reference, declarationdefinition
definition → references, declarations, derived classes, virtual overrides
reference to multiple definitions → definitions
unreferenced
    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
/// FreeBSD-specific code.
///
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD

#include "hwasan.h"
#include "hwasan_dynamic_shadow.h"
#include "hwasan_interface_internal.h"
#include "hwasan_mapping.h"
#include "hwasan_report.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"

#include <dlfcn.h>
#include <elf.h>
#include <link.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <unwind.h>
#include <sys/prctl.h>
#include <errno.h>

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_procmaps.h"

// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
//
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
//   Not currently tested.
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
//   Integration tests downstream exist.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
//    Tested with check-hwasan on x86_64-linux.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
//    Tested with check-hwasan on aarch64-linux-android.
#if !SANITIZER_ANDROID
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL uptr __hwasan_tls;
#endif

namespace __hwasan {

static void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name) {
  CHECK_EQ((beg % GetMmapGranularity()), 0);
  CHECK_EQ(((end + 1) % GetMmapGranularity()), 0);
  uptr size = end - beg + 1;
  DecreaseTotalMmap(size);  // Don't count the shadow against mmap_limit_mb.
  if (!MmapFixedNoReserve(beg, size, name)) {
    Report(
        "ReserveShadowMemoryRange failed while trying to map 0x%zx bytes. "
        "Perhaps you're using ulimit -v\n",
        size);
    Abort();
  }
}

static void ProtectGap(uptr addr, uptr size) {
  if (!size)
    return;
  void *res = MmapFixedNoAccess(addr, size, "shadow gap");
  if (addr == (uptr)res)
    return;
  // A few pages at the start of the address space can not be protected.
  // But we really want to protect as much as possible, to prevent this memory
  // being returned as a result of a non-FIXED mmap().
  if (addr == 0) {
    uptr step = GetMmapGranularity();
    while (size > step) {
      addr += step;
      size -= step;
      void *res = MmapFixedNoAccess(addr, size, "shadow gap");
      if (addr == (uptr)res)
        return;
    }
  }

  Report(
      "ERROR: Failed to protect shadow gap [%p, %p]. "
      "HWASan cannot proceed correctly. ABORTING.\n", (void *)addr,
      (void *)(addr + size));
  DumpProcessMap();
  Die();
}

static uptr kLowMemStart;
static uptr kLowMemEnd;
static uptr kLowShadowEnd;
static uptr kLowShadowStart;
static uptr kHighShadowStart;
static uptr kHighShadowEnd;
static uptr kHighMemStart;
static uptr kHighMemEnd;

static void PrintRange(uptr start, uptr end, const char *name) {
  Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
}

static void PrintAddressSpaceLayout() {
  PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
  if (kHighShadowEnd + 1 < kHighMemStart)
    PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
  else
    CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
  PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
  if (kLowShadowEnd + 1 < kHighShadowStart)
    PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
  else
    CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
  PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
  if (kLowMemEnd + 1 < kLowShadowStart)
    PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
  else
    CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
  PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
  CHECK_EQ(0, kLowMemStart);
}

static uptr GetHighMemEnd() {
  // HighMem covers the upper part of the address space.
  uptr max_address = GetMaxUserVirtualAddress();
  // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
  // properly aligned:
  max_address |= (GetMmapGranularity() << kShadowScale) - 1;
  return max_address;
}

static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
  __hwasan_shadow_memory_dynamic_address =
      FindDynamicShadowStart(shadow_size_bytes);
}

void InitPrctl() {
#define PR_SET_TAGGED_ADDR_CTRL 55
#define PR_GET_TAGGED_ADDR_CTRL 56
#define PR_TAGGED_ADDR_ENABLE (1UL << 0)
  // Check we're running on a kernel that can use the tagged address ABI.
  if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) == (uptr)-1 &&
      errno == EINVAL) {
#if SANITIZER_ANDROID
    // Some older Android kernels have the tagged pointer ABI on
    // unconditionally, and hence don't have the tagged-addr prctl while still
    // allow the ABI.
    // If targeting Android and the prctl is not around we assume this is the
    // case.
    return;
#else
    Printf(
        "FATAL: "
        "HWAddressSanitizer requires a kernel with tagged address ABI.\n");
    Die();
#endif
  }

  // Turn on the tagged address ABI.
  if (internal_prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0) ==
          (uptr)-1 ||
      !internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)) {
    Printf(
        "FATAL: HWAddressSanitizer failed to enable tagged address syscall "
        "ABI.\nSuggest check `sysctl abi.tagged_addr_disabled` "
        "configuration.\n");
    Die();
  }
#undef PR_SET_TAGGED_ADDR_CTRL
#undef PR_GET_TAGGED_ADDR_CTRL
#undef PR_TAGGED_ADDR_ENABLE
}

bool InitShadow() {
  // Define the entire memory range.
  kHighMemEnd = GetHighMemEnd();

  // Determine shadow memory base offset.
  InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));

  // Place the low memory first.
  kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
  kLowMemStart = 0;

  // Define the low shadow based on the already placed low memory.
  kLowShadowEnd = MemToShadow(kLowMemEnd);
  kLowShadowStart = __hwasan_shadow_memory_dynamic_address;

  // High shadow takes whatever memory is left up there (making sure it is not
  // interfering with low memory in the fixed case).
  kHighShadowEnd = MemToShadow(kHighMemEnd);
  kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;

  // High memory starts where allocated shadow allows.
  kHighMemStart = ShadowToMem(kHighShadowStart);

  // Check the sanity of the defined memory ranges (there might be gaps).
  CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
  CHECK_GT(kHighMemStart, kHighShadowEnd);
  CHECK_GT(kHighShadowEnd, kHighShadowStart);
  CHECK_GT(kHighShadowStart, kLowMemEnd);
  CHECK_GT(kLowMemEnd, kLowMemStart);
  CHECK_GT(kLowShadowEnd, kLowShadowStart);
  CHECK_GT(kLowShadowStart, kLowMemEnd);

  if (Verbosity())
    PrintAddressSpaceLayout();

  // Reserve shadow memory.
  ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
  ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");

  // Protect all the gaps.
  ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
  if (kLowMemEnd + 1 < kLowShadowStart)
    ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
  if (kLowShadowEnd + 1 < kHighShadowStart)
    ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
  if (kHighShadowEnd + 1 < kHighMemStart)
    ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);

  return true;
}

void InitThreads() {
  CHECK(__hwasan_shadow_memory_dynamic_address);
  uptr guard_page_size = GetMmapGranularity();
  uptr thread_space_start =
      __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
  uptr thread_space_end =
      __hwasan_shadow_memory_dynamic_address - guard_page_size;
  ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
                           "hwasan threads");
  ProtectGap(thread_space_end,
             __hwasan_shadow_memory_dynamic_address - thread_space_end);
  InitThreadList(thread_space_start, thread_space_end - thread_space_start);
}

static void MadviseShadowRegion(uptr beg, uptr end) {
  uptr size = end - beg + 1;
  SetShadowRegionHugePageMode(beg, size);
  if (common_flags()->use_madv_dontdump)
    DontDumpShadowMemory(beg, size);
}

void MadviseShadow() {
  MadviseShadowRegion(kLowShadowStart, kLowShadowEnd);
  MadviseShadowRegion(kHighShadowStart, kHighShadowEnd);
}

bool MemIsApp(uptr p) {
  CHECK(GetTagFromPointer(p) == 0);
  return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd);
}

static void HwasanAtExit(void) {
  if (common_flags()->print_module_map)
    DumpProcessMap();
  if (flags()->print_stats && (flags()->atexit || hwasan_report_count > 0))
    ReportStats();
  if (hwasan_report_count > 0) {
    // ReportAtExitStatistics();
    if (common_flags()->exitcode)
      internal__exit(common_flags()->exitcode);
  }
}

void InstallAtExitHandler() {
  atexit(HwasanAtExit);
}

// ---------------------- TSD ---------------- {{{1

extern "C" void __hwasan_thread_enter() {
  hwasanThreadList().CreateCurrentThread()->InitRandomState();
}

extern "C" void __hwasan_thread_exit() {
  Thread *t = GetCurrentThread();
  // Make sure that signal handler can not see a stale current thread pointer.
  atomic_signal_fence(memory_order_seq_cst);
  if (t)
    hwasanThreadList().ReleaseThread(t);
}

#if HWASAN_WITH_INTERCEPTORS
static pthread_key_t tsd_key;
static bool tsd_key_inited = false;

void HwasanTSDThreadInit() {
  if (tsd_key_inited)
    CHECK_EQ(0, pthread_setspecific(tsd_key,
                                    (void *)GetPthreadDestructorIterations()));
}

void HwasanTSDDtor(void *tsd) {
  uptr iterations = (uptr)tsd;
  if (iterations > 1) {
    CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
    return;
  }
  __hwasan_thread_exit();
}

void HwasanTSDInit() {
  CHECK(!tsd_key_inited);
  tsd_key_inited = true;
  CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
}
#else
void HwasanTSDInit() {}
void HwasanTSDThreadInit() {}
#endif

#if SANITIZER_ANDROID
uptr *GetCurrentThreadLongPtr() {
  return (uptr *)get_android_tls_ptr();
}
#else
uptr *GetCurrentThreadLongPtr() {
  return &__hwasan_tls;
}
#endif

#if SANITIZER_ANDROID
void AndroidTestTlsSlot() {
  uptr kMagicValue = 0x010203040A0B0C0D;
  uptr *tls_ptr = GetCurrentThreadLongPtr();
  uptr old_value = *tls_ptr;
  *tls_ptr = kMagicValue;
  dlerror();
  if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
    Printf(
        "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
        "for dlerror().\n");
    Die();
  }
  *tls_ptr = old_value;
}
#else
void AndroidTestTlsSlot() {}
#endif

Thread *GetCurrentThread() {
  uptr *ThreadLong = GetCurrentThreadLongPtr();
#if HWASAN_WITH_INTERCEPTORS
  if (!*ThreadLong)
    __hwasan_thread_enter();
#endif
  auto *R = (StackAllocationsRingBuffer *)ThreadLong;
  return hwasanThreadList().GetThreadByBufferAddress((uptr)(R->Next()));
}

struct AccessInfo {
  uptr addr;
  uptr size;
  bool is_store;
  bool is_load;
  bool recover;
};

static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
  // Access type is passed in a platform dependent way (see below) and encoded
  // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
  // recoverable. Valid values of Y are 0 to 4, which are interpreted as
  // log2(access_size), and 0xF, which means that access size is passed via
  // platform dependent register (see below).
#if defined(__aarch64__)
  // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
  // access size is stored in X1 register. Access address is always in X0
  // register.
  uptr pc = (uptr)info->si_addr;
  const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
  if ((code & 0xff00) != 0x900)
    return AccessInfo{}; // Not ours.

  const bool is_store = code & 0x10;
  const bool recover = code & 0x20;
  const uptr addr = uc->uc_mcontext.regs[0];
  const unsigned size_log = code & 0xf;
  if (size_log > 4 && size_log != 0xf)
    return AccessInfo{}; // Not ours.
  const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;

#elif defined(__x86_64__)
  // Access type is encoded in the instruction following INT3 as
  // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
  // RSI register. Access address is always in RDI register.
  uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
  uint8_t *nop = (uint8_t*)pc;
  if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40  ||
      *(nop + 3) < 0x40)
    return AccessInfo{}; // Not ours.
  const unsigned code = *(nop + 3);

  const bool is_store = code & 0x10;
  const bool recover = code & 0x20;
  const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
  const unsigned size_log = code & 0xf;
  if (size_log > 4 && size_log != 0xf)
    return AccessInfo{}; // Not ours.
  const uptr size =
      size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;

#else
# error Unsupported architecture
#endif

  return AccessInfo{addr, size, is_store, !is_store, recover};
}

static void HandleTagMismatch(AccessInfo ai, uptr pc, uptr frame,
                              ucontext_t *uc, uptr *registers_frame = nullptr) {
  InternalMmapVector<BufferedStackTrace> stack_buffer(1);
  BufferedStackTrace *stack = stack_buffer.data();
  stack->Reset();
  stack->Unwind(pc, frame, uc, common_flags()->fast_unwind_on_fatal);

  // The second stack frame contains the failure __hwasan_check function, as
  // we have a stack frame for the registers saved in __hwasan_tag_mismatch that
  // we wish to ignore. This (currently) only occurs on AArch64, as x64
  // implementations use SIGTRAP to implement the failure, and thus do not go
  // through the stack saver.
  if (registers_frame && stack->trace && stack->size > 0) {
    stack->trace++;
    stack->size--;
  }

  bool fatal = flags()->halt_on_error || !ai.recover;
  ReportTagMismatch(stack, ai.addr, ai.size, ai.is_store, fatal,
                    registers_frame);
}

static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
  AccessInfo ai = GetAccessInfo(info, uc);
  if (!ai.is_store && !ai.is_load)
    return false;

  SignalContext sig{info, uc};
  HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);

#if defined(__aarch64__)
  uc->uc_mcontext.pc += 4;
#elif defined(__x86_64__)
#else
# error Unsupported architecture
#endif
  return true;
}

static void OnStackUnwind(const SignalContext &sig, const void *,
                          BufferedStackTrace *stack) {
  stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
                common_flags()->fast_unwind_on_fatal);
}

void HwasanOnDeadlySignal(int signo, void *info, void *context) {
  // Probably a tag mismatch.
  if (signo == SIGTRAP)
    if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context))
      return;

  HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
}


} // namespace __hwasan

// Entry point for interoperability between __hwasan_tag_mismatch (ASM) and the
// rest of the mismatch handling code (C++).
void __hwasan_tag_mismatch4(uptr addr, uptr access_info, uptr *registers_frame,
                            size_t outsize) {
  __hwasan::AccessInfo ai;
  ai.is_store = access_info & 0x10;
  ai.is_load = !ai.is_store;
  ai.recover = access_info & 0x20;
  ai.addr = addr;
  if ((access_info & 0xf) == 0xf)
    ai.size = outsize;
  else
    ai.size = 1 << (access_info & 0xf);

  __hwasan::HandleTagMismatch(ai, (uptr)__builtin_return_address(0),
                              (uptr)__builtin_frame_address(0), nullptr,
                              registers_frame);
  __builtin_unreachable();
}

#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD