reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the loop fusion pass.
/// The implementation is largely based on the following document:
///
///       Code Transformations to Augment the Scope of Loop Fusion in a
///         Production Compiler
///       Christopher Mark Barton
///       MSc Thesis
///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
///
/// The general approach taken is to collect sets of control flow equivalent
/// loops and test whether they can be fused. The necessary conditions for
/// fusion are:
///    1. The loops must be adjacent (there cannot be any statements between
///       the two loops).
///    2. The loops must be conforming (they must execute the same number of
///       iterations).
///    3. The loops must be control flow equivalent (if one loop executes, the
///       other is guaranteed to execute).
///    4. There cannot be any negative distance dependencies between the loops.
/// If all of these conditions are satisfied, it is safe to fuse the loops.
///
/// This implementation creates FusionCandidates that represent the loop and the
/// necessary information needed by fusion. It then operates on the fusion
/// candidates, first confirming that the candidate is eligible for fusion. The
/// candidates are then collected into control flow equivalent sets, sorted in
/// dominance order. Each set of control flow equivalent candidates is then
/// traversed, attempting to fuse pairs of candidates in the set. If all
/// requirements for fusion are met, the two candidates are fused, creating a
/// new (fused) candidate which is then added back into the set to consider for
/// additional fusion.
///
/// This implementation currently does not make any modifications to remove
/// conditions for fusion. Code transformations to make loops conform to each of
/// the conditions for fusion are discussed in more detail in the document
/// above. These can be added to the current implementation in the future.
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopFuse.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"

using namespace llvm;

#define DEBUG_TYPE "loop-fusion"

STATISTIC(FuseCounter, "Loops fused");
STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
STATISTIC(InvalidPreheader, "Loop has invalid preheader");
STATISTIC(InvalidHeader, "Loop has invalid header");
STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
STATISTIC(InvalidLatch, "Loop has invalid latch");
STATISTIC(InvalidLoop, "Loop is invalid");
STATISTIC(AddressTakenBB, "Basic block has address taken");
STATISTIC(MayThrowException, "Loop may throw an exception");
STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
STATISTIC(UnknownTripCount, "Loop has unknown trip count");
STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
STATISTIC(NonAdjacent, "Loops are not adjacent");
STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
STATISTIC(NonIdenticalGuards, "Candidates have different guards");
STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");

enum FusionDependenceAnalysisChoice {
  FUSION_DEPENDENCE_ANALYSIS_SCEV,
  FUSION_DEPENDENCE_ANALYSIS_DA,
  FUSION_DEPENDENCE_ANALYSIS_ALL,
};

static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
    "loop-fusion-dependence-analysis",
    cl::desc("Which dependence analysis should loop fusion use?"),
    cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
                          "Use the scalar evolution interface"),
               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
                          "Use the dependence analysis interface"),
               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
                          "Use all available analyses")),
    cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);

#ifndef NDEBUG
static cl::opt<bool>
    VerboseFusionDebugging("loop-fusion-verbose-debug",
                           cl::desc("Enable verbose debugging for Loop Fusion"),
                           cl::Hidden, cl::init(false), cl::ZeroOrMore);
#endif

namespace {
/// This class is used to represent a candidate for loop fusion. When it is
/// constructed, it checks the conditions for loop fusion to ensure that it
/// represents a valid candidate. It caches several parts of a loop that are
/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
/// of continually querying the underlying Loop to retrieve these values. It is
/// assumed these will not change throughout loop fusion.
///
/// The invalidate method should be used to indicate that the FusionCandidate is
/// no longer a valid candidate for fusion. Similarly, the isValid() method can
/// be used to ensure that the FusionCandidate is still valid for fusion.
struct FusionCandidate {
  /// Cache of parts of the loop used throughout loop fusion. These should not
  /// need to change throughout the analysis and transformation.
  /// These parts are cached to avoid repeatedly looking up in the Loop class.

  /// Preheader of the loop this candidate represents
  BasicBlock *Preheader;
  /// Header of the loop this candidate represents
  BasicBlock *Header;
  /// Blocks in the loop that exit the loop
  BasicBlock *ExitingBlock;
  /// The successor block of this loop (where the exiting blocks go to)
  BasicBlock *ExitBlock;
  /// Latch of the loop
  BasicBlock *Latch;
  /// The loop that this fusion candidate represents
  Loop *L;
  /// Vector of instructions in this loop that read from memory
  SmallVector<Instruction *, 16> MemReads;
  /// Vector of instructions in this loop that write to memory
  SmallVector<Instruction *, 16> MemWrites;
  /// Are all of the members of this fusion candidate still valid
  bool Valid;
  /// Guard branch of the loop, if it exists
  BranchInst *GuardBranch;

  /// Dominator and PostDominator trees are needed for the
  /// FusionCandidateCompare function, required by FusionCandidateSet to
  /// determine where the FusionCandidate should be inserted into the set. These
  /// are used to establish ordering of the FusionCandidates based on dominance.
  const DominatorTree *DT;
  const PostDominatorTree *PDT;

  OptimizationRemarkEmitter &ORE;

  FusionCandidate(Loop *L, const DominatorTree *DT,
                  const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
      : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
        ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
        Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr),
        DT(DT), PDT(PDT), ORE(ORE) {

    // TODO: This is temporary while we fuse both rotated and non-rotated
    // loops. Once we switch to only fusing rotated loops, the initialization of
    // GuardBranch can be moved into the initialization list above.
    if (isRotated())
      GuardBranch = L->getLoopGuardBranch();

    // Walk over all blocks in the loop and check for conditions that may
    // prevent fusion. For each block, walk over all instructions and collect
    // the memory reads and writes If any instructions that prevent fusion are
    // found, invalidate this object and return.
    for (BasicBlock *BB : L->blocks()) {
      if (BB->hasAddressTaken()) {
        invalidate();
        reportInvalidCandidate(AddressTakenBB);
        return;
      }

      for (Instruction &I : *BB) {
        if (I.mayThrow()) {
          invalidate();
          reportInvalidCandidate(MayThrowException);
          return;
        }
        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
          if (SI->isVolatile()) {
            invalidate();
            reportInvalidCandidate(ContainsVolatileAccess);
            return;
          }
        }
        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
          if (LI->isVolatile()) {
            invalidate();
            reportInvalidCandidate(ContainsVolatileAccess);
            return;
          }
        }
        if (I.mayWriteToMemory())
          MemWrites.push_back(&I);
        if (I.mayReadFromMemory())
          MemReads.push_back(&I);
      }
    }
  }

  /// Check if all members of the class are valid.
  bool isValid() const {
    return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
           !L->isInvalid() && Valid;
  }

  /// Verify that all members are in sync with the Loop object.
  void verify() const {
    assert(isValid() && "Candidate is not valid!!");
    assert(!L->isInvalid() && "Loop is invalid!");
    assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
    assert(Header == L->getHeader() && "Header is out of sync");
    assert(ExitingBlock == L->getExitingBlock() &&
           "Exiting Blocks is out of sync");
    assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
    assert(Latch == L->getLoopLatch() && "Latch is out of sync");
  }

  /// Get the entry block for this fusion candidate.
  ///
  /// If this fusion candidate represents a guarded loop, the entry block is the
  /// loop guard block. If it represents an unguarded loop, the entry block is
  /// the preheader of the loop.
  BasicBlock *getEntryBlock() const {
    if (GuardBranch)
      return GuardBranch->getParent();
    else
      return Preheader;
  }

  /// Given a guarded loop, get the successor of the guard that is not in the
  /// loop.
  ///
  /// This method returns the successor of the loop guard that is not located
  /// within the loop (i.e., the successor of the guard that is not the
  /// preheader).
  /// This method is only valid for guarded loops.
  BasicBlock *getNonLoopBlock() const {
    assert(GuardBranch && "Only valid on guarded loops.");
    assert(GuardBranch->isConditional() &&
           "Expecting guard to be a conditional branch.");
    return (GuardBranch->getSuccessor(0) == Preheader)
               ? GuardBranch->getSuccessor(1)
               : GuardBranch->getSuccessor(0);
  }

  bool isRotated() const {
    assert(L && "Expecting loop to be valid.");
    assert(Latch && "Expecting latch to be valid.");
    return L->isLoopExiting(Latch);
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const {
    dbgs() << "\tGuardBranch: "
           << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
           << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
           << "\n"
           << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
           << "\tExitingBB: "
           << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
           << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
           << "\n"
           << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
           << "\tEntryBlock: "
           << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
           << "\n";
  }
#endif

  /// Determine if a fusion candidate (representing a loop) is eligible for
  /// fusion. Note that this only checks whether a single loop can be fused - it
  /// does not check whether it is *legal* to fuse two loops together.
  bool isEligibleForFusion(ScalarEvolution &SE) const {
    if (!isValid()) {
      LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
      if (!Preheader)
        ++InvalidPreheader;
      if (!Header)
        ++InvalidHeader;
      if (!ExitingBlock)
        ++InvalidExitingBlock;
      if (!ExitBlock)
        ++InvalidExitBlock;
      if (!Latch)
        ++InvalidLatch;
      if (L->isInvalid())
        ++InvalidLoop;

      return false;
    }

    // Require ScalarEvolution to be able to determine a trip count.
    if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
                        << " trip count not computable!\n");
      return reportInvalidCandidate(UnknownTripCount);
    }

    if (!L->isLoopSimplifyForm()) {
      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
                        << " is not in simplified form!\n");
      return reportInvalidCandidate(NotSimplifiedForm);
    }

    return true;
  }

private:
  // This is only used internally for now, to clear the MemWrites and MemReads
  // list and setting Valid to false. I can't envision other uses of this right
  // now, since once FusionCandidates are put into the FusionCandidateSet they
  // are immutable. Thus, any time we need to change/update a FusionCandidate,
  // we must create a new one and insert it into the FusionCandidateSet to
  // ensure the FusionCandidateSet remains ordered correctly.
  void invalidate() {
    MemWrites.clear();
    MemReads.clear();
    Valid = false;
  }

  bool reportInvalidCandidate(llvm::Statistic &Stat) const {
    using namespace ore;
    assert(L && Preheader && "Fusion candidate not initialized properly!");
    ++Stat;
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
                                        L->getStartLoc(), Preheader)
             << "[" << Preheader->getParent()->getName() << "]: "
             << "Loop is not a candidate for fusion: " << Stat.getDesc());
    return false;
  }
};

struct FusionCandidateCompare {
  /// Comparison functor to sort two Control Flow Equivalent fusion candidates
  /// into dominance order.
  /// If LHS dominates RHS and RHS post-dominates LHS, return true;
  /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
  bool operator()(const FusionCandidate &LHS,
                  const FusionCandidate &RHS) const {
    const DominatorTree *DT = LHS.DT;

    BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
    BasicBlock *RHSEntryBlock = RHS.getEntryBlock();

    // Do not save PDT to local variable as it is only used in asserts and thus
    // will trigger an unused variable warning if building without asserts.
    assert(DT && LHS.PDT && "Expecting valid dominator tree");

    // Do this compare first so if LHS == RHS, function returns false.
    if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
      // RHS dominates LHS
      // Verify LHS post-dominates RHS
      assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
      return false;
    }

    if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
      // Verify RHS Postdominates LHS
      assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
      return true;
    }

    // If LHS does not dominate RHS and RHS does not dominate LHS then there is
    // no dominance relationship between the two FusionCandidates. Thus, they
    // should not be in the same set together.
    llvm_unreachable(
        "No dominance relationship between these fusion candidates!");
  }
};

using LoopVector = SmallVector<Loop *, 4>;

// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
// dominates FC1 and FC1 post-dominates FC0.
// std::set was chosen because we want a sorted data structure with stable
// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
// loops by moving intervening code around. When this intervening code contains
// loops, those loops will be moved also. The corresponding FusionCandidates
// will also need to be moved accordingly. As this is done, having stable
// iterators will simplify the logic. Similarly, having an efficient insert that
// keeps the FusionCandidateSet sorted will also simplify the implementation.
using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;

#if !defined(NDEBUG)
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const FusionCandidate &FC) {
  if (FC.isValid())
    OS << FC.Preheader->getName();
  else
    OS << "<Invalid>";

  return OS;
}

static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const FusionCandidateSet &CandSet) {
  for (const FusionCandidate &FC : CandSet)
    OS << FC << '\n';

  return OS;
}

static void
printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
  dbgs() << "Fusion Candidates: \n";
  for (const auto &CandidateSet : FusionCandidates) {
    dbgs() << "*** Fusion Candidate Set ***\n";
    dbgs() << CandidateSet;
    dbgs() << "****************************\n";
  }
}
#endif

/// Collect all loops in function at the same nest level, starting at the
/// outermost level.
///
/// This data structure collects all loops at the same nest level for a
/// given function (specified by the LoopInfo object). It starts at the
/// outermost level.
struct LoopDepthTree {
  using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
  using iterator = LoopsOnLevelTy::iterator;
  using const_iterator = LoopsOnLevelTy::const_iterator;

  LoopDepthTree(LoopInfo &LI) : Depth(1) {
    if (!LI.empty())
      LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
  }

  /// Test whether a given loop has been removed from the function, and thus is
  /// no longer valid.
  bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }

  /// Record that a given loop has been removed from the function and is no
  /// longer valid.
  void removeLoop(const Loop *L) { RemovedLoops.insert(L); }

  /// Descend the tree to the next (inner) nesting level
  void descend() {
    LoopsOnLevelTy LoopsOnNextLevel;

    for (const LoopVector &LV : *this)
      for (Loop *L : LV)
        if (!isRemovedLoop(L) && L->begin() != L->end())
          LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));

    LoopsOnLevel = LoopsOnNextLevel;
    RemovedLoops.clear();
    Depth++;
  }

  bool empty() const { return size() == 0; }
  size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
  unsigned getDepth() const { return Depth; }

  iterator begin() { return LoopsOnLevel.begin(); }
  iterator end() { return LoopsOnLevel.end(); }
  const_iterator begin() const { return LoopsOnLevel.begin(); }
  const_iterator end() const { return LoopsOnLevel.end(); }

private:
  /// Set of loops that have been removed from the function and are no longer
  /// valid.
  SmallPtrSet<const Loop *, 8> RemovedLoops;

  /// Depth of the current level, starting at 1 (outermost loops).
  unsigned Depth;

  /// Vector of loops at the current depth level that have the same parent loop
  LoopsOnLevelTy LoopsOnLevel;
};

#ifndef NDEBUG
static void printLoopVector(const LoopVector &LV) {
  dbgs() << "****************************\n";
  for (auto L : LV)
    printLoop(*L, dbgs());
  dbgs() << "****************************\n";
}
#endif

struct LoopFuser {
private:
  // Sets of control flow equivalent fusion candidates for a given nest level.
  FusionCandidateCollection FusionCandidates;

  LoopDepthTree LDT;
  DomTreeUpdater DTU;

  LoopInfo &LI;
  DominatorTree &DT;
  DependenceInfo &DI;
  ScalarEvolution &SE;
  PostDominatorTree &PDT;
  OptimizationRemarkEmitter &ORE;

public:
  LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
            ScalarEvolution &SE, PostDominatorTree &PDT,
            OptimizationRemarkEmitter &ORE, const DataLayout &DL)
      : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
        DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}

  /// This is the main entry point for loop fusion. It will traverse the
  /// specified function and collect candidate loops to fuse, starting at the
  /// outermost nesting level and working inwards.
  bool fuseLoops(Function &F) {
#ifndef NDEBUG
    if (VerboseFusionDebugging) {
      LI.print(dbgs());
    }
#endif

    LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
                      << "\n");
    bool Changed = false;

    while (!LDT.empty()) {
      LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
                        << LDT.getDepth() << "\n";);

      for (const LoopVector &LV : LDT) {
        assert(LV.size() > 0 && "Empty loop set was build!");

        // Skip singleton loop sets as they do not offer fusion opportunities on
        // this level.
        if (LV.size() == 1)
          continue;
#ifndef NDEBUG
        if (VerboseFusionDebugging) {
          LLVM_DEBUG({
            dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
            printLoopVector(LV);
          });
        }
#endif

        collectFusionCandidates(LV);
        Changed |= fuseCandidates();
      }

      // Finished analyzing candidates at this level.
      // Descend to the next level and clear all of the candidates currently
      // collected. Note that it will not be possible to fuse any of the
      // existing candidates with new candidates because the new candidates will
      // be at a different nest level and thus not be control flow equivalent
      // with all of the candidates collected so far.
      LLVM_DEBUG(dbgs() << "Descend one level!\n");
      LDT.descend();
      FusionCandidates.clear();
    }

    if (Changed)
      LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););

#ifndef NDEBUG
    assert(DT.verify());
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
    return Changed;
  }

private:
  /// Determine if two fusion candidates are control flow equivalent.
  ///
  /// Two fusion candidates are control flow equivalent if when one executes,
  /// the other is guaranteed to execute. This is determined using dominators
  /// and post-dominators: if A dominates B and B post-dominates A then A and B
  /// are control-flow equivalent.
  bool isControlFlowEquivalent(const FusionCandidate &FC0,
                               const FusionCandidate &FC1) const {
    assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");

    BasicBlock *FC0EntryBlock = FC0.getEntryBlock();
    BasicBlock *FC1EntryBlock = FC1.getEntryBlock();

    if (DT.dominates(FC0EntryBlock, FC1EntryBlock))
      return PDT.dominates(FC1EntryBlock, FC0EntryBlock);

    if (DT.dominates(FC1EntryBlock, FC0EntryBlock))
      return PDT.dominates(FC0EntryBlock, FC1EntryBlock);

    return false;
  }

  /// Iterate over all loops in the given loop set and identify the loops that
  /// are eligible for fusion. Place all eligible fusion candidates into Control
  /// Flow Equivalent sets, sorted by dominance.
  void collectFusionCandidates(const LoopVector &LV) {
    for (Loop *L : LV) {
      FusionCandidate CurrCand(L, &DT, &PDT, ORE);
      if (!CurrCand.isEligibleForFusion(SE))
        continue;

      // Go through each list in FusionCandidates and determine if L is control
      // flow equivalent with the first loop in that list. If it is, append LV.
      // If not, go to the next list.
      // If no suitable list is found, start another list and add it to
      // FusionCandidates.
      bool FoundSet = false;

      for (auto &CurrCandSet : FusionCandidates) {
        if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
          CurrCandSet.insert(CurrCand);
          FoundSet = true;
#ifndef NDEBUG
          if (VerboseFusionDebugging)
            LLVM_DEBUG(dbgs() << "Adding " << CurrCand
                              << " to existing candidate set\n");
#endif
          break;
        }
      }
      if (!FoundSet) {
        // No set was found. Create a new set and add to FusionCandidates
#ifndef NDEBUG
        if (VerboseFusionDebugging)
          LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
#endif
        FusionCandidateSet NewCandSet;
        NewCandSet.insert(CurrCand);
        FusionCandidates.push_back(NewCandSet);
      }
      NumFusionCandidates++;
    }
  }

  /// Determine if it is beneficial to fuse two loops.
  ///
  /// For now, this method simply returns true because we want to fuse as much
  /// as possible (primarily to test the pass). This method will evolve, over
  /// time, to add heuristics for profitability of fusion.
  bool isBeneficialFusion(const FusionCandidate &FC0,
                          const FusionCandidate &FC1) {
    return true;
  }

  /// Determine if two fusion candidates have the same trip count (i.e., they
  /// execute the same number of iterations).
  ///
  /// Note that for now this method simply returns a boolean value because there
  /// are no mechanisms in loop fusion to handle different trip counts. In the
  /// future, this behaviour can be extended to adjust one of the loops to make
  /// the trip counts equal (e.g., loop peeling). When this is added, this
  /// interface may need to change to return more information than just a
  /// boolean value.
  bool identicalTripCounts(const FusionCandidate &FC0,
                           const FusionCandidate &FC1) const {
    const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
    if (isa<SCEVCouldNotCompute>(TripCount0)) {
      UncomputableTripCount++;
      LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
      return false;
    }

    const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
    if (isa<SCEVCouldNotCompute>(TripCount1)) {
      UncomputableTripCount++;
      LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
      return false;
    }
    LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
                      << *TripCount1 << " are "
                      << (TripCount0 == TripCount1 ? "identical" : "different")
                      << "\n");

    return (TripCount0 == TripCount1);
  }

  /// Walk each set of control flow equivalent fusion candidates and attempt to
  /// fuse them. This does a single linear traversal of all candidates in the
  /// set. The conditions for legal fusion are checked at this point. If a pair
  /// of fusion candidates passes all legality checks, they are fused together
  /// and a new fusion candidate is created and added to the FusionCandidateSet.
  /// The original fusion candidates are then removed, as they are no longer
  /// valid.
  bool fuseCandidates() {
    bool Fused = false;
    LLVM_DEBUG(printFusionCandidates(FusionCandidates));
    for (auto &CandidateSet : FusionCandidates) {
      if (CandidateSet.size() < 2)
        continue;

      LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
                        << CandidateSet << "\n");

      for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
        assert(!LDT.isRemovedLoop(FC0->L) &&
               "Should not have removed loops in CandidateSet!");
        auto FC1 = FC0;
        for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
          assert(!LDT.isRemovedLoop(FC1->L) &&
                 "Should not have removed loops in CandidateSet!");

          LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
                     dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");

          FC0->verify();
          FC1->verify();

          if (!identicalTripCounts(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
                                 "counts. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEqualTripCount);
            continue;
          }

          if (!isAdjacent(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs()
                       << "Fusion candidates are not adjacent. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
            continue;
          }

          // Ensure that FC0 and FC1 have identical guards.
          // If one (or both) are not guarded, this check is not necessary.
          if (FC0->GuardBranch && FC1->GuardBranch &&
              !haveIdenticalGuards(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
                                 "guards. Not Fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonIdenticalGuards);
            continue;
          }

          // The following three checks look for empty blocks in FC0 and FC1. If
          // any of these blocks are non-empty, we do not fuse. This is done
          // because we currently do not have the safety checks to determine if
          // it is safe to move the blocks past other blocks in the loop. Once
          // these checks are added, these conditions can be relaxed.
          if (!isEmptyPreheader(*FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
                                 "preheader. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEmptyPreheader);
            continue;
          }

          if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
                                 "block. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEmptyExitBlock);
            continue;
          }

          if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
                                 "block. Not fusing.\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       NonEmptyGuardBlock);
            continue;
          }

          // Check the dependencies across the loops and do not fuse if it would
          // violate them.
          if (!dependencesAllowFusion(*FC0, *FC1)) {
            LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       InvalidDependencies);
            continue;
          }

          bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
          LLVM_DEBUG(dbgs()
                     << "\tFusion appears to be "
                     << (BeneficialToFuse ? "" : "un") << "profitable!\n");
          if (!BeneficialToFuse) {
            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
                                                       FusionNotBeneficial);
            continue;
          }
          // All analysis has completed and has determined that fusion is legal
          // and profitable. At this point, start transforming the code and
          // perform fusion.

          LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
                            << *FC1 << "\n");

          // Report fusion to the Optimization Remarks.
          // Note this needs to be done *before* performFusion because
          // performFusion will change the original loops, making it not
          // possible to identify them after fusion is complete.
          reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);

          FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
          FusedCand.verify();
          assert(FusedCand.isEligibleForFusion(SE) &&
                 "Fused candidate should be eligible for fusion!");

          // Notify the loop-depth-tree that these loops are not valid objects
          LDT.removeLoop(FC1->L);

          CandidateSet.erase(FC0);
          CandidateSet.erase(FC1);

          auto InsertPos = CandidateSet.insert(FusedCand);

          assert(InsertPos.second &&
                 "Unable to insert TargetCandidate in CandidateSet!");

          // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
          // of the FC1 loop will attempt to fuse the new (fused) loop with the
          // remaining candidates in the current candidate set.
          FC0 = FC1 = InsertPos.first;

          LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
                            << "\n");

          Fused = true;
        }
      }
    }
    return Fused;
  }

  /// Rewrite all additive recurrences in a SCEV to use a new loop.
  class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
  public:
    AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
                       bool UseMax = true)
        : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
          NewL(NewL) {}

    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
      const Loop *ExprL = Expr->getLoop();
      SmallVector<const SCEV *, 2> Operands;
      if (ExprL == &OldL) {
        Operands.append(Expr->op_begin(), Expr->op_end());
        return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
      }

      if (OldL.contains(ExprL)) {
        bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
        if (!UseMax || !Pos || !Expr->isAffine()) {
          Valid = false;
          return Expr;
        }
        return visit(Expr->getStart());
      }

      for (const SCEV *Op : Expr->operands())
        Operands.push_back(visit(Op));
      return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
    }

    bool wasValidSCEV() const { return Valid; }

  private:
    bool Valid, UseMax;
    const Loop &OldL, &NewL;
  };

  /// Return false if the access functions of \p I0 and \p I1 could cause
  /// a negative dependence.
  bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
                            Instruction &I1, bool EqualIsInvalid) {
    Value *Ptr0 = getLoadStorePointerOperand(&I0);
    Value *Ptr1 = getLoadStorePointerOperand(&I1);
    if (!Ptr0 || !Ptr1)
      return false;

    const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
    const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
                        << *SCEVPtr1 << "\n");
#endif
    AddRecLoopReplacer Rewriter(SE, L0, L1);
    SCEVPtr0 = Rewriter.visit(SCEVPtr0);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
                        << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
#endif
    if (!Rewriter.wasValidSCEV())
      return false;

    // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
    //       L0) and the other is not. We could check if it is monotone and test
    //       the beginning and end value instead.

    BasicBlock *L0Header = L0.getHeader();
    auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
      const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
      if (!AddRec)
        return false;
      return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
             !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
    };
    if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
      return false;

    ICmpInst::Predicate Pred =
        EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
    bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
#ifndef NDEBUG
    if (VerboseFusionDebugging)
      LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
                        << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
                        << "\n");
#endif
    return IsAlwaysGE;
  }

  /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
  /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
  /// specified by @p DepChoice are used to determine this.
  bool dependencesAllowFusion(const FusionCandidate &FC0,
                              const FusionCandidate &FC1, Instruction &I0,
                              Instruction &I1, bool AnyDep,
                              FusionDependenceAnalysisChoice DepChoice) {
#ifndef NDEBUG
    if (VerboseFusionDebugging) {
      LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
                        << DepChoice << "\n");
    }
#endif
    switch (DepChoice) {
    case FUSION_DEPENDENCE_ANALYSIS_SCEV:
      return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
    case FUSION_DEPENDENCE_ANALYSIS_DA: {
      auto DepResult = DI.depends(&I0, &I1, true);
      if (!DepResult)
        return true;
#ifndef NDEBUG
      if (VerboseFusionDebugging) {
        LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
                   dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
                          << (DepResult->isOrdered() ? "true" : "false")
                          << "]\n");
        LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
                          << "\n");
      }
#endif

      if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
        LLVM_DEBUG(
            dbgs() << "TODO: Implement pred/succ dependence handling!\n");

      // TODO: Can we actually use the dependence info analysis here?
      return false;
    }

    case FUSION_DEPENDENCE_ANALYSIS_ALL:
      return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
                                    FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
             dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
                                    FUSION_DEPENDENCE_ANALYSIS_DA);
    }

    llvm_unreachable("Unknown fusion dependence analysis choice!");
  }

  /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
  bool dependencesAllowFusion(const FusionCandidate &FC0,
                              const FusionCandidate &FC1) {
    LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
                      << "\n");
    assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
    assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));

    for (Instruction *WriteL0 : FC0.MemWrites) {
      for (Instruction *WriteL1 : FC1.MemWrites)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
      for (Instruction *ReadL1 : FC1.MemReads)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
    }

    for (Instruction *WriteL1 : FC1.MemWrites) {
      for (Instruction *WriteL0 : FC0.MemWrites)
        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
      for (Instruction *ReadL0 : FC0.MemReads)
        if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
                                    /* AnyDep */ false,
                                    FusionDependenceAnalysis)) {
          InvalidDependencies++;
          return false;
        }
    }

    // Walk through all uses in FC1. For each use, find the reaching def. If the
    // def is located in FC0 then it is is not safe to fuse.
    for (BasicBlock *BB : FC1.L->blocks())
      for (Instruction &I : *BB)
        for (auto &Op : I.operands())
          if (Instruction *Def = dyn_cast<Instruction>(Op))
            if (FC0.L->contains(Def->getParent())) {
              InvalidDependencies++;
              return false;
            }

    return true;
  }

  /// Determine if two fusion candidates are adjacent in the CFG.
  ///
  /// This method will determine if there are additional basic blocks in the CFG
  /// between the exit of \p FC0 and the entry of \p FC1.
  /// If the two candidates are guarded loops, then it checks whether the
  /// non-loop successor of the \p FC0 guard branch is the entry block of \p
  /// FC1. If not, then the loops are not adjacent. If the two candidates are
  /// not guarded loops, then it checks whether the exit block of \p FC0 is the
  /// preheader of \p FC1.
  bool isAdjacent(const FusionCandidate &FC0,
                  const FusionCandidate &FC1) const {
    // If the successor of the guard branch is FC1, then the loops are adjacent
    if (FC0.GuardBranch)
      return FC0.getNonLoopBlock() == FC1.getEntryBlock();
    else
      return FC0.ExitBlock == FC1.getEntryBlock();
  }

  /// Determine if two fusion candidates have identical guards
  ///
  /// This method will determine if two fusion candidates have the same guards.
  /// The guards are considered the same if:
  ///   1. The instructions to compute the condition used in the compare are
  ///      identical.
  ///   2. The successors of the guard have the same flow into/around the loop.
  /// If the compare instructions are identical, then the first successor of the
  /// guard must go to the same place (either the preheader of the loop or the
  /// NonLoopBlock). In other words, the the first successor of both loops must
  /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
  /// the NonLoopBlock). The same must be true for the second successor.
  bool haveIdenticalGuards(const FusionCandidate &FC0,
                           const FusionCandidate &FC1) const {
    assert(FC0.GuardBranch && FC1.GuardBranch &&
           "Expecting FC0 and FC1 to be guarded loops.");

    if (auto FC0CmpInst =
            dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
      if (auto FC1CmpInst =
              dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
        if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
          return false;

    // The compare instructions are identical.
    // Now make sure the successor of the guards have the same flow into/around
    // the loop
    if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
      return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
    else
      return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
  }

  /// Check that the guard for \p FC *only* contains the cmp/branch for the
  /// guard.
  /// Once we are able to handle intervening code, any code in the guard block
  /// for FC1 will need to be treated as intervening code and checked whether
  /// it can safely move around the loops.
  bool isEmptyGuardBlock(const FusionCandidate &FC) const {
    assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
    if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
      auto *GuardBlock = FC.GuardBranch->getParent();
      // If the generation of the cmp value is in GuardBlock, then the size of
      // the guard block should be 2 (cmp + branch). If the generation of the
      // cmp value is in a different block, then the size of the guard block
      // should only be 1.
      if (CmpInst->getParent() == GuardBlock)
        return GuardBlock->size() == 2;
      else
        return GuardBlock->size() == 1;
    }

    return false;
  }

  bool isEmptyPreheader(const FusionCandidate &FC) const {
    assert(FC.Preheader && "Expecting a valid preheader");
    return FC.Preheader->size() == 1;
  }

  bool isEmptyExitBlock(const FusionCandidate &FC) const {
    assert(FC.ExitBlock && "Expecting a valid exit block");
    return FC.ExitBlock->size() == 1;
  }

  /// Fuse two fusion candidates, creating a new fused loop.
  ///
  /// This method contains the mechanics of fusing two loops, represented by \p
  /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
  /// postdominates \p FC0 (making them control flow equivalent). It also
  /// assumes that the other conditions for fusion have been met: adjacent,
  /// identical trip counts, and no negative distance dependencies exist that
  /// would prevent fusion. Thus, there is no checking for these conditions in
  /// this method.
  ///
  /// Fusion is performed by rewiring the CFG to update successor blocks of the
  /// components of tho loop. Specifically, the following changes are done:
  ///
  ///   1. The preheader of \p FC1 is removed as it is no longer necessary
  ///   (because it is currently only a single statement block).
  ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
  ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
  ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
  ///
  /// All of these modifications are done with dominator tree updates, thus
  /// keeping the dominator (and post dominator) information up-to-date.
  ///
  /// This can be improved in the future by actually merging blocks during
  /// fusion. For example, the preheader of \p FC1 can be merged with the
  /// preheader of \p FC0. This would allow loops with more than a single
  /// statement in the preheader to be fused. Similarly, the latch blocks of the
  /// two loops could also be fused into a single block. This will require
  /// analysis to prove it is safe to move the contents of the block past
  /// existing code, which currently has not been implemented.
  Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
    assert(FC0.isValid() && FC1.isValid() &&
           "Expecting valid fusion candidates");

    LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
               dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););

    // Fusing guarded loops is handled slightly differently than non-guarded
    // loops and has been broken out into a separate method instead of trying to
    // intersperse the logic within a single method.
    if (FC0.GuardBranch)
      return fuseGuardedLoops(FC0, FC1);

    assert(FC1.Preheader == FC0.ExitBlock);
    assert(FC1.Preheader->size() == 1 &&
           FC1.Preheader->getSingleSuccessor() == FC1.Header);

    // Remember the phi nodes originally in the header of FC0 in order to rewire
    // them later. However, this is only necessary if the new loop carried
    // values might not dominate the exiting branch. While we do not generally
    // test if this is the case but simply insert intermediate phi nodes, we
    // need to make sure these intermediate phi nodes have different
    // predecessors. To this end, we filter the special case where the exiting
    // block is the latch block of the first loop. Nothing needs to be done
    // anyway as all loop carried values dominate the latch and thereby also the
    // exiting branch.
    SmallVector<PHINode *, 8> OriginalFC0PHIs;
    if (FC0.ExitingBlock != FC0.Latch)
      for (PHINode &PHI : FC0.Header->phis())
        OriginalFC0PHIs.push_back(&PHI);

    // Replace incoming blocks for header PHIs first.
    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);

    // Then modify the control flow and update DT and PDT.
    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;

    // The old exiting block of the first loop (FC0) has to jump to the header
    // of the second as we need to execute the code in the second header block
    // regardless of the trip count. That is, if the trip count is 0, so the
    // back edge is never taken, we still have to execute both loop headers,
    // especially (but not only!) if the second is a do-while style loop.
    // However, doing so might invalidate the phi nodes of the first loop as
    // the new values do only need to dominate their latch and not the exiting
    // predicate. To remedy this potential problem we always introduce phi
    // nodes in the header of the second loop later that select the loop carried
    // value, if the second header was reached through an old latch of the
    // first, or undef otherwise. This is sound as exiting the first implies the
    // second will exit too, __without__ taking the back-edge. [Their
    // trip-counts are equal after all.
    // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
    // to FC1.Header? I think this is basically what the three sequences are
    // trying to accomplish; however, doing this directly in the CFG may mean
    // the DT/PDT becomes invalid
    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
                                                         FC1.Header);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));

    // The pre-header of L1 is not necessary anymore.
    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
    FC1.Preheader->getTerminator()->eraseFromParent();
    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1.Preheader, FC1.Header));

    // Moves the phi nodes from the second to the first loops header block.
    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
      if (SE.isSCEVable(PHI->getType()))
        SE.forgetValue(PHI);
      if (PHI->hasNUsesOrMore(1))
        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
      else
        PHI->eraseFromParent();
    }

    // Introduce new phi nodes in the second loop header to ensure
    // exiting the first and jumping to the header of the second does not break
    // the SSA property of the phis originally in the first loop. See also the
    // comment above.
    Instruction *L1HeaderIP = &FC1.Header->front();
    for (PHINode *LCPHI : OriginalFC0PHIs) {
      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
      assert(L1LatchBBIdx >= 0 &&
             "Expected loop carried value to be rewired at this point!");

      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);

      PHINode *L1HeaderPHI = PHINode::Create(
          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
                               FC0.ExitingBlock);

      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
    }

    // Replace latch terminator destinations.
    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);

    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
    // performed the updates above.
    if (FC0.Latch != FC0.ExitingBlock)
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.Latch, FC1.Header));

    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC0.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
                                                       FC1.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC1.Latch, FC1.Header));

    // Update DT/PDT
    DTU.applyUpdates(TreeUpdates);

    LI.removeBlock(FC1.Preheader);
    DTU.deleteBB(FC1.Preheader);
    DTU.flush();

    // Is there a way to keep SE up-to-date so we don't need to forget the loops
    // and rebuild the information in subsequent passes of fusion?
    SE.forgetLoop(FC1.L);
    SE.forgetLoop(FC0.L);

    // Merge the loops.
    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
                                        FC1.L->block_end());
    for (BasicBlock *BB : Blocks) {
      FC0.L->addBlockEntry(BB);
      FC1.L->removeBlockFromLoop(BB);
      if (LI.getLoopFor(BB) != FC1.L)
        continue;
      LI.changeLoopFor(BB, FC0.L);
    }
    while (!FC1.L->empty()) {
      const auto &ChildLoopIt = FC1.L->begin();
      Loop *ChildLoop = *ChildLoopIt;
      FC1.L->removeChildLoop(ChildLoopIt);
      FC0.L->addChildLoop(ChildLoop);
    }

    // Delete the now empty loop L1.
    LI.erase(FC1.L);

#ifndef NDEBUG
    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Fusion done:\n");

    return FC0.L;
  }

  /// Report details on loop fusion opportunities.
  ///
  /// This template function can be used to report both successful and missed
  /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
  /// be one of:
  ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
  ///     given two valid fusion candidates.
  ///   - OptimizationRemark to report successful fusion of two fusion
  ///     candidates.
  /// The remarks will be printed using the form:
  ///    <path/filename>:<line number>:<column number>: [<function name>]:
  ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
  template <typename RemarkKind>
  void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
                        llvm::Statistic &Stat) {
    assert(FC0.Preheader && FC1.Preheader &&
           "Expecting valid fusion candidates");
    using namespace ore;
    ++Stat;
    ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
                        FC0.Preheader)
             << "[" << FC0.Preheader->getParent()->getName()
             << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
             << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
             << ": " << Stat.getDesc());
  }

  /// Fuse two guarded fusion candidates, creating a new fused loop.
  ///
  /// Fusing guarded loops is handled much the same way as fusing non-guarded
  /// loops. The rewiring of the CFG is slightly different though, because of
  /// the presence of the guards around the loops and the exit blocks after the
  /// loop body. As such, the new loop is rewired as follows:
  ///    1. Keep the guard branch from FC0 and use the non-loop block target
  /// from the FC1 guard branch.
  ///    2. Remove the exit block from FC0 (this exit block should be empty
  /// right now).
  ///    3. Remove the guard branch for FC1
  ///    4. Remove the preheader for FC1.
  /// The exit block successor for the latch of FC0 is updated to be the header
  /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
  /// be the header of FC0, thus creating the fused loop.
  Loop *fuseGuardedLoops(const FusionCandidate &FC0,
                         const FusionCandidate &FC1) {
    assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");

    BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
    BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
    BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
    BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();

    assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");

    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;

    ////////////////////////////////////////////////////////////////////////////
    // Update the Loop Guard
    ////////////////////////////////////////////////////////////////////////////
    // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
    // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
    // Thus, one path from the guard goes to the preheader for FC0 (and thus
    // executes the new fused loop) and the other path goes to the NonLoopBlock
    // for FC1 (where FC1 guard would have gone if FC1 was not executed).
    FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
    FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
                                                      FC1.Header);

    // The guard of FC1 is not necessary anymore.
    FC1.GuardBranch->eraseFromParent();
    new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);

    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));

    assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
           "Expecting guard block to have no predecessors");
    assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
           "Expecting guard block to have no successors");

    // Remember the phi nodes originally in the header of FC0 in order to rewire
    // them later. However, this is only necessary if the new loop carried
    // values might not dominate the exiting branch. While we do not generally
    // test if this is the case but simply insert intermediate phi nodes, we
    // need to make sure these intermediate phi nodes have different
    // predecessors. To this end, we filter the special case where the exiting
    // block is the latch block of the first loop. Nothing needs to be done
    // anyway as all loop carried values dominate the latch and thereby also the
    // exiting branch.
    // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
    // (because the loops are rotated. Thus, nothing will ever be added to
    // OriginalFC0PHIs.
    SmallVector<PHINode *, 8> OriginalFC0PHIs;
    if (FC0.ExitingBlock != FC0.Latch)
      for (PHINode &PHI : FC0.Header->phis())
        OriginalFC0PHIs.push_back(&PHI);

    assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");

    // Replace incoming blocks for header PHIs first.
    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);

    // The old exiting block of the first loop (FC0) has to jump to the header
    // of the second as we need to execute the code in the second header block
    // regardless of the trip count. That is, if the trip count is 0, so the
    // back edge is never taken, we still have to execute both loop headers,
    // especially (but not only!) if the second is a do-while style loop.
    // However, doing so might invalidate the phi nodes of the first loop as
    // the new values do only need to dominate their latch and not the exiting
    // predicate. To remedy this potential problem we always introduce phi
    // nodes in the header of the second loop later that select the loop carried
    // value, if the second header was reached through an old latch of the
    // first, or undef otherwise. This is sound as exiting the first implies the
    // second will exit too, __without__ taking the back-edge (their
    // trip-counts are equal after all).
    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
                                                         FC1.Header);

    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));

    // Remove FC0 Exit Block
    // The exit block for FC0 is no longer needed since control will flow
    // directly to the header of FC1. Since it is an empty block, it can be
    // removed at this point.
    // TODO: In the future, we can handle non-empty exit blocks my merging any
    // instructions from FC0 exit block into FC1 exit block prior to removing
    // the block.
    assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
           "Expecting exit block to be empty");
    FC0.ExitBlock->getTerminator()->eraseFromParent();
    new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);

    // Remove FC1 Preheader
    // The pre-header of L1 is not necessary anymore.
    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
    FC1.Preheader->getTerminator()->eraseFromParent();
    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
    TreeUpdates.emplace_back(DominatorTree::UpdateType(
        DominatorTree::Delete, FC1.Preheader, FC1.Header));

    // Moves the phi nodes from the second to the first loops header block.
    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
      if (SE.isSCEVable(PHI->getType()))
        SE.forgetValue(PHI);
      if (PHI->hasNUsesOrMore(1))
        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
      else
        PHI->eraseFromParent();
    }

    // Introduce new phi nodes in the second loop header to ensure
    // exiting the first and jumping to the header of the second does not break
    // the SSA property of the phis originally in the first loop. See also the
    // comment above.
    Instruction *L1HeaderIP = &FC1.Header->front();
    for (PHINode *LCPHI : OriginalFC0PHIs) {
      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
      assert(L1LatchBBIdx >= 0 &&
             "Expected loop carried value to be rewired at this point!");

      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);

      PHINode *L1HeaderPHI = PHINode::Create(
          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
                               FC0.ExitingBlock);

      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
    }

    // Update the latches

    // Replace latch terminator destinations.
    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);

    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
    // performed the updates above.
    if (FC0.Latch != FC0.ExitingBlock)
      TreeUpdates.emplace_back(DominatorTree::UpdateType(
          DominatorTree::Insert, FC0.Latch, FC1.Header));

    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC0.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
                                                       FC1.Latch, FC0.Header));
    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
                                                       FC1.Latch, FC1.Header));

    // All done
    // Apply the updates to the Dominator Tree and cleanup.

    assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
           "FC1GuardBlock has successors!!");
    assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
           "FC1GuardBlock has predecessors!!");

    // Update DT/PDT
    DTU.applyUpdates(TreeUpdates);

    LI.removeBlock(FC1.Preheader);
    DTU.deleteBB(FC1.Preheader);
    DTU.deleteBB(FC0.ExitBlock);
    DTU.flush();

    // Is there a way to keep SE up-to-date so we don't need to forget the loops
    // and rebuild the information in subsequent passes of fusion?
    SE.forgetLoop(FC1.L);
    SE.forgetLoop(FC0.L);

    // Merge the loops.
    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
                                        FC1.L->block_end());
    for (BasicBlock *BB : Blocks) {
      FC0.L->addBlockEntry(BB);
      FC1.L->removeBlockFromLoop(BB);
      if (LI.getLoopFor(BB) != FC1.L)
        continue;
      LI.changeLoopFor(BB, FC0.L);
    }
    while (!FC1.L->empty()) {
      const auto &ChildLoopIt = FC1.L->begin();
      Loop *ChildLoop = *ChildLoopIt;
      FC1.L->removeChildLoop(ChildLoopIt);
      FC0.L->addChildLoop(ChildLoop);
    }

    // Delete the now empty loop L1.
    LI.erase(FC1.L);

#ifndef NDEBUG
    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    assert(PDT.verify());
    LI.verify(DT);
    SE.verify();
#endif

    LLVM_DEBUG(dbgs() << "Fusion done:\n");

    return FC0.L;
  }
};

struct LoopFuseLegacy : public FunctionPass {

  static char ID;

  LoopFuseLegacy() : FunctionPass(ID) {
    initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(LoopSimplifyID);
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<DependenceAnalysisWrapperPass>();

    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<PostDominatorTreeWrapperPass>();
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    const DataLayout &DL = F.getParent()->getDataLayout();
    LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
    return LF.fuseLoops(F);
  }
};
} // namespace

PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
  auto &LI = AM.getResult<LoopAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &DI = AM.getResult<DependenceAnalysis>(F);
  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  const DataLayout &DL = F.getParent()->getDataLayout();
  LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
  bool Changed = LF.fuseLoops(F);
  if (!Changed)
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  PA.preserve<ScalarEvolutionAnalysis>();
  PA.preserve<LoopAnalysis>();
  return PA;
}

char LoopFuseLegacy::ID = 0;

INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)

FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }