reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
//===-- hwasan_allocator.cpp ------------------------ ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// HWAddressSanitizer allocator.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_checks.h"
#include "hwasan_mapping.h"
#include "hwasan_malloc_bisect.h"
#include "hwasan_thread.h"
#include "hwasan_report.h"

namespace __hwasan {

static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
static atomic_uint8_t hwasan_allocator_tagging_enabled;

static const tag_t kFallbackAllocTag = 0xBB;
static const tag_t kFallbackFreeTag = 0xBC;

enum RightAlignMode {
  kRightAlignNever,
  kRightAlignSometimes,
  kRightAlignAlways
};

// Initialized in HwasanAllocatorInit, an never changed.
static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];

bool HwasanChunkView::IsAllocated() const {
  return metadata_ && metadata_->alloc_context_id && metadata_->requested_size;
}

// Aligns the 'addr' right to the granule boundary.
static uptr AlignRight(uptr addr, uptr requested_size) {
  uptr tail_size = requested_size % kShadowAlignment;
  if (!tail_size) return addr;
  return addr + kShadowAlignment - tail_size;
}

uptr HwasanChunkView::Beg() const {
  if (metadata_ && metadata_->right_aligned)
    return AlignRight(block_, metadata_->requested_size);
  return block_;
}
uptr HwasanChunkView::End() const {
  return Beg() + UsedSize();
}
uptr HwasanChunkView::UsedSize() const {
  return metadata_->requested_size;
}
u32 HwasanChunkView::GetAllocStackId() const {
  return metadata_->alloc_context_id;
}

uptr HwasanChunkView::ActualSize() const {
  return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
}

bool HwasanChunkView::FromSmallHeap() const {
  return allocator.FromPrimary(reinterpret_cast<void *>(block_));
}

void GetAllocatorStats(AllocatorStatCounters s) {
  allocator.GetStats(s);
}

void HwasanAllocatorInit() {
  atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
                       !flags()->disable_allocator_tagging);
  SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
  allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
  for (uptr i = 0; i < sizeof(tail_magic); i++)
    tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
}

void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
  allocator.SwallowCache(cache);
}

static uptr TaggedSize(uptr size) {
  if (!size) size = 1;
  uptr new_size = RoundUpTo(size, kShadowAlignment);
  CHECK_GE(new_size, size);
  return new_size;
}

static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
                            bool zeroise) {
  if (orig_size > kMaxAllowedMallocSize) {
    if (AllocatorMayReturnNull()) {
      Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
             orig_size);
      return nullptr;
    }
    ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
  }

  alignment = Max(alignment, kShadowAlignment);
  uptr size = TaggedSize(orig_size);
  Thread *t = GetCurrentThread();
  void *allocated;
  if (t) {
    allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocated = allocator.Allocate(cache, size, alignment);
  }
  if (UNLIKELY(!allocated)) {
    SetAllocatorOutOfMemory();
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportOutOfMemory(size, stack);
  }
  Metadata *meta =
      reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
  meta->requested_size = static_cast<u32>(orig_size);
  meta->alloc_context_id = StackDepotPut(*stack);
  meta->right_aligned = false;
  if (zeroise) {
    internal_memset(allocated, 0, size);
  } else if (flags()->max_malloc_fill_size > 0) {
    uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
    internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
  }
  if (size != orig_size) {
    internal_memcpy(reinterpret_cast<u8 *>(allocated) + orig_size, tail_magic,
                    size - orig_size - 1);
  }

  void *user_ptr = allocated;
  // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
  // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
  // retag to 0.
  if ((flags()->tag_in_malloc || flags()->tag_in_free) &&
      atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
    if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
      tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
      uptr tag_size = orig_size ? orig_size : 1;
      uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
      user_ptr =
          (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
      if (full_granule_size != tag_size) {
        u8 *short_granule =
            reinterpret_cast<u8 *>(allocated) + full_granule_size;
        TagMemoryAligned((uptr)short_granule, kShadowAlignment,
                         tag_size % kShadowAlignment);
        short_granule[kShadowAlignment - 1] = tag;
      }
    } else {
      user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
    }
  }

  HWASAN_MALLOC_HOOK(user_ptr, size);
  return user_ptr;
}

static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
  CHECK(tagged_ptr);
  uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
  tag_t mem_tag = *reinterpret_cast<tag_t *>(
      MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
  return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
}

static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
  CHECK(tagged_ptr);
  HWASAN_FREE_HOOK(tagged_ptr);

  if (!PointerAndMemoryTagsMatch(tagged_ptr))
    ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));

  void *untagged_ptr = UntagPtr(tagged_ptr);
  void *aligned_ptr = reinterpret_cast<void *>(
      RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
  Metadata *meta =
      reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
  uptr orig_size = meta->requested_size;
  u32 free_context_id = StackDepotPut(*stack);
  u32 alloc_context_id = meta->alloc_context_id;

  // Check tail magic.
  uptr tagged_size = TaggedSize(orig_size);
  if (flags()->free_checks_tail_magic && orig_size &&
      tagged_size != orig_size) {
    uptr tail_size = tagged_size - orig_size - 1;
    CHECK_LT(tail_size, kShadowAlignment);
    void *tail_beg = reinterpret_cast<void *>(
        reinterpret_cast<uptr>(aligned_ptr) + orig_size);
    if (tail_size && internal_memcmp(tail_beg, tail_magic, tail_size))
      ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
                            orig_size, tail_magic);
  }

  meta->requested_size = 0;
  meta->alloc_context_id = 0;
  // This memory will not be reused by anyone else, so we are free to keep it
  // poisoned.
  Thread *t = GetCurrentThread();
  if (flags()->max_free_fill_size > 0) {
    uptr fill_size =
        Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
    internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
  }
  if (flags()->tag_in_free && malloc_bisect(stack, 0) &&
      atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
    TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
                     t ? t->GenerateRandomTag() : kFallbackFreeTag);
  if (t) {
    allocator.Deallocate(t->allocator_cache(), aligned_ptr);
    if (auto *ha = t->heap_allocations())
      ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
                free_context_id, static_cast<u32>(orig_size)});
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocator.Deallocate(cache, aligned_ptr);
  }
}

static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
                              uptr new_size, uptr alignment) {
  if (!PointerAndMemoryTagsMatch(tagged_ptr_old))
    ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr_old));

  void *tagged_ptr_new =
      HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
  if (tagged_ptr_old && tagged_ptr_new) {
    void *untagged_ptr_old =  UntagPtr(tagged_ptr_old);
    Metadata *meta =
        reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
    internal_memcpy(UntagPtr(tagged_ptr_new), untagged_ptr_old,
                    Min(new_size, static_cast<uptr>(meta->requested_size)));
    HwasanDeallocate(stack, tagged_ptr_old);
  }
  return tagged_ptr_new;
}

static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportCallocOverflow(nmemb, size, stack);
  }
  return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
}

HwasanChunkView FindHeapChunkByAddress(uptr address) {
  void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
  if (!block)
    return HwasanChunkView();
  Metadata *metadata =
      reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
  return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
}

static uptr AllocationSize(const void *tagged_ptr) {
  const void *untagged_ptr = UntagPtr(tagged_ptr);
  if (!untagged_ptr) return 0;
  const void *beg = allocator.GetBlockBegin(untagged_ptr);
  Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
  if (b->right_aligned) {
    if (beg != reinterpret_cast<void *>(RoundDownTo(
                   reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
      return 0;
  } else {
    if (beg != untagged_ptr) return 0;
  }
  return b->requested_size;
}

void *hwasan_malloc(uptr size, StackTrace *stack) {
  return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
}

void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
  return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
}

void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
  if (!ptr)
    return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
  if (size == 0) {
    HwasanDeallocate(stack, ptr);
    return nullptr;
  }
  return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
}

void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
  if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportReallocArrayOverflow(nmemb, size, stack);
  }
  return hwasan_realloc(ptr, nmemb * size, stack);
}

void *hwasan_valloc(uptr size, StackTrace *stack) {
  return SetErrnoOnNull(
      HwasanAllocate(stack, size, GetPageSizeCached(), false));
}

void *hwasan_pvalloc(uptr size, StackTrace *stack) {
  uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportPvallocOverflow(size, stack);
  }
  // pvalloc(0) should allocate one page.
  size = size ? RoundUpTo(size, PageSize) : PageSize;
  return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
}

void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportInvalidAlignedAllocAlignment(size, alignment, stack);
  }
  return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}

void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
  if (UNLIKELY(!IsPowerOfTwo(alignment))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    ReportInvalidAllocationAlignment(alignment, stack);
  }
  return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}

int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
                        StackTrace *stack) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
    if (AllocatorMayReturnNull())
      return errno_EINVAL;
    ReportInvalidPosixMemalignAlignment(alignment, stack);
  }
  void *ptr = HwasanAllocate(stack, size, alignment, false);
  if (UNLIKELY(!ptr))
    // OOM error is already taken care of by HwasanAllocate.
    return errno_ENOMEM;
  CHECK(IsAligned((uptr)ptr, alignment));
  *memptr = ptr;
  return 0;
}

void hwasan_free(void *ptr, StackTrace *stack) {
  return HwasanDeallocate(stack, ptr);
}

}  // namespace __hwasan

using namespace __hwasan;

void __hwasan_enable_allocator_tagging() {
  atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
}

void __hwasan_disable_allocator_tagging() {
  atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
}

uptr __sanitizer_get_current_allocated_bytes() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatAllocated];
}

uptr __sanitizer_get_heap_size() {
  uptr stats[AllocatorStatCount];
  allocator.GetStats(stats);
  return stats[AllocatorStatMapped];
}

uptr __sanitizer_get_free_bytes() { return 1; }

uptr __sanitizer_get_unmapped_bytes() { return 1; }

uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }

int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }

uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }