reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block.  This pass may be "required" by passes that
// cannot deal with critical edges.  For this usage, the structure type is
// forward declared.  This pass obviously invalidates the CFG, but can update
// dominator trees.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;

#define DEBUG_TYPE "break-crit-edges"

STATISTIC(NumBroken, "Number of blocks inserted");

namespace {
  struct BreakCriticalEdges : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    BreakCriticalEdges() : FunctionPass(ID) {
      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override {
      auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
      auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;

      auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
      auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;

      auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
      auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
      unsigned N =
          SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
      NumBroken += N;
      return N > 0;
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<LoopInfoWrapperPass>();

      // No loop canonicalization guarantees are broken by this pass.
      AU.addPreservedID(LoopSimplifyID);
    }
  };
}

char BreakCriticalEdges::ID = 0;
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
                "Break critical edges in CFG", false, false)

// Publicly exposed interface to pass...
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
FunctionPass *llvm::createBreakCriticalEdgesPass() {
  return new BreakCriticalEdges();
}

PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
                                              FunctionAnalysisManager &AM) {
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
  unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
  NumBroken += N;
  if (N == 0)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LoopAnalysis>();
  return PA;
}

//===----------------------------------------------------------------------===//
//    Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//

/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
/// exit block. This function inserts the new PHIs, as needed. Preds is a list
/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
/// the old loop exit, now the successor of SplitBB.
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
                                       BasicBlock *SplitBB,
                                       BasicBlock *DestBB) {
  // SplitBB shouldn't have anything non-trivial in it yet.
  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");

  // For each PHI in the destination block.
  for (PHINode &PN : DestBB->phis()) {
    unsigned Idx = PN.getBasicBlockIndex(SplitBB);
    Value *V = PN.getIncomingValue(Idx);

    // If the input is a PHI which already satisfies LCSSA, don't create
    // a new one.
    if (const PHINode *VP = dyn_cast<PHINode>(V))
      if (VP->getParent() == SplitBB)
        continue;

    // Otherwise a new PHI is needed. Create one and populate it.
    PHINode *NewPN = PHINode::Create(
        PN.getType(), Preds.size(), "split",
        SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
      NewPN->addIncoming(V, Preds[i]);

    // Update the original PHI.
    PN.setIncomingValue(Idx, NewPN);
  }
}

BasicBlock *
llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
                        const CriticalEdgeSplittingOptions &Options) {
  if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
    return nullptr;

  assert(!isa<IndirectBrInst>(TI) &&
         "Cannot split critical edge from IndirectBrInst");

  BasicBlock *TIBB = TI->getParent();
  BasicBlock *DestBB = TI->getSuccessor(SuccNum);

  // Splitting the critical edge to a pad block is non-trivial. Don't do
  // it in this generic function.
  if (DestBB->isEHPad()) return nullptr;

  // Don't split the non-fallthrough edge from a callbr.
  if (isa<CallBrInst>(TI) && SuccNum > 0)
    return nullptr;

  if (Options.IgnoreUnreachableDests &&
      isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
    return nullptr;

  // Create a new basic block, linking it into the CFG.
  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
  // Create our unconditional branch.
  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
  NewBI->setDebugLoc(TI->getDebugLoc());

  // Branch to the new block, breaking the edge.
  TI->setSuccessor(SuccNum, NewBB);

  // Insert the block into the function... right after the block TI lives in.
  Function &F = *TIBB->getParent();
  Function::iterator FBBI = TIBB->getIterator();
  F.getBasicBlockList().insert(++FBBI, NewBB);

  // If there are any PHI nodes in DestBB, we need to update them so that they
  // merge incoming values from NewBB instead of from TIBB.
  {
    unsigned BBIdx = 0;
    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
      // We no longer enter through TIBB, now we come in through NewBB.
      // Revector exactly one entry in the PHI node that used to come from
      // TIBB to come from NewBB.
      PHINode *PN = cast<PHINode>(I);

      // Reuse the previous value of BBIdx if it lines up.  In cases where we
      // have multiple phi nodes with *lots* of predecessors, this is a speed
      // win because we don't have to scan the PHI looking for TIBB.  This
      // happens because the BB list of PHI nodes are usually in the same
      // order.
      if (PN->getIncomingBlock(BBIdx) != TIBB)
        BBIdx = PN->getBasicBlockIndex(TIBB);
      PN->setIncomingBlock(BBIdx, NewBB);
    }
  }

  // If there are any other edges from TIBB to DestBB, update those to go
  // through the split block, making those edges non-critical as well (and
  // reducing the number of phi entries in the DestBB if relevant).
  if (Options.MergeIdenticalEdges) {
    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
      if (TI->getSuccessor(i) != DestBB) continue;

      // Remove an entry for TIBB from DestBB phi nodes.
      DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);

      // We found another edge to DestBB, go to NewBB instead.
      TI->setSuccessor(i, NewBB);
    }
  }

  // If we have nothing to update, just return.
  auto *DT = Options.DT;
  auto *PDT = Options.PDT;
  auto *LI = Options.LI;
  auto *MSSAU = Options.MSSAU;
  if (MSSAU)
    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
        DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);

  if (!DT && !PDT && !LI)
    return NewBB;

  if (DT || PDT) {
    // Update the DominatorTree.
    //       ---> NewBB -----\
    //      /                 V
    //  TIBB -------\\------> DestBB
    //
    // First, inform the DT about the new path from TIBB to DestBB via NewBB,
    // then delete the old edge from TIBB to DestBB. By doing this in that order
    // DestBB stays reachable in the DT the whole time and its subtree doesn't
    // get disconnected.
    SmallVector<DominatorTree::UpdateType, 3> Updates;
    Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
    Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
    if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
      Updates.push_back({DominatorTree::Delete, TIBB, DestBB});

    if (DT)
      DT->applyUpdates(Updates);
    if (PDT)
      PDT->applyUpdates(Updates);
  }

  // Update LoopInfo if it is around.
  if (LI) {
    if (Loop *TIL = LI->getLoopFor(TIBB)) {
      // If one or the other blocks were not in a loop, the new block is not
      // either, and thus LI doesn't need to be updated.
      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NewBB joins loop.
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
        } else if (TIL->contains(DestLoop)) {
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
          TIL->addBasicBlockToLoop(NewBB, *LI);
        } else if (DestLoop->contains(TIL)) {
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == DestBB &&
                 "Should not create irreducible loops!");
          if (Loop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NewBB, *LI);
        }
      }

      // If TIBB is in a loop and DestBB is outside of that loop, we may need
      // to update LoopSimplify form and LCSSA form.
      if (!TIL->contains(DestBB)) {
        assert(!TIL->contains(NewBB) &&
               "Split point for loop exit is contained in loop!");

        // Update LCSSA form in the newly created exit block.
        if (Options.PreserveLCSSA) {
          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
        }

        // The only that we can break LoopSimplify form by splitting a critical
        // edge is if after the split there exists some edge from TIL to DestBB
        // *and* the only edge into DestBB from outside of TIL is that of
        // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
        // is the new exit block and it has no non-loop predecessors. If the
        // second isn't true, then DestBB was not in LoopSimplify form prior to
        // the split as it had a non-loop predecessor. In both of these cases,
        // the predecessor must be directly in TIL, not in a subloop, or again
        // LoopSimplify doesn't hold.
        SmallVector<BasicBlock *, 4> LoopPreds;
        for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
             ++I) {
          BasicBlock *P = *I;
          if (P == NewBB)
            continue; // The new block is known.
          if (LI->getLoopFor(P) != TIL) {
            // No need to re-simplify, it wasn't to start with.
            LoopPreds.clear();
            break;
          }
          LoopPreds.push_back(P);
        }
        if (!LoopPreds.empty()) {
          assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
          BasicBlock *NewExitBB = SplitBlockPredecessors(
              DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
          if (Options.PreserveLCSSA)
            createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
        }
      }
    }
  }

  return NewBB;
}

// Return the unique indirectbr predecessor of a block. This may return null
// even if such a predecessor exists, if it's not useful for splitting.
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
// predecessors of BB.
static BasicBlock *
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
  // If the block doesn't have any PHIs, we don't care about it, since there's
  // no point in splitting it.
  PHINode *PN = dyn_cast<PHINode>(BB->begin());
  if (!PN)
    return nullptr;

  // Verify we have exactly one IBR predecessor.
  // Conservatively bail out if one of the other predecessors is not a "regular"
  // terminator (that is, not a switch or a br).
  BasicBlock *IBB = nullptr;
  for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
    BasicBlock *PredBB = PN->getIncomingBlock(Pred);
    Instruction *PredTerm = PredBB->getTerminator();
    switch (PredTerm->getOpcode()) {
    case Instruction::IndirectBr:
      if (IBB)
        return nullptr;
      IBB = PredBB;
      break;
    case Instruction::Br:
    case Instruction::Switch:
      OtherPreds.push_back(PredBB);
      continue;
    default:
      return nullptr;
    }
  }

  return IBB;
}

bool llvm::SplitIndirectBrCriticalEdges(Function &F,
                                        BranchProbabilityInfo *BPI,
                                        BlockFrequencyInfo *BFI) {
  // Check whether the function has any indirectbrs, and collect which blocks
  // they may jump to. Since most functions don't have indirect branches,
  // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
  SmallSetVector<BasicBlock *, 16> Targets;
  for (auto &BB : F) {
    auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
    if (!IBI)
      continue;

    for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
      Targets.insert(IBI->getSuccessor(Succ));
  }

  if (Targets.empty())
    return false;

  bool ShouldUpdateAnalysis = BPI && BFI;
  bool Changed = false;
  for (BasicBlock *Target : Targets) {
    SmallVector<BasicBlock *, 16> OtherPreds;
    BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
    // If we did not found an indirectbr, or the indirectbr is the only
    // incoming edge, this isn't the kind of edge we're looking for.
    if (!IBRPred || OtherPreds.empty())
      continue;

    // Don't even think about ehpads/landingpads.
    Instruction *FirstNonPHI = Target->getFirstNonPHI();
    if (FirstNonPHI->isEHPad() || Target->isLandingPad())
      continue;

    BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
    if (ShouldUpdateAnalysis) {
      // Copy the BFI/BPI from Target to BodyBlock.
      for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
           I < E; ++I)
        BPI->setEdgeProbability(BodyBlock, I,
                                BPI->getEdgeProbability(Target, I));
      BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
    }
    // It's possible Target was its own successor through an indirectbr.
    // In this case, the indirectbr now comes from BodyBlock.
    if (IBRPred == Target)
      IBRPred = BodyBlock;

    // At this point Target only has PHIs, and BodyBlock has the rest of the
    // block's body. Create a copy of Target that will be used by the "direct"
    // preds.
    ValueToValueMapTy VMap;
    BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);

    BlockFrequency BlockFreqForDirectSucc;
    for (BasicBlock *Pred : OtherPreds) {
      // If the target is a loop to itself, then the terminator of the split
      // block (BodyBlock) needs to be updated.
      BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
      Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
      if (ShouldUpdateAnalysis)
        BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
            BPI->getEdgeProbability(Src, DirectSucc);
    }
    if (ShouldUpdateAnalysis) {
      BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
      BlockFrequency NewBlockFreqForTarget =
          BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
      BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
      BPI->eraseBlock(Target);
    }

    // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
    // they are clones, so the number of PHIs are the same.
    // (a) Remove the edge coming from IBRPred from the "Direct" PHI
    // (b) Leave that as the only edge in the "Indirect" PHI.
    // (c) Merge the two in the body block.
    BasicBlock::iterator Indirect = Target->begin(),
                         End = Target->getFirstNonPHI()->getIterator();
    BasicBlock::iterator Direct = DirectSucc->begin();
    BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();

    assert(&*End == Target->getTerminator() &&
           "Block was expected to only contain PHIs");

    while (Indirect != End) {
      PHINode *DirPHI = cast<PHINode>(Direct);
      PHINode *IndPHI = cast<PHINode>(Indirect);

      // Now, clean up - the direct block shouldn't get the indirect value,
      // and vice versa.
      DirPHI->removeIncomingValue(IBRPred);
      Direct++;

      // Advance the pointer here, to avoid invalidation issues when the old
      // PHI is erased.
      Indirect++;

      PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
      NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
                             IBRPred);

      // Create a PHI in the body block, to merge the direct and indirect
      // predecessors.
      PHINode *MergePHI =
          PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
      MergePHI->addIncoming(NewIndPHI, Target);
      MergePHI->addIncoming(DirPHI, DirectSucc);

      IndPHI->replaceAllUsesWith(MergePHI);
      IndPHI->eraseFromParent();
    }

    Changed = true;
  }

  return Changed;
}