t SL = CSL->getZExtValue();

  if (!CM) {
    // If there was no and, and the shift left did not remove all potential
    // sign bits created by the shift right, then extractu cannot reproduce
    // this value.
    if (!LogicalSR && (SR > SL))
      return false;
    APInt A = APInt(BW, ~0ULL).lshr(SR).shl(SL);
    CM = ConstantInt::get(Ctx, A);
  }

  // CM is the shifted-left mask. Shift it back right to remove the zero
  // bits on least-significant positions.
  APInt M = CM->getValue().lshr(SL);
  uint32_t T = M.countTrailingOnes();

  // During the shifts some of the bits will be lost. Calculate how many
  // of the original value will remain after shift right and then left.
  uint32_t U = BW - std::max(SL, SR);
  // The width of the extracted field is the minimum of the original bits
  // that remain after the shifts and the number of contiguous 1s in the mask.
  uint32_t W = std::min(U, T);
  if (W == 0 || W == 1)
    return false;

  // Check if the extracted bits are contained within the mask that it is
  // and-ed with. The extract operation will copy these bits, and so the
  // mask cannot any holes in it that would clear any of the bits of the
  // extracted field.
  if (!LogicalSR) {
    // If the shift right was arithmetic, it could have included some 1 bits.
    // It is still ok to generate extract, but only if the mask eliminates
    // those bits (i.e. M does not have any bits set beyond U).
    APInt C = APInt::getHighBitsSet(BW, BW-U);
    if (M.intersects(C) || !M.isMask(W))
      return false;
  } else {
    // Check if M starts with a contiguous sequence of W times 1 bits. Get
    // the low U bits of M (which eliminates the 0 bits shifted in on the
    // left), and check if the result is APInt's "mask":
    if (!M.getLoBits(U).isMask(W))
      return false;
  }

  IRBuilder<> IRB(In);
  Intrinsic::ID IntId = (BW == 32) ? Intrinsic::hexagon_S2_extractu
                                   : Intrinsic::hexagon_S2_extractup;
  Module *Mod = BB->getParent()->getParent();
  Function *ExtF = Intrinsic::getDeclaration(Mod, IntId);
  Value *NewIn = IRB.CreateCall(ExtF, {BF, IRB.getInt32(W), IRB.getInt32(SR)});
  if (SL != 0)
    NewIn = IRB.CreateShl(NewIn, SL, CSL->getName());
  In->replaceAllUsesWith(NewIn);
  return true;
}

bool HexagonGenExtract::visitBlock(BasicBlock *B) {
  // Depth-first, bottom-up traversal.
  for (auto *DTN : children<DomTreeNode*>(DT->getNode(B)))
    visitBlock(DTN->getBlock());

  // Allow limiting the number of generated extracts for debugging purposes.
  bool HasCutoff = ExtractCutoff.getPosition();
  unsigned Cutoff = ExtractCutoff;

  bool Changed = false;
  BasicBlock::iterator I = std::prev(B->end()), NextI, Begin = B->begin();
  while (true) {
    if (HasCutoff && (ExtractCount >= Cutoff))
      return Changed;
    bool Last = (I == Begin);
    if (!Last)
      NextI = std::prev(I);
    Instruction *In = &*I;
    bool Done = convert(In);
    if (HasCutoff && Done)
      ExtractCount++;
    Changed |= Done;
    if (Last)
      break;
    I = NextI;
  }
  return Changed;
}

bool HexagonGenExtract::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  bool Changed;

  // Traverse the function bottom-up, to see super-expressions before their
  // sub-expressions.
  BasicBlock *Entry = GraphTraits<Function*>::getEntryNode(&F);
  Changed = visitBlock(Entry);

  return Changed;
}

FunctionPass *llvm::createHexagonGenExtract() {
  return new HexagonGenExtract();
}